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ABSTRACT
Relationship-Based Access Control (ReBAC) was recently
proposed as a general-purpose, application-layer access con-
trol paradigm, such that authorization decisions are based
on the relationship between the access requestor and the
resource owner. A first, large-scale implementation of Re-
BAC in an open-source medical records system was recently
attempted by Rizvi et al.

In this work, we extend the ReBAC model of Rizvi et
al. to support fine-grained interoperability between the Re-
BAC model and legacy Role-Based Access Control (RBAC)
models. This is achieved by the introduction of the notion
of demarcations as well as an authorization-time constraint
system. Also presented are the design of two authorization
algorithms (one of which has an algorithmic structure akin
to an SMT solver), their optimization via memoization, and
the empirical evaluation of their performances.

CCS Concepts
•Security and privacy → Access control;

Keywords
Relationship-based access control, role-based access control,
interoperability, demarcations, constraints, lazy evaluation,
memoization.

1. INTRODUCTION
Access Control is a cornerstone of application security.

For several decades, Role-Based Access Control (RBAC)
[26] has been the dominant access control model for the ap-
plication layer of computer systems. RBAC facilitates ad-
ministration by having roles as an intermediary abstraction
between users and privileges.

Recent authors have advocated the use of Relationship-
Based Access Control (ReBAC) as a general-purpose ac-
cess control paradigm [14, 16, 7, 10, 9, 15, 13, 24] for organi-
zational applications. This is mainly motivated by the need
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for fine-grained authorization, such that access is not only
determined by job functions (as in RBAC), but also by how
the access requestor and the resource owner are related to
one another within the organization (e.g., not all doctors
can access, but only my family doctor may access). ReBAC
policies also facilitate the expression of trust delegation (e.g.,
consultants referred by my family doctor may access) [14].
Electronic Health Records (EHR) systems are considered an
archetypical application domain for deploying ReBAC. Rizvi
et al. recently reported the first large-scale implementation
of ReBAC in an open-source EHR system, OpenMRS [24].

Due to significant investment, RBAC is not going to dis-
appear soon. Any extension of an existing software ap-
plication to incorporate ReBAC must find a way for the
new access control model to interoperate harmoniously with
the legacy RBAC model. One path of least resistance is
taken by Rizvi et al.’s implementation: an access request
is granted when both the ReBAC and RBAC authorization
mechanisms grant access. Otherwise, ReBAC and RBAC
are essentially orthogonal to one another.

In this work, we argue that there are important reasons
to allow ReBAC and RBAC to interact with one another
in more fine-grained ways than in the work of Rizvi et al.
In particular, there are important classes of access control
policies that applications may need to support:
• Privilege inheritance between roles and rela-

tionships. For example, a family doctor (a relationship-
based principal) is also a general practitioner, or GP (a
role-based principal). Privileges granted to a GP shall
also be granted to any family doctor. This is an exam-
ple in which relationship-based principals inherit the
privileges of role-based principals. The other direction
(role-based principals inheriting from relationship-based
principals) shall also be supported.
• Mutual exclusion between roles and relation-

ships. When a requestor attempts to justify her ac-
cess by a certain relationship, the security policy may
not allow her to simultaneously justify her access us-
ing certain roles. For example, suppose a specialist is a
role-based principal, and, as before, a family doctor is
a relationship-based principal. If a clinician attempts
to justify access by claiming she is both a specialist
and a family doctor, then something suspicious maybe
going on. One either acts as a specialist or a family
doctor, but not both.
• Qualification and refinement between roles and

relationships. In order to supervise a medical intern
(a relationship-based principal), one needs to have the



qualification of a doctor (a role-based principal). In
short, the principal supervisor is a refinement of the
principal doctor.

In this work, we extend the ReBAC model of Rizvi et
al. to support the above fine-grained interactions between
roles and relationships. Our specific contributions are the
following:

1. We introduce the notion of demarcations [20] into Rizvi
et al.’s ReBAC model. This minor extension allows
privilege inheritance to work across the boundary of
ReBAC and RBAC (§2).

2. We propose an authorization-time constraint system
that supports (a) using roles as qualification require-
ments of relationships (and vice versa), and (b) pre-
venting the use of an incompatible pair of role and
relationship to justify access (§3).
Note that constraint enforcement is performed at the
time of an authorization check. This stands in sharp
contrast to static constraints in RBAC systems, in
which constraints are enforced at the time when a ses-
sion is initiated. Authorization time enforcement is ne-
cessitated by the fact that membership in relationship-
based principals is established at the time of authoriza-
tion (just like how it is done in UNIX [12]).
At the time of authorization, the access control sub-
system attempts to construct a rationale that justifies
the requested access. This access justification consists
of a set of role- and relationship-based principals. Our
constraints essentially restrict how a legitimate access
justification can be formed by the various principals.

3. As one would expect, constraint enforcement is com-
putationally hard (NP-complete). To repeatedly ver-
ify constraint satisfaction for each authorization is, at
least in theory, a computational challenge. We thus
propose two authorization procedures, based respec-
tively on eager and lazy evaluation, for enforcing con-
straints. The lazy authorization procedure has an al-
gorithmic structure akin to an SMT solver: it uses
a SAT solver to opportunistically discover computa-
tionally intensive subtasks, and uses learned clauses to
constrain its search space (§4).

4. We propose three caching schemes to optimize the two
authorization procedures above (§5).

5. We evaluate the performance of our authorization al-
gorithms and caching schemes in a simulated environ-
ment (§6). A surprising result is that, even though
in theory constraint enforcement is computationally
hard, our authorization algorithms and caching strate-
gies deliver competitive performance, thereby demon-
strating that our scheme for ReBAC/RBAC interop-
erability is computationally feasible in practice.

2. ReBAC/DEMARCATIONS
We use the umbrella term ReBAC2015 to refer to the

family of access control models presented in this paper as
well the one presented in Rizvi et al. [24]. We begin this
section by reviewing the first member of this family: the Re-
BAC model of Rizvi et al. (§2.1). Then in §2.2 we present
a minor extension of Rizvi et al.’s model to incorporate the
notion of demarcations [20]. This is followed by a discus-
sion of how the provision of demarcations enables RBAC
and ReBAC to interoperate in interesting ways (§2.3). By

the end of this section, we will have all the notational devices
needed for defining the constraint system of §3.

2.1 A Review of Core ReBAC2015
Recent authors have advocated the application of ReBAC

to domains other than social computing [14, 16, 7, 10, 9, 15,
13, 24]. A general-purpose model of ReBAC was proposed
in [14], in which the protection state is a social network —
an edge-labelled, directed graph in which vertices represent
users, edges represent interpersonal relationships, and edge
labels represent relationship types.1 Access control policies
have the form“grant access to o if rp,”where o is the resource
protected by the policy, and rp is a relationship predicate
of the form rp(G, u, v), returning a boolean authorization
decision based on whether the requestor v is related to the
owner u of resource o in a specific way within the social net-
work G. For example, a relationship predicate that returns
1 whenever u and v are within a distance of 2 in G captures
the friend-of-friend policy. An innovation of [14] is the use of
modal logic as a policy language for specifying predicates of
the form rp(G, u, v). The modal policy language was later
found to be limited in expressiveness [16]. Hybrid logic (an
extension of modal logic to incorporate first-order features)
was subsequently proposed as a policy language for ReBAC,
to overcome the aforementioned limitations [7].

Crampton and Sellwood proposed another general-purpose
ReBAC model [13]. A first innovation is that the protection
state is no longer a social network, but an edge-labelled,
directed graph with vertices representing both users and re-
sources. This authorization graph therefore captures not
only user-to-user relationships, but also resource-to-resource
relationships as well as user-to-resource relationships (cf. [9]).
Consequently, authorization decisions can be based on a
much wider class of relationships among system entities. A
second innovation is the notion of authorization princi-
pals, which is a relationship-based analogue of roles origi-
nally inspired by UNIX [12]. In UNIX there are three fixed
principals — owner, group and world — permissions are
granted to principals, and principal membership is deter-
mined by how the requester is related to the requested re-
source (e.g., owner, same group, etc). In the ReBAC model
of Crampton and Sellwood, the administrator may define an
arbitrary set of principals. The authorization decision is a
function of two sets of rules. Firstly, principal matching
rules associate principals with relationship predicates. At
the time of request, if the requestor and the resource sat-
isfy the relationship predicate associated with a principal,
then the requestor is considered a member of that princi-
pal. This contrasts with the static membership of roles in
RBAC. Secondly, authorization rules assign permissions
(either positive or negative) to principals. At request time,
users beloning to a principal will be granted the permissions
associated with that principal. Because of the presence of
both positive and negative permissions, conflict resolution
strategies are also considered. A third innovation is the em-
ployment of a regular expression-based policy language for
specifying relationship predicates (cf. [10, 9]).

Rizvi et al. implemented ReBAC in an open source med-
ical records system, OpenMRS [24]. The implemented Re-
BAC model incorporates the authorization graph and au-

1More precisely, the protection state is a number of social
networks, one for each context . We overlook this subtlety
to simplify discussion.



thorization principals of Crampton and Sellwood, and the
hybrid logic of Bruns et al. as the specification language
for relationship predicates. The methods of OpenMRS are
protected by privilege requirements called guards. To ac-
commodate these guards, Rizvi et al. invented two different
semantics for principal matching: liberal-grant and strict-
grant semantics. In the rest of this paper, we call this Re-
BAC model of Rizvi et al. Core ReBAC2015 .2

2.2 Enters Demarcations
The rest of this section presents ReBAC2015/Demarca-

tions, which is a minor extension of Core ReBAC2015 to in-
corporate the notion of demarcations [20]. The aims of this
presentation are (a) to standardize notations for the rest of
the paper, (b) to demonstrate how RBAC and ReBAC can
interoperate in interesting ways due to the provision of de-
marcations, and (c) to pave the way to the introduction of a
new model ReBAC2015/Constraints in §3. The descrip-
tion of his model is accompanied by a running example in
order to demonstrate the purpose of each component.

A demarcation is an abstract grouping of privileges, just
like a role or an authorization principal is an abstract group-
ing of users. Access control policies are expressed partly
by associating authorization principals with demarcations.
Such a scheme decouples the management of privilege group-
ing, user grouping, and user-group/privilege-group associa-
tion.

Definition 1. The protection state of ReBAC2015/De-
marcations has the following components.
• O: The set of objects (resources).
• S ⊆ O: The set of subjects (users).
• I: The set of relation identifiers (i.e., relationship

types).
• G ⊆ I × O × O: The authorization graph, in which

(i, u, v) ∈ G refers to an edge from vertex u to vertex
v that is labelled with the relation identifier i.
• AP: The set of authorization principals.
• RP: The set of relationship predicates supported by

the system. A relationship predicate is a function with
signature P(I × O × O) × O × S → B. That is, a re-
lationship predicate rp(G, o, s) is a function that takes
an authorization graph G, a resource o and a requestor
s as inputs, and returns a boolean value as output.
• AR : AP → RP: The assignment of a relationship

predicate to each authorization principal (i.e., the prin-
cipal matching rules).
• DM : The set of demarcations.
• ≤ ⊆ DM × DM : The demarcation hierarchy is a par-

tial ordering over the set of demarcations (i.e., reflex-
ive, transitive, anti-symmetric). Given two demarca-
tions d1, d2 ∈ DM for which d1 ≤ d2, we say that d1
is inferior, and d2 is superior. Intuitively, superior
demarcations “inherit” privileges from inferior demar-
cations. See Definition 8 for details.
• AD : AP → DM : A principal-demarcation assign-

ment (i.e., the authorization rules).
• PR: The set of privileges.
• PD ⊆ PR × DM : The privilege-demarcation assign-

ment relation.

2Rizvi et al. also discuss a basic administrative model for
ReBAC, but that is not relevant to this work.

• MD: A set of methods (actions) that can be applied to
objects.
• GD: A set of guards (privilege requirements) for meth-

ods (to be further defined in Definition 4).
• MG : MD → GD: An assignment of a guard to every

method.
It is assumed that O, I, AP, PR, DM and MD are pairwise
disjoint.

Definition 2. An authorization request (or simply
request) is a triple (m, o, s) ∈ MD × O × S, whereby user
s requests that method m be applied to resource o.

Example 3. Alice, a doctor, wishes to read the health
record of Bob, her patient. Suppose the health record is com-
posed of identification information, demographic informa-
tion, clinical visits history, and prescriptions history. Al-
ice wishes to read these all together instead of reading each
component individually. To do this, she invokes the method
read hr(bob hr) where bob hr is Bob’s health record. This
method invocation gets translated to the authorization re-
quest (read hr, bob hr, Alice).

Definition 4. A guard g is a specification of privilege
requirements that must be satisfied by the requestor in order
for the authorization request to be granted. A guard g can
have either of the two forms:

1. one-of(φ), where φ ⊆ PR, requires one of the privi-
leges in φ.

2. all-of(φ), where φ ⊆ PR, demands all of the privi-
leges in φ.

Formally, the following rules specify when we say that a priv-
ilege set ϕ ⊆ PR satisfies a guard g, written ϕ |= g.

ϕ |= one-of(φ) iff φ ∩ ϕ 6= ∅
ϕ |= all-of(φ) iff φ ⊆ ϕ

Example 5. Once the authorization request of Example
3 is issued, the guard gread hr = MG(read hr) is looked up.
Since a health record is composed of four components (Ex-
ample 3), a separate privilege is required to read each com-
ponent, and thus gread hr is an all-of guard:

gread hr = all-of({ rid info , rdem info ,

rcv history , rpres history }).

As an abstract grouping of users, authorization principals
are the ReBAC analogue of roles in RBAC. Membership in
a principal, however, depends on the resource that is being
accessed, and thus principal membership is determined at
the time of request. This contrasts sharply with role mem-
bership in RBAC, which is statically defined.

Definition 6 (Principal Matching). Given a re-
quest (m, o, s), we say that an authorization principal ap ∈
AP is enabled by s for o (or simply enabled) whenever
rp(G, o, s) = 1, where rp = AR(ap). We write enabledo(s)
for the set of all authorization principals enabled by s for o:

enabledo(s) = { ap ∈ AP | AR(ap)(G, o, s) = 1 } (1)

Example 7. Continuing Example 5, we illustrate below
how enabledbob hr(Alice) is computed.

Suppose the system defines a principal FamDoc, for which
AR(FamDoc) is a relationship predicate rp such that



rp(G, o, s) = 1 whenever there is a directed edge with label
Family-Doctor from the owner of o to the requestor s. Sup-
pose further that Alice is indeed the family doctor of Bob,
and thus such an edge exists. It follows that FamDoc ∈
enabledbob hr (Alice)).

For subsequent examples, let us suppose the following:

enabledbob hr (Alice)) = {FamDoc,GP,AuthUser } (2)

Intuitively, Alice is a member of the principal GP because
she works as a general practitioner in the hospital, and she
is a member of the principal AuthUser because she is an
authenticated user.

Definition 8 (Privilege Inheritance). Suppose α ⊆
AP. We define dem(α) to be the set of demarcations associ-
ated with the authorization principals in α, and priv(α) to be
the set of privileges granted to the principals in α. Formally,

dem(α) = { d ∈ DM | ∃ ap ∈ α . d ≤ AD(ap) } (3)

priv(α) = { p ∈ PR | ∃ d ∈ dem(α) . (p, d) ∈ PD } (4)

Note how superior demarcations inherit privileges from in-
ferior ones.

Example 9. By (2), (3) and (4), we know the following:

priv(enabledbob hr (Alice)) =

priv({FamDoc}) ∪ priv({GP}) ∪ priv({AuthUser})

Let us suppose that ≤, AD and PD are defined such that the
three principals are assigned the following privileges:

priv({FamDoc}) = { rid info , rdem info , rcv history ,

rpres history , . . . }
priv({GP}) = { rid info , rdem info , . . . }

priv({AuthUser}) = { . . . }

We therefore have the following:

priv(enabledbob hr (Alice)) = { rid info , rdem info ,

rcv history , rpres history , . . . }

Like Core ReBAC2015 (§2.1), ReBAC2015/Demarcations
can be configured with one of two authorization semantics
— liberal grant or strict grant. Intuitively, a request is au-
thorized in the liberal-grant semantics whenever the set of
all enabled principals jointly supply the privileges required
by the guard. In strict-grant semantics, a request is au-
thorized when there exists one enabled principal that can
“single-handedly” satisfy the guard.

Definition 10 (Liberal Grant). A request (m, o, s)
is authorized according to the liberal-grant semantics, de-
noted by the predicate authlib(m, o, s), iff the following holds:

priv(enabledo(s)) |= MG(m) (5)

Definition 11 (Strict Grant). A request (m, o, s) is
authorized according to the strict-grant semantics, denoted
by the predicate authstr (m, o, s), iff the following holds:

∃ ap ∈ enabledo(s) .

(
priv({ap}) |= MG(m)

)
(6)

It can be shown that the two semantics induce identical
authorization decisions for one-of guards. They differ in
behaviour only for all-of guards [24, footnote 7]. More-
over, if a request is authorized in the strict-grant semantics,
then it is also authorized in the liberal-grant semantics [24,
footnote 8].3

Example 12. If the system enforces liberal-grant seman-
tics then the authorization decision will be based on
priv(enabledbob hr(Alice)), and access will be granted since:

priv(enabledbob hr(Alice)) |= gread hr

On the other hand, if the system enforces strict-grant se-
mantics, then access must be justifiable by a single prin-
cipal. In this case, access is granted because FamDoc ∈
enabledbob hr(Alice) can “single-handedly” satisfy the guard:

priv({FamDoc}) |= gread hr

2.3 Interfacing ReBAC and RBAC
In Rizvi et al.’s implementation of ReBAC for OpenMRS,

the ReBAC authorization scheme is layered on top of the
legacy RBAC authorization scheme in an orthogonal man-
ner: access is granted whenever both RBAC and ReBAC
allow access [24]. Otherwise, the two authorization schemes
do not interact with one another. Our extension of ReBAC
with demarcations, as we shall see below, provides a clean
mechanism for ReBAC2015 to interact with RBAC.

Embedding RBAC in ReBAC2015/Demarcations.
We first describe how an RBAC protection state can be
entirely embedded in a ReBAC2015/Demarcations protec-
tion state. Suppose an RBAC protection state is given:
(R,RH ,PA,UA). Here R is a set of roles. RH ⊆ R×R, the
role hierarchy, is a partial ordering such that (r1, r2) ∈ RH
means that r1, a more senior role, dominates r2, a more ju-
nior role, and thus r1 inherits all privileges granted to r2.
PA ⊆ PR × R is the privilege assignment relation. UA ⊆
S × R is the user assignment relation. This RBAC protec-
tion state can be embedded in a ReBAC2015/Demarcations
protection state using the following two-step construction.

1. Role Predicates. We define a principal apr for each
role r ∈ R. The user assignment relation UA can be
simulated by appropriately defined relationship predi-
cates. Specifically, we formulate AR(apr) = rpr such
that rpr(G, o, s) = 1 whenever (s, r) ∈ UA. When
formulated to capture role membership, a relationship
predicate is also called a role predicate. Otherwise,
the relationship predicate is said to be proper .

2. Isometric Demarcations. We create a demarcation dr
for each role r ∈ R, such that AD(apr) = dr. Such
an arrangement, in which each principal is paired with
a distinct demarcation, is called isometric demarca-
tions. In addition, we define PD in such a way that
(p, dr) ∈ PD whenever (p, r) ∈ PA. we define ≤ in
such a way that dr1 ≤ dr2 iff (r2, r1) ∈ RH .

When ReBAC Interacts with RBAC. The more in-
teresting scenario is when the ReBAC2015 protection state
contains both principals defined by role predicates (a.k.a.

3There are two main differences between the present treat-
ment of ReBAC2015/Demarcations and that of Core Re-
BAC2015 in [24]: (1) The treatment here is a mathematical
formalization of the implementation-oriented description in
[24]; (2) Demarcations are added into the model of [24].



role-based principals) as well as principals defined by prop-
er relationship predicates (a.k.a. relationship-based prin-
cipals). Suppose FamDoc is a relationship-based principal,
such that s belongs to FamDoc iff she is the family doctor
of the owner of a patient record o. Say GP is a role-based
principal, indicating that the requestor is a general practi-
tioner. If AD(GP) ≤ AD(FamDoc), then family doctors in-
herit the privileges granted to GPs. This illustrates how the
demarcation hierarchy and authorization principals jointly
support privilege inheritance across the boundary of ReBAC
and RBAC.

3. REBAC2015/CONSTRAINTS
Comparing Definitions 10 and 11, one would notice that

in both semantics, authorization is granted when a certain
principal set α ⊆ enabledo(s) satisfies the condition below:

priv(α) |= MG(m) (7)

For liberal-grant, α is enabledo(s) itself; for strict-grant, α
is constrained to be a singleton subset of enabledo(s). To
borrow RBAC terminology, the set α of enabled principals
are “activated” to satisfy the guard of m. More precisely,
the set α constitutes the justification of access.

Liberal- and strict-grant represent the two extreme ends of
the design spectrum. Liberal-grant imposes no restriction on
the choice of α, and thus α is chosen to be the maximal such
set: i.e., enabledo(s) itself. In strict-grant, it is required that
privileges be contributed only by one principal, and thus
α must be a singleton set. The intuition is that perhaps
the set of privileges in all-of guards are so sensitive that
access must be justified by a single principal capable enough
to contribute all of them.

In some applications, however, restrictions on the selec-
tion of authorization principals for justifying access must be
imposed according to the specific security needs of the ap-
plication domain. For example, it may be the case that one
authorization principal shall not be activated along with an-
other authorization principal (mutual exclusion), or it may
be the case that an authorization principal can only be ac-
tivated in conjunction with another principal (prerequisite).
Capturing these security restrictions in the form of a one-
size-fits-all authorization semantics (e.g., liberal- or strict-
grant) makes the access control model more rigid than nec-
essary. In the following, we propose an extension of Re-
BAC2015 to incorporate the notion of authorization-time
constraints, which specify restrictions over the choice of α,
the set of principals to be activated to justify access. Note
the difference between our authorization-time constraints
and the traditional session-based constraints in RBAC. In
the latter case, constraints such as static mutually exclusive
roles are enforced at the time when a session is initiated. In
our case, constraints are enforced every time when an access
request is authorized, to ensure that a proper justification
can be constructed for each authorized access.

3.1 The Extended Model
ReBAC2015/Constraints builds on ReBAC2015/De-

marcations. Specifically, constraints are imposed over the
constitution of the set α of principals in (7).

Definition 13. The protection state of ReBAC2015/
Constraints is made up of the same components as

ReBAC2015/Demarcations (Definition 1), plus the follow-
ing two additional components.
• # ⊆ AP × AP: The Mutually Exclusive Autho-

rization Principal (MEAP) constraints form an ir-
reflexive binary relation # over AP. (A binary rela-
tion R is irreflexive if xRx is never true.) Intuitively,
if ap1#ap2, then either ap1 or ap2, but not both, can
be activated to satisfy a guard.
• v ⊆ AP × AP: The Prerequisite Authorization

Principal Requirement (PAPR) constraints form
a partial ordering v over AP (i.e., reflexive, transitive
and anti-symmetric). Intuitively, if ap1 v ap2, then
ap2 cannot be activated unless ap1 is also activated.

Intuitively, a MEAP constraint ap1#ap2 prevents the two
principals ap1 and ap2 from being used simultaneously for
forming access justification. Therefore, MEAP constraints
are therefore used for modelling incompatibilities among ac-
cess rationales.

On the other hand, a PAPR constraint ap1 v ap2 en-
sures that ap2 is used for justifying an access only if ap1

is also used for justifying the same access. In other words,
to activate ap2, the requestor s must satisfy not only the
relationship predicate AR(ap2), but also AR(ap1). PAPR
constraints model the refinement of principal membership.

Constraint semantics is formalized in the definition below.

Definition 14 (Constraint Satisfaction). Given a
set α ⊆ AP, we write consistent(α), and say that α is con-
sistent, iff the following conditions hold:

∀ap1, ap2 ∈ AP .
(
ap1#ap2 ⇒ (ap1 6∈ α ∨ ap2 6∈ α)

)
(8)

∀ap1, ap2 ∈ AP .
(
ap1 v ap2 ⇒ (ap1 ∈ α ∨ ap2 6∈ α)

)
(9)

Definition 15. A request (m, o, s) is authorized by Re-
BAC2015/Constraints, denoted by the predicate authcon(m, o, s),
iff the following holds:

∃α ⊆ enabledo(s) . consistent(α)∧
(
priv(α) |= MG(m)

)
(10)

The principals in the set α above are said to be activated
(to satisfy MG(m)).

Theorem 17 below formally justifies our previous charac-
terization of liberal- and strict-grant semantics as the two
extreme ends of the design spectrum. It turns out that, Re-
BAC2015/Constraints can be configured to various points
between the two ends of the spectrum.

Definition 16. The protection state is said to be
prerequisite-free iff ap1 v ap2 implies ap1 = ap2. The
protection state is conflict-free iff # is an empty rela-
tion (i.e., ap1#ap2 never holds). The protection state is
conflict-complete iff # is maximal (i.e., ap1 6= ap2 im-
plies ap1#ap2).

Theorem 17 (Expressiveness). Suppose the protection
state is prerequisite-free. Then:

authstr (m, o, s)⇒ authcon(m, o, s)⇒ authlib(m, o, s) (11)

The first implication above is strengthened to a logical equiv-
alence (i.e., authstr (m, o, s) ⇔ authcon(m, o, s)) when the
protection state is conflict-complete. The second implication
is strengthened to a logical equivalence (i.e., authlib(m, o, s)⇔
authcon(m, o, s)) when the protection state is conflict-free. In
short, liberal- and strict-grant semantics are but two instan-
tiations of ReBAC2015/Constraints.

The theorem follows directly from the definition.



3.2 Interfacing ReBAC and RBAC
The provision of MEAP and PAPR constraints allows

one to express interesting interactions between ReBAC and
RBAC. The following are some possibilities:
• Consider the role-based principal Specialist and the

relationship-based principal FamDoc. Imposing the
MEAP constraint Specialist#FamDoc ensures that the
requestor acts as either a specialist or a family doctor,
but not both. This constraint prevents inconsistent
explanation of access rationale.
• Consider the role-based principal Doctor and the re-

lationship-based principal Supervisor. Imposing the
PAPR constraint Doctor v Supervisor ensures that
only doctors can supervise medical interns, thus cap-
turing the qualification requirement for a relationship.

4. ENFORCEMENT MECHANISMS
In ReBAC2015/Constraints, authorization involves the

testing of condition (10). Two authorization algorithms,
based respectively on the eager and lazy evaluation of rela-
tionship predicates, are presented in this section for testing
(10). Comparison of their performance is deferred to §6.

4.1 Authorization via Eager Evaluation
Given an authorization request (m, o, s), a straightfor-

ward procedure for computing authorization decisions op-
erationalizes (10) into the following two steps:

1. Compute the principal set E = enabledo(s).
2. Decide if there exists α ⊆ E such that:

consistent(α) ∧
(
priv(α) |= MG(m)

)
(12)

Step 1 involves going through each principal ap ∈ AP ,
and invoking a model checker to evaluate AR(ap)(G, o, s)
(assuming that relationship predicates are specified in hy-
brid logic [7]). Since multiple principals may share the same
relationship predicate, the implementation may cache and
reuse the result of evaluating AR(ap) to prevent duplicated
computations. Specifically, an empty cache is initialized ev-
ery time Step 1 begins. Whenever a relationship predicate rp
is evaluated to a Boolean value b, the pair 〈rp, b〉 is cached,
so that next time the value of rp is needed, a cache look-
up is performed. This optimization is called RP-caching .
Three different caching schemes will be discussed in §5.

Step 2 is a computationally hard problem:
The ReBAC2015/Constraints Authorization Pro-

blem (Re-Auth)
Instance: A protection state (Def. 13), a set E ⊆ AP , and

a method m ∈ MD .
Question: Does there exist α ⊆ E such that (12) holds?

Theorem 18. Re-Auth is NP-complete.

A proof of Thm 18 is given in Appendix A, which also shows
that the MEAP constraints (#) are the source of complexity.

Step 2 can be implemented by a reduction of the Re-
Auth instance to a SAT instance, and using a SAT solver
to solve the latter. Such a reduction is described in §4.3.
Despite the NP-completeness result, performance profiling
tells us that modern SAT solvers (such as [2]) can cope with
Step 2 gracefully, because (a) the number of principals is
only moderate in magnitude, and (b) most of the naturally-
occurring Re-Auth instances are easy.

Algorithm 1 Authorization Checking via Lazy Evaluation

Input: (m, o, s)
1: F ← getSATInstance(AP ,m)
2: satInitSolver(F )
3: initialize E[·] to an empty map
4: σ ← satNextModel()
5: if satNextModel() fails then
6: return “deny access”
7: end if
8: α← extractPrincipals(σ)
9: for all ap ∈ α do

10: rp ← AR(ap)
11: if E[rp] is undefined then
12: E[rp]← rp(G, o, s)
13: end if
14: if E[rp] = 0 then
15: satAddClause((¬ap))
16: goto 4
17: end if
18: end for
19: return “allow access”

4.2 Authorization via Lazy Evaluation
From the experiences reported in [24, §10], a significant

computational challenge lies within Step 1 above, in which
the relationship predicate of each authorization principal is
evaluated to determine if the principal is enabled. The hy-
brid logic model checker [22] must be invoked over an au-
thorization graph of potentially formidable size. The pro-
cess involves both backtracking as well as queries against
very large databases. This motivates an alternative enforce-
ment mechanism that employs a lazy strategy in discovering
whether principals are enabled. This contrasts sharply with
the previous authorization procedure, which eagerly evalu-
ates the relationship predicates of all principals.

Our lazy strategy employs a SAT solver to enumerate all
possible principal sets α ⊆ AP for which priv(α) |= MG(m).
For each α, the relationship predicates of principals in α
are then model checked. Again, predicate value caching is
applied (§4.1). Consequently, model checking is conducted
only when it is needed.

Modern SAT solvers (e.g., [2]) offer two features that make
this strategy possible. First, users may iterate through the
models of a formula. Second, while iterating through the
models, the user may add additional clauses to the formula
in order to forbid certain models from being generated in
subsequent iterations. This second feature is exploited by
the lazy strategy, to exclude from future consideration those
principals that have been found to be disabled. This effec-
tively cuts down the number of models that need to be ex-
amined. Consequently, the algorithmic structure of our au-
thorization procedure is akin to the structure of a modern
SMT solver, in which a SAT solver drives the invocation of a
theory solver, and learns new clauses to guide backtracking.

Algorithm 1 presents the lazy authorization procedure in
the form of pseudocode. A line-by-line explanation of Algo-
rithm 1 is provided in Appendix B. This particular incar-
nation of lazy authorization incorporates RP-caching (§4.1).
Other caching schemes are discussed in §5.



4.3 Reducing Re-Auth to SAT
We describe here a reduction of Re-Auth to a CNF-SAT

instance, so that a standard SAT solver can be employed to
solve the problem. We start by fixing a data representation
for the PAPR constraints and the demarcation hierarchy.

Definition 19. Suppose ap1 v ap2 but ap1 6= ap2. Then
we write ap1 < ap2. Suppose further, for every ap ∈ AP for
which ap1 v ap v ap2, either ap = ap1 or ap = ap2. Then
we write ap1 <′ ap2.

Similarly, we can define < and <′ for the demarcation
hierarchy (≤).

We assume that <′ and <′ are available to the reduction
algorithm. The algorithm would run correctly even if < and
< are used in place of <′ and <′, but the CNF generated
by the reduction would not be as compact.

Our reduction produces a CNF formula F with |E|+|DM |
variables: one for each principal in E, and one for each
demarcation in DM . As E ⊆ AP , the number of variables
is bounded by |AP | + |DM |. To simplify our notation, we
write api to denote the variable corresponding to principal
api, and dj to denote the variable representing demarcation
dj . By construction, if the formula F is satisfied by a truth
assignment σ, then:
• Let α be the set of principals ap ∈ E for which σ(ap) =

1, and let δ be the set of demarcations d ∈ DM for
which σ(d) = 1.
• We know that δ = dem(α) and α satisfies (12).

Thus, both the activated principals and their corresponding
demarcations can be recovered from a model of F .

Given a request (m, o, s), the formula F produced by the
reduction has the following form:

F = Fguard ∧ FMEAP ∧ FPAPR ∧ FDH (13)

Each of Fguard , FMEAP , FPAPR and FDH is a CNF formula
(i.e., a set of clauses). Fguard encodes the guard of the
method involved in the request. The other three encode the
protection state. We describe their construction in turn.

Construction of Fguard . This formula contains clauses
that encode the privilege requirements of method m. Let g
be the guard MG(m). Then g can be in either one of two
forms: one-of(φ) or all-of(φ).

Case g = one-of(φ): Let δ(φ) = { d ∈ DM | ∃p ∈
φ . (p, d) ∈ PD }, the set of demarcations that offer at least

one privilege in φ. The clause
(∨

d∈δ(φ) d
)

is added into

Fguard . This ensures that at least one demarcation that pro-
vides at least one of the privileges in φ is granted.

Case g = all-of(φ): Let δ(p) = { d ∈ DM | (p, d) ∈
PD }, the set of demarcations that offers p. For each p ∈ φ,

the clause
(∨

d∈δ(p) d
)

is added into Fguard . This ensures

every privilege in φ is provided by a granted demarcation.
Construction of FMEAP . The clauses in FMEAP enforce

the MEAP constraints (#). For every (unordered) pair
of principals ap1, ap2 ∈ E such that ap1#ap2, the clause
(¬ap1 ∨ ¬ap2) is added into FMEAP . This ensures that ap1

and ap2 are not both activated.
Construction of FPAPR. The clauses in FPAPR enforce

PAPR constraints (v). These clauses are of two kinds.
First, for each pair of principals ap1, ap2 ∈ E for which

ap1 <′ ap2, the clause (ap1 ∨ ¬ap2) is added into FPAPR.
This ensures that ap2 is not activated unless ap1 is activated.

Second, for each principal ap2 ∈ E for which there is a
principal ap1 ∈ AP \E such that ap1 <′ ap2, the unit clause
(¬ap2) is added into FPAPR. This ensures that principals
with prerequisites outside of E are not activated.

Construction of FDH . This formula models the demar-
cation hierarchy (≤) and the authorization rules (AD). For
each d ∈ DM , a clause Cd is added into FDH . The clause
Cd has the form(

¬d ∨

( ∨
ap∈α

ap

)
∨

(∨
d∈δ

d

))
(14)

where α = { ap ∈ E | AD(ap) = d } and δ = { d′ ∈ DM |
d <′ d′ }. This clause ensures that the demarcation d is
granted only if either one of the principals associated with
it is activated, or one of its immediate superior demarcations
is granted. Note that, if α and δ are both empty, Cd becomes
the unit clause (¬d), and d will not be activated at all.

Additional implementation strategies for generating and
storing these SAT instances are described in Appendix C.

5. CACHING STRATEGIES
Preliminary tests revealed that evaluating relationship pred-

icates by a model checker is computationally more demand-
ing than solving Re-Auth instances using a SAT solver, and
thus reducing the amount of work done by the model checker
can potentially optimize the enforcement mechanism. This
can be achieved by caching the results of computations pre-
viously performed by the model checker and reusing those
results when possible. This section presents three caching
strategies that can potentially improve the performance of
the authorization procedure. Comparison of their perfor-
mance is deferred to §6.2.

Note that these caching strategies do not cache authoriza-
tion decions across authorization requests. The purpose of
these caching strategies is to facilitate the computation of a
single authorization decision.

AP-Caching . The idea behind this caching strategy is
to prevent repeating principal membership tests. During the
authorization of a request (m, o, s), we ensure that
AR(ap)(G, o, s) is computed at most once for each ap, and
the result is cached. If membership in ap needs to be checked
again during the authorization of the same request, then the
cached result is reused. This caching strategy is not useful
for the eager evaluation strategy, as membership in each
principal is checked only once. AP-caching, however, is ef-
fective for the lazy evaluation strategy. Recall that the lazy
evaluation strategy repeatedly generates sets α ⊆ AP for
which consistent(α)∧

(
priv(α) |= MG(m)

)
. For each such α,

it tests if α ⊆ enabledo(s) by making an invocation of the
model checker for each ap ∈ α. Now, suppose α1 and α2 are
two candidate principal sets generated by the lazy autho-
rization procedure. Then membership for those principals
in α1 ∩ α2 will be tested twice. AP-caching is designed to
optimize away such repeated membership tests.

RP-Caching. The idea behind this caching strategy is to
prevent computing rp(G, o, s) more than once, for any given
rp ∈ RP . During the authorization of a request (m, o, s),
suppose membership in principal ap is to be tested. Let
rp = AR(ap). The model checker is invoked to compute
b = rp(G, o, s). The pair 〈rp, b〉 is then cached. When mem-
bership of another principal ap′ is to be tested later during
the authorization of the same request, if a pair 〈AR(ap′), b′〉



Parameter Values
|PR| {3 ×|AP |}
|PD | {7 ×|AP |}
|φ| {3}
|AP | {50, 100, 150, 200}
|#| {50, 100, 150, ..., 500}
| <′ | {50, 100, 150, ..., 500}
| <′ | {50, 100, 150, ..., 500}

Table 1: Parameters used for test cases.

is found in the cache, the value b′ is reused rather than com-
puted from scratch. This caching strategy utilizes the fact
that multiple authorization principals may share a common
relationship predicate. This reduces the number of times the
model checker is invoked during an authorization check, for
both the eager and lazy evaluation strategy. More specifi-
cally, the model checker is invoked at most |RP ′| times for an
authorization check, where RP ′ is the range of the function
AR on input AP . It should be simple to observe that if each
authorization principal has a distinct relationship predicate
(i.e. |AP | = |RP ′|), then RP-caching behaves the same as
AP-caching. In general, AP-caching is no more effective
than RP-caching.

MC -Cross-Caching. This third caching scheme exploits
the memoization mechanism of the hybrid logic model checker
in a creative way. The model checker in the ReBAC Java
Library implements the inductively specified semantics of
Bruns et al. [7]. As such, the model checker has a recursive
structure. To prevent pathological cases and to speed up
model checking, the model checking procedure caches the
return values of recursive calls — a technique commonly
known as memoization in functional programming litera-
ture [28, §19.6]. The cache is local to the model checker
instance. In the implementation of AP- and RP-caching, ev-
ery time model checking is conducted, a new model checker
instance is created. Consequently, the model checker cache
is discarded after each test of principal membership.

In MC -cross-caching, only one instance of the model checker
is created for a given authorization check. The same model
checker instance is reused for all principal membership tests
during this authorization check. This means that, unlike
AP- and RP-caching, in which the values of relationship
predicates are cached, MC -cross-caching allows the values of
the subformulas of the relationship predicates to be reused.

In general, RP-caching is no more effective than MC -
cross-caching. They behave identically only when relation-
ship predicates do not share common subformulas.

6. PERFORMANCE EVALUATION
An empirical study has been conducted to evaluate and

compare the performance of the eager and lazy authoriza-
tion procedures (§4) as well as the caching schemes (§5).
The study was conducted in a simulated environment with
synthetic data. Below we describe our experimental set-up
followed by the results of the experiments comparing the
authorization procedures (§6.1) and the experiments com-
paring the caching schemes (§6.2).

Core ReBAC2015 Components. We reused part of
the ReBAC protection state in the work of Rizvi et al. [24].
First, we reused their authorization graph, which consists of
1.6 million nodes and 32 million edges. It was constructed
from the social network dataset, soc-Pokec, from the Stan-

ford Large Network Dataset Collection [3]. 10,000 of the
nodes were taken as users (S), and the rest patients (O \S).
Consult [24, §10 and Appendix B] for details such as edge
labelling. Second, we reused their values for |PR|, |PD |
and |φ| (Table 1, first 3 lines). Explanations of how these
parameter settings are deduced from previously published
experimental works on RBAC can be found in [24, §10 and
Appendix A]. Third, we reused the hybrid logic formulas in
[24, Appendix C] as relationship predicates. These formulas
were adapted from the ones used in the Electronic Health
Records System case study in [14, §5]. There is a total of
10 distinct formulas, and they are randomly assigned to au-
thorization principals in the experiments (via a randomly
generated AR). Consequently, some principals may share
the same formulas.

Test Generation Scheme. Table 1 summarizes the pa-
rameter combinations used in our experiments. The last 4
lines of the table specify ranges of values for |AP |, |#|, | <′ |
and | <′ |, and account for 4,000 distinct parameter combi-
nations. For each of the four experimental profiles, 20 test
cases are randomly generated for each parameter combina-
tion. This amounts to 80,000 test cases for each profile.

To generate a test case, the parameter values are first
fixed, and then the principals (AP), the principal matching
rules (AR), isometric demarcations (DM for which |DM | =
|AP |), privileges (PR), privilege-demarcation assignment (PD),
the demarcation hierarchy (<′), and the constraints (# and
<′) are randomly generated in turn. Lastly, a triple con-
sisting of an object (o ∈ O), a subject (s ∈ S) and a guard
(g ∈ GD) is randomly generated to represent the authoriza-
tion request of the test case.

Experimental Profiles. Four experimental profiles were
generated, each is described below.

Profile 1. As discussed above, 80,000 test cases were gen-
erated for this profile. The 80,000 corresponding Re-Auth
instances (with E = AP) were reduced to SAT instances
and solved by a SAT solver. The running time of the SAT
solver was recorded for each test case. The 500 test cases
with the highest SAT solver running time were then selected.
The eager and lazy authorization procedures were then fed
these 500 test cases, and their running times were recorded.

This profile is designed to highlight the effect of hard Re-
Auth instances on the two authorization procedures.

Since there were only 10 distinct hybrid logic formulas,
and they were randomly assigned to 50–200 principals. This
level of duplication is not representative. We therefore adopt
RP-caching for this profile, but force the caching mechanism
to treat the relationship predicate of each principal to be
unique. This effectively turns off the effect of caching.

Profile 2. Again, 80,000 test cases were generated and
fed to the lazy authorization procedure. The 500 test cases
with the highest running time were selected. The two au-
thorization procedures were then given these 500 test cases,
and their running times were recorded. This profile com-
pares the performance of the two authorization procedures
on the test cases that are the hardest for lazy evaluation.

As in Profile 1, the hybrid logic formula of each principal
was considered unique by the RP-caching mechanism.

Profile 3. This profile is similar to Profile 2, except that
the 500 toughest test cases for the eager authorization pro-
cedure were selected.

Profile 4. This profile reuses the 500 test cases of Profile
1, but the relationship predicate of each principal is not



forced to be unique: i.e., RP-caching is in full effect. Recall
that the 10 hybrid logic formulas inherited from [24] were
randomly distributed among the authorization principals.
With RP-caching, we expect the overhead of model checking
to diminish significantly.

Hardware Configuration. The experiments were con-
ducted on desktop machine with AMD FX-8350 8-core pro-
cessor (16 MB cache), 16 GB RAM (1866 MHz, DDR3), and
840 EVO solid state drive running Windows 8.1.

Software Configuration. The eager and lazy autho-
rization procedures were implemented in Java 7, with the
hybrid logic model checker supplied by the open-source Re-
BAC Java Library [22]. We did not incorporate the opti-
mization described in Appendix C, and thus all the timings
recorded include the overhead of computing the reduction
to SAT. We used Sat4j [2] as the SAT solver in the two
authorization procedures. This SAT solver offers the two
features mentioned in §4.2: model enumeration and learnt
clauses. Following [24], the authorization graph was stored
in a graph database, Neo4j [1], to obtain a more competitive
performance than traditional relational databases.

6.1 Comparing Authorization Procedures
Fig. 1 depicts the average running times of the two autho-

rization procedures in the four experimental profiles.
Finding 1: Re-Auth is not the bottleneck. The per-

formance of both authorization procedures are competitive
in Profile 1, indicating that the hardest Re-Auth instances
do not slow down performance. Despite the need to solve an
NP-complete problem at authorization time, ReBAC2015/
Constraints exhibits competitive performance.

Finding 2: Lazy Evaluation is more efficient when
model checking is expensive. The performance of lazy
evaluation is significantly faster than that of eager evaluation
in Profiles 2 and 3. This performance advantage remains
whether the test cases are hard for lazy or eager evaluation.

To better understand this phenomenon, we examine the
internal behaviour of the two authorization procedures in
Table 2 (see the statistics for Profile 3). Eager evaluation
makes many more invocations to the model checker (MC)
than lazy evaluation. In contrast, eager evaluation makes
only (at most) 1 invocation to the SAT solver, while lazy
evaluation makes multiple invocations. Since the average
time of a model checker invocation is much higher than that
of the SAT solver, model checking time dominates the run-
ning time. (Note that reduction time is negligible in both
authorization procedures.)

Rizvi et al. pointed out a major bottleneck of model check-
ing large authorization graphs is database access [24]. We
anticipate the performance advantage of lazy evaluation will
become even more prominent when, for example, storing the
authorization graph in an SSD is not possible due to hard-
ware constraints, or the authorization graph must be stored
in a legacy relational database rather than a graph database.

Finding 3: Eager evaluation has a performance ad-
vantage when model checking cost is low. In Profile
4, the performances of both lazy and eager evaluation are
highly competitive, with eager evaluation exhibiting a per-
formance advantage. In Profile 4, only 10 distinct relation-
ship predicates are involved, and thus the benefit of predi-
cate value caching becomes exceptionally prominent (Table
2, Profile 4). Such a performance advantage can be expected
when the diversity of relationship predicates are low among
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Figure 1: Average time of authorization checks (with
95% confidence interval).

Profile 3
Avg. Stat. Lazy Eager
# MC calls 13.806 161.206
Time / MC call 0.007 secs 0.007 secs
# SAT calls 13.758 0.994
Time / SAT call 6.6× 10−7 secs 1.1× 10−4 secs
Reduction time 4.8× 10−4 secs 4.9× 10−4 secs

Profile 4
Avg. Stat. Lazy Eager
# MC calls 3.838 9.976

Table 2: Statistics of Profiles 3 and 4

the principals, or when the nesting depth of modal operators
in hybrid logic formulas is small.

6.2 Comparing Caching Schemes
We generated scenarios that potentially challenge the cach-

ing strategies (§5). One such scenario would be to generate
relationship predicates that do not share common subfor-
mulas. A limitation of this scenario is that it does not ef-
fect AP- and RP-caching since these strategies are not con-
cerned with the subformulas of the relationship predicates.
The unique subformulas scenario potentially challenges MC -
cross-caching by preventing cached results from being used
across different invocations of the model checker. This sce-
nario is discussed in [23, Chapter 9].

This section presents an extreme scenario where the cost
of model checking is extremely high. This scenario is achieved
using the test cases of Profile 1 and prepending each rela-
tionship predicate with the prefix:

〈agent〉〈agent〉〈agent〉

This results in an increased workload for the model checker.
The test cases of Profile 1 were used to keep the results from
being biased towards either of the authorization procedures.

A secondary purpose of this test is to stress-test the MC -
cross-caching strategy by forcing it to cache a high amount
of data such that it results in the cache being full and thus
forcing a data dump. The prefix causes the cache to be filled
faster and potentially forcing invocations of the cache data
dump, thereby countering the benefit of MC -cross-caching.

The average running time of the two evaluation schemes
using the various caching strategies are summarized in Fig. 2.

Finding 4: As the depth of 〈 · 〉 increases, the perfor-
mance advantage of RP-caching and MC -cross-caching
becomes highly pronounced, especially in the case of
eager evaluation. Recall that the authorization graph con-
sists of 30,622,564 edges between 1,632,803 nodes. For the



Figure 2: Average time of authorization checks using
the caching strategies (w/ 95% CI).

construction of the authorization graph, Rizvi et al. sepa-
rated the top 10,000 nodes with the highest in-degrees and
labeled them as users, and the rest were labeled as pa-
tients. As a result of their construction, there are 28,538,682
patient-to-patient edges with the agent label, which means
that there are approximately 18 (actually 17.586) outgoing
agent edges per patient on average. The prefix used for the
relationship predicates for this case results in an increase in
the workload of the model checker. In the average worst case
the workload is increased by a magnitude of 183 (= 5,832).

The results show significant performance advantage for
using RP-caching or MC -cross-caching compared to AP-
caching. The most prominent results are from the eager eval-
uation scheme. More specifically, the result of RP-caching
with lazy evaluation or MC -cross-caching with lazy evalua-
tion offer the best performance in the worst case scenario.

Finding 5: The MC -Cross-Caching does not invoke
a data dump for this case. A surprising result here is that
even at this depth, the cache used by the model checker does
not invoke a single data dump for either the lazy or eager
evaluation schemes. The cache used for the model checker
for these experiments is the one provided by the ReBAC
Java Library [22], which has a maximum size of 8,000,000
nodes. Since there is no data dump for the cache, all of its
nodes are retained and already computed data is not lost.
The relationship predicates can be further altered to force
even more data to be stored within the model checker cache.
For instance, one could use the ↓ x hybrid logic operator to
bind each node to a variable and create the following prefix:

〈agent〉 ↓ x 〈agent〉 ↓ y 〈agent〉 ↓ z

Using the modified prefix would certainly result in a per-
formance slowdown even more so than the original prefix.
However, the performance using the original prefix already
results in unacceptable running times and thus slowing it
down further would not provide any benefits.

7. RELATED WORKS
The evolution of Fong’s ReBAC model [14] to the Core

ReBAC2015 model [24] has already been discussed in de-
tails in §2.1. Compared to [24], this work introduces the
demarcation hierarchy (ReBAC2015/Demarcations) and an
authorization-time constraint system (ReBAC2015/Con-
straints). These extensions increase the expressiveness of
the model: the liberal- and strict-grant semantics of [24] are
but two instantiations of our new model (Thm. 17). Fur-
thermore, the new features support fine-grained interactions

between RBAC and ReBAC (§2.3 and §3.2). This compares
favourably with [24], in which ReBAC and the legacy RBAC
models operate independently. Eager and lazy versions of
principal matching algorithms are also presented in [24],
but they cannot accommodate an authorization-time con-
straint system. This gap motivates our design of authoriza-
tion checking algorithms in §4, which solve an NP-complete
problem using a SAT solver, and our lazy authorization al-
gorithm has an algorithmic structure akin to an SMT solver.

Independent of [13], Cheng et al. also considered the in-
corporation of user-to-resource and resource-to-resource re-
lationships into the ReBAC protection state [9]. While re-
lationship predicates are assumed to be specified in hybrid
logic formulas [7] in this work, Cheng et al. [10, 9] and
Crampton and Sellwood [13] advocate the use of regular ex-
pressions to specify relationship predicates. The two spec-
ification paradigms are incomparable in expressive power.
Since backtracking is still involved in the checking of rela-
tionship predicates that are specified in regular expressions,
our proposal of lazy evaluation would still apply. Lastly,
the presence of negative permissions in [9, 13] necessitates
conflict resolution schemes. We do not consider negative
permissions in this work.

The constraint system presented in this paper stands on
the shoulders of prior literature on RBAC constraints [21, 8,
26, 11, 5, 6, 4, 17, 18, 19, 27, 29]. For example, our MEAP
constraints are direct descendants of mutual exclusion con-
straints, which are used to enforce separation of duty policies
[25, 21]. Our work is unique in two ways. First, while mutual
exclusion constraints (e.g., the SMER constraints in [21]) are
imposed statically in a typical RBAC system (i.e., when a
session is initiated), our MEAP and PAPR constraints are
imposed dynamically (i.e., at the time of a ReBAC autho-
rization check). This dynamism is necessitated by the fact
that membership in authorization principals is defined dy-
namically. But then constraint solving is NP-complete, and
there is no a priori reason to believe that authorization-time
constraint enforcement is feasible. Thus the second unique-
ness of this work is the demonstration of the surprising result
that modern SAT solving technologies can be employed in
a creative way (via our lazy evaluation strategy) to render
authorization-time constraint enforcement a feasible task.

8. CONCLUSION AND FUTURE WORK
By introducing demarcations and constraints to the re-

cently proposed ReBAC model of [24], we allow ReBAC and
RBAC to interoperate in interesting ways. Constraints are
checked at authorization time, via a lazy evaluation strategy
akin to SMT solving. The performance of the authorization
procedure have been shown empirically to be competitive.

A number of research opportunities arise from this work.
First, one could consider negative permissions and study
their impact on the constraint system. Second, one could
extend ReBAC2015 to incorporate a richer guard language
for specifying complex privilege requirements.
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APPENDIX
A. NP-COMPLETENESS OF Re-Auth

To prove that Re-Auth is NP-complete, we show that it
is in NP, and that it is NP-hard.

Re-Auth is in NP. A nondeterministic algorithm can
decide Re-Auth by first guessing subset α ⊆ E, and then
verifying that (a) consistent(α), and (b) priv(α) |= MG(m),
both can be accomplished in time polynomial to the size of
the protection state.

Re-Auth is NP-hard. We reduce the Independent Set
problem to Re-Auth. The Independent Set problem, which
is known to be NP-complete, asks, given an undirected graph
G = 〈VG, EG〉 and a positive integer k, does there exist a set
of vertices, U ⊆ VG, with |U | = k, such that for every pair
of vertices, u, v ∈ U , uv 6∈ EG?

Suppose an instance of Independent Set is given: G =
〈VG, EG〉 and k, where VG = {v1, ..., vn}. We describe below
the construction of a corresponding instance of Re-Auth
consisting of a ReBAC2015/Constraints protection state, a
method m ∈ MD , and a set E ⊆ AP (where MD and AP
are part of the protection state).

We construct a protection state that is order-free (i.e., no
PAPR constraint) and has a flat demarcation hierarchy (i.e.,
no two distinct demarcations are related by ≤). Construct
PR = {p1, . . . , pk} (i.e., |PR| = k). Let MD = {m}, where
MG(m) = all-of(PR). Construct an AP with k × n prin-
cipals: apij , where 1 ≤ i ≤ k and 1 ≤ j ≤ n. The protection
state has isometric demarcations: i.e., there is a correspond-
ing demarcation dij for each apij such that AD(apij) = dij .
We also define PD = {(pi, dij) | pi ∈ PR, dij ∈ DM }. Con-
sequently, dem({apij}) = {pi}.

The last component of the protection state is #, the MEAP
constraints:

1. Edge constraints: For every 1 ≤ x < y ≤ n for which
vxvy ∈ EG, impose apix#apjy for each 1 ≤ i ≤ k and
1 ≤ j ≤ k.

2. Vertex constraints: For every 1 ≤ x < y ≤ n, impose
apix#apiy for each 1 ≤ i ≤ k.

3. Privilege constraints: For every 1 ≤ i < j ≤ k, impose
apix#apjx for each 1 ≤ x ≤ n.

Now the rest of the Re-Auth instance consists of the only
method m and the principal set E = AP .

It is not hard to see that a solution α ⊆ E exists iff the
Independent Set instance has a solution. The constructed
protection state consists of k privileges, k × n principals,
O(k2 × n2) edge constraints, O(n2 × k) vertex constraints,
andO(k2×n) privilege constraints. The reduction can there-
fore be computed in O(k2n2) time.

Discussion. Note that the constructed Re-Auth in-
stance is order-free, and its demarcation hierarchy is flat.
This means the MEAP constraints (#) form the core of
complexity for Re-Auth. The demarcation hierarchy (≤)
and the PAPR constraints (v) are not hard at all. This is
easy to see because the reflexive transitive closures for <′

and <′ can be computed in polynomial time.

B. LAZY EVALUATION IN DETAILS
There are three main steps in Algorithm 1.
Step 1: Prepare (lines 1–3). Line 1 reduces the present

Re-Auth instance to a SAT instance F using the reduction
in §4.3. The function getSATInstance(E,m) takes two argu-

ments: a principal set E and a requested method m. Note
that on line 1, the entire AP is passed as E. Distilling from
AP what principals are enabled belongs to Step 3 below.
Then on line 2 the SAT solver is initialized to work with F .4

A map E[·] is used for caching the result of model checking:
if E[rp] is defined, then it is the value of rp(G, o, s). E[·] is
initialized to an empty map on line 3.

Step 2: Construct Principal Set (lines 4–8). First,
the SAT solver is invoked to find the next model of F (line 4).
If no such model is found (line 5), then we have exhausted all
models of F , and thus access is denied (line 6). Otherwise,
a model σ of F is found, and it encodes a principal set α
that satisfies (12). The set α is extracted from σ on line 8.
More specifically, extractPrincipals(σ) returns { ap ∈ AP |
σ(ap) = 1 }. See §4.3 for a justification.

Step 3: Verify That Principals Are Enabled (lines
9–19). The goal of this block of code is to check if all
the principals in α are enabled. The for loop on lines 9–
18 examines each principal ap in α in turn. Let rp be the
relationship predicate that defines membership in ap (line
10). The value of rp(G, o, s) is evaluated by an invocation
to the model checker (line 12) if that value has not already
been cached in the map E[·] (line 11). If ap is found not to
be enabled (line 14), then the clause (¬ap) is added to F
to prevent the SAT solver from attempting to enable ap in
subsequently found models (line 15). As soon as α is found
to contain a disabled principal, Step 2 is repeated (line 16).
However, if all ap in α are confirmed to be enabled, then
access will be granted (line 19).

C. EFFICIENT GENERATION AND STOR-
AGE OF SAT INSTANCES

Note that formula F is independent of the resource (o)
and requestor (s) from the request. Not only that, in the
lazy authorization procedure (§4.2), E is fixed to AP , and
thus FMEAP , FPAPR and FDH do not vary across requests.
Therefore, to increase efficiency, one can simply generate F
once, offline, for each m, and reuse it for all requests involv-
ing m. More specifically, FMEAP , FPAPR and FDH are the
same for all methods. This means they need only be gener-
ated once offline, and stored globally. One can then gener-
ate the corresponding Fguard for each method m, and store
it along with m. When a request is to be authorized, one
can retrieve Fguard from m, and combine it with the globally
stored FMEAP , FPAPR and FDH , to obtain the appropriate
F .

4Functions that interact with the SAT solvers have the prefix
“sat-”.


