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ABSTRACT
Nowadays, a user may belong to multiple social computing
systems (SCSs) in order to benefit from a variety of services
that each SCS may provide. To facilitate the sharing of
contents across the system boundary, some SCSs provide a
mechanism by which a user may “connect” his accounts on
two SCSs. The effect is that contents from one SCS can
now be shared to another SCS. Although such a connection
feature delivers clear usability advantages for users, it also
generates a host of privacy challenges. A notable challenge
is that the access control policy of the SCS from which the
content originates may not be honoured by the SCS to which
the content migrates, because the latter fails to faithfully
replicate the protection model of the former.

In this paper we formulate a protection model for a fed-
eration of SCSs that support content sharing via account
connection. A core feature of the model is that sharable con-
tents are protected by access control policies that transcend
system boundary — they are enforced even after contents
are migrated from one SCS to another. To ensure faith-
ful interpretation of access control policies, their evaluation
involves querying the protection states of various SCSs, us-
ing Secure Multiparty Computation (SMC). An important
contribution of this work is that we carefully formulate the
conditions under which policy evaluation using SMC does
not lead to the leakage of information about the protection
states of the SCSs. We also study the computational prob-
lem of statically checking if an access control policy can be
evaluated without information leakage. Lastly, we identify
useful policy idioms.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls
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1. INTRODUCTION
Although a social computing system (SCS) provides a

wide variety of services for its members, users may prefer
to be members of different SCSs to benefit from unique
services of these SCSs, or socialize differently on different
SCSs. For instance, a user could be a member of Facebook,
Google+ or Path to be connected with her friends or family,
and share pictures and postings in order to socialize. In Yelp
or Foursquare, members locate local deals and restaurants,
and share their experiences with friends. Banjo or Sonar
users generally try to explore new people and events nearby,
and share their feeds and photos with them. To benefit from
each of these services, a user usually ends up with accounts
on multiple SCSs [19, 26].

To facilitate the sharing of contents across the system
boundary, some SCSs provide a mechanism by which a user
may “connect” her accounts on two SCSs [20, 30]. The effect
is that contents from one SCS can now be shared to another
SCS. For instance, by connecting Banjo to Foursquare, a
user can read her friends’ Foursquare feeds in Banjo, and can
post her current location to Foursquare from within Banjo.

Although such a connection feature delivers clear usabil-
ity advantages for users, it also generates a host of privacy
challenges. A notable challenge is that the access control
policy of the SCS from which the content originates may not
be honoured by the SCS to which the content migrates, be-
cause the latter fails to faithfully replicate the access control
policy and/or the protection model of the former. As a case
in point, a member may declare her location in Foursquare,
and share it on her Facebook account through Foursquare’s
connection service. Facebook treats her declared location
information as its own resource so the user’s Facebook pol-
icy (instead of her Foursquare policy) will be applied on
the shared content. On closer examination, three protection
challenges make this research problem nontrivial.

1. Policy Fidelity . The access control policy of a shared
content prior to migration is not communicated to the
destination site. As a result, the policy to be enforced
on the destination site need not be consistent with the
user’s privacy expectation as expressed in the origin
policy. This ambiguity in terms of what policy to be



used for protecting shared contents is a first protection
challenge.

2. Mechanism Fidelity . Even if the origin policy (e.g.,
“friends” in Facebook) is known to the destination site
(e.g., Foursquare), the latter may not be able to en-
force it. A reason is that the destination site has to
emulate the authorization mechanism of the origin site
in order to enforce the origin policy. One can do so by
reverse engineering, but the protection model of a typ-
ical SCS (e.g., Facebook) is a moving target (consider
how often Facebook “upgrades” its protection model),
and thus tracking the protection model of the origin
site with fidelity is a tremendous software engineering
challenge.

3. State Fidelity . Another reason for the destination
site not to be able to enforce the origin policy is that
the access control policies of an SCS usually depends
on user information not available to the destination
site. In a traditional information system, the protec-
tion state and the application state of the system do
not intersect. A characteristic of SCSs is that user-
contributed information is used for authorization. For
example, friendship information or location claims (i.e.,
“check in”) are used for authorization purposes. Con-
sequently, to evaluate the “friends” policy of Facebook,
one needs to know the social network of Facebook. If
the destination site (e.g., Foursquare) attempts to “ap-
proximate” this proprietary knowledge (e.g., by con-
sulting the Foursquare friend list of the user), then
emulation fidelity is compromised.

To the best of our knowledge, the need of a privacy pol-
icy for shared data across social network systems were first
identified by Ko et al. [20]. We are aware of two lines of pre-
vious work that have considered protection of shared data
across distributed systems [19, 26, 28]. In their pioneer-
ing work [19, 26], Shehad et al. proposed the formulation of
cross-site policies for shared contents, in order to address the
challenge of Policy Fidelity. They advocated also the adop-
tion of a trusted third party, x-mngr, for managing cross-
site policies and arbitrating accesses. Their work, however,
considers policies in the form of access control lists. Con-
sequently, the considered policies do not reflect the kind of
policies that are actually used in the context of social com-
puting (e.g., colocation and friendship). The rationale is un-
derstandable: adoption of social computing policies would
result in the challenge of State Fidelity that to date has no
obvious solution.

A second line of related work is that of Squicciarini et al.
[28]. This ambitious work deals with the general problem of
protecting shared data in distributed systems, and thus its
scope is not restricted to that of content sharing in social
computing. They introduced the idea of a self-controlling
object (SCO), which encapsulates the shared data object,
the access control policy, mobile code that specifies the se-
mantics of the policy (i.e., the procedure for evaluating the
policy), as well as ways to synchronizing the policy to its lat-
est version. This framework clearly addresses the challenges
of Policy and Mechanism Fidelity. Yet, again, the type of
policies considered in this work is not the kind typical in
social computing. The protection states of the SCSs sim-
ply cannot be encapsulated in such a package. Apply their

framework to protect shared contents in SCSs does not ad-
dress the challenge of State Fidelity.

This paper proposes a protection model for shared con-
tents in a confederation of SCSs, with the goal of supporting
access control policies commonly found in social computing
(e.g., friends, co-location, etc), while tackling the challenge
of State Fidelity head on (as well as Policy and Mechanism
Fidelity). Our contributions are the following:

1. A novel protection model for controlling access to
shared contents in SCSs is proposed in §2. To en-
sure Policy Fidelity, we allow users to formulate ex-
plicit shared access policies for protecting shared ac-
cesses. Two key features of the policy language are:
(a) Atomic policies come from the policy vocabulary
of the SCSs in the confederation, thereby supporting
social computing policies; (b) The atomic policies are
interpreted according the authorization mechanisms of
explicitly named SCSs. Atomic policies can be com-
bined into composite policies. To ensure Mechanism
Fidelity, such a composite policy is evaluated using dis-
tributed computing: each atomic policy is evaluated
by a query to the SCS who knows how to interpret
that query. Such SCS also has access to the protection
state needed for evaluating the atomic policy, so State
Fidelity is guaranteed.

2. Distributed evaluation of shared access policies may
disclose part of the protection states (and thus user
information) of SCSs to one another. Prevention of
such information leak is a novel privacy goal that has
not been studied in the context of SCS content sharing
before. In §3, we describe how to employ a variant
of Secure Multi-party Computation (SMC), known as
Private Function Evaluation (PFE), for achieving such
a privacy goal.

3. Motivated by the need of default policies to ease pol-
icy administration, we notice that the PFE solution
may not be applicable in the presence of default poli-
cies. We therefore articulate another means to achieve
the privacy goal using regular SMC. In §4, we for-
mally characterize policies that do not leak informa-
tion about protection states of the SCSs when it is
evaluated using SCM, and do so via the classical no-
tion of nondeducibility [29]. We also characterize the
computational complexity of deciding if a policy leaks
information (i.e., Πp

2-complete). Lastly, we discuss pol-
icy idioms that are useful in practice.

2. FEDERATED SCSs
We present a protection model for shared resources among

a confederation of SCSs, in which member SCSs collaborate
to offer protection. We begin with detailing the assumptions
we make of the member SCSs as they participate in the
confederation (§2.1). We then outline the features offered
by this protection model (§2.2). After that, the protection
model itself will be described in details (§2.3, §2.4, §2.5).

2.1 Assumptions
Suppose a user has the user name u1 on SCS i1, and user

name u2 on SCS i2. When she “connects” her account on i2
to her account on i1, she is essentially claiming that the iden-
tity u1 on i1 is equivalent to the identity u2 on i2. Typically,



she does so by presenting to i1 the user name u2 as well as
the corresponding password. Then, SCS i1 attempts to use
the credential to log on to SCS i2, success of which will be
taken as a proof that the claim of identity mapping is trust-
worthy. In short, account connection is a manual identity
mapping process. We make the following assumption.

Assumption 1 (User Identity). The manual identity
mapping process is (a) consistent and (b) applied whenever
needed.

Technically, part (a) of the assumption requires that the
establishment of the “is equivalent to” relation among iden-
tities of different SCSs result in an equivalence relation (i.e.,
reflexive, symmetric and transitive), such that no two iden-
tities within the same equivalence class come from the same
SCS. This is not necessarily true with current technology.
For example a user may claim to Google+ that his Face-
book identity is “James White,” while at the same time
claiming to Foursquare that his Facebook identity is “Jim
White.” We assume that, collaboration within the confeder-
ation will regulate such inconsistencies (e.g., by identifying
cases of account hijacking and duplicate identities). Part
(b) of the assumption requires that, as our proposed model
is adopted by a confederation of SCSs, the latter will faith-
fully impose manual identity mapping whenever our model
demands it. In existing implementations, manual identity
mapping is only imposed under two scenarios. First, when
a user attempts to “push” information from SCS i1 to SCS
i2, she does so by presenting to i1 her credential in i2. Sec-
ond, when a user attempts to “pull” information from SCS
i1 to SCS i2, she will do so by presenting to i2 her creden-
tial in i1. In short, manual identity mapping is performed
when resources are shared. In our protection model, we
also require manual identity mapping when a user accesses
a resource that has been shared to an SCS. That is, man-
ual identity mapping predicates access to shared resources.
Part (b) assumes this will be enforced by member SCSs of
the confederation.

A major corollary of Assumption 1 is that users across all
SCSs are uniquely identifiable. From now on, we will by-
pass the differentiation of user identities in different SCSs.
This does not mean that the confederation needs to have a
universal identifier for each user (e.g., a single sign-on mech-
anism). Each SCS will continue to feature its own identity
management system, and identity mapping is still performed
manually, on demand, via account connection. All that we
assume is that the equivalence classes of user identities can
uniquely identify users within the confederation.

Next, we assume that when a resource created in SCS i1
by a user u is shared to SCS i2, the destination SCS will
retain all information regarding the origin of the resource,
its identity in the originating SCS, as well as which user
created that resource.

Assumption 2 (Resource Identity). Every shared
resource retains its identity, its originating SCS as well as
ownership. Other auxiliary information regarding a shared
resource that is needed for protection will also be retained
after sharing

Consequently, we can uniquely identify a shared resource
across all SCSs in the confederation.

The third assumption is concerned with the Policy Deci-
sion Points (PDPs) of the federated SCSs.

Assumption 3 (Authorization Service). The mem-
ber SCSs of the confederation open up their PDPs (or part
of them) as services that other member SCSs can query.

While current implementations do not yet support this as-
sumption, we believe that the assumption is in line with cur-
rent trend, in which the authentication mechanisms of popu-
lar SCSs are turned into services that other web applications
may reuse (e.g., logging in via Facebook or Google+). This
is an architectural price to be paid for participating in the
confederation. Privacy enhancing technologies are devised
in §3 and §4 to ensure that, by turning its PDP into a que-
riable service, an SCS will not compromise privacy.

Lastly, we assume that the members of the confederation
are cooperative in implementing the protection model.

Assumption 4 (Curious Member). The member
SCSs of the confederation are curious but not malicious.

We are aware that SCSs are curious in that they may gather
information about other SCSs as they participate in the pro-
tection model. As we shall make explicit in §3, our privacy
goal is to ensure that, by opening the authorization proce-
dure as a queriable service, an SCS does not disclose infor-
mation about its protection state to other SCSs.

2.2 Feature Overview
Our proposed protection model for federated SCSs offers

four key features: (1) protection of shared resources, (2)
shared access policies, (3) distributed evaluation of situated
queries, and (4) policy composition.

2.2.1 Protection of Shared Resources
Suppose u and v are both users of an SCS i1 (e.g., Face-

book). Suppose u is the owner of a resource r (e.g., a photo)
that she created on i1. When v attempts to access r within
i1, this is called a native access. Such an access is medi-
ated by the protection model of i1, and thus it is not the
focus of this work.

Now suppose u shares r to a different SCS i2 (e.g., Banjo),
on which she also has an account (Assumption 1). Suppose
v also has an account on i2. When v attempts to access
r from within i2, this is called a shared access. Such an
access is the focus of this work. In current implementa-
tions, there is no guarantee that a shared access is properly
mediated. Even if the developer of i2 attempts to emulate
the protection model of i1, limitations of reverse engineering
may affect the fidelity of emulation. The goal of this work is
to articulate a rational protection model for shared accesses.

2.2.2 Shared Access Policies
In the proposed model, u, who is the owner of the shared

resource r , may specify a shared access policy for con-
trolling shared accesses to r (but not native accesses). This
shared access policy is assumed to be known within the con-
federation of SCSs (Assumption 2), so that wherever shared
access is requested, the SCS to which r is shared will honor
this policy (Assumption 4). This feature addresses the need
for Policy Fidelity.

2.2.3 Distributed Evaluation of Situated Queries
The shared access policy may take the form of situated

queries. For example, u may demand that r be accessible
only to her friends on Facebook, no matter where r has



been shared. The shared access policy for r will then be
“friends@Facebook ,” meaning that u and the requestor shall
satisfy the query “friends” at the SCS Facebook .

In our running example, when v requests a shared access
to r on i2, the latter will not attempt to emulate friendship
testing. Instead, it will query the authorization service of
Facebook to ascertain if u and v are friends of one another
(Assumption 3). Distributed evaluation ensures Mechanism
and State Fidelity.

2.2.4 Policy Composition
To make the protection model more flexible, users may for-

mulate composite policies made up of boolean combinations
of situated queries. For example, consider the composite
policy below:

friends@Facebook ∨ friends@Google+

The policy grants shared access to either friends in Facebook
or friends in Google+. Note that a requestor may be known
to be a friend of the owner on Google+ but not on Facebook.
Essentially, the query term friends has different semantics on
different SCSs.

2.3 Schema, Configuration and State
Our formal model of federated SCSs is composed of three

layers — schema, configuration and state. The schema of a
confederation (§2.3.1) specifies the basic entities that exist in
the confederation. Components of the schema remain con-
stant unless the membership of the confederation changes
(e.g., a new SCS joining the confederation) or when the pro-
tection model of a member SCS evolves. A privacy con-
figuration (§2.3.2) of the confederation specifies the current
privacy settings of the users. Components of a configuration
may change as a result of administrative actions, such as the
introduction of new users, creation of new resources, or the
change of privacy settings. A protection state (§2.3.3) of the
confederation tracks the current protection states of member
SCSs within the confederation, as well as the whereabout of
shared resources. Change of protection state occurs during
the normal operation of the confederation. Configuration
and state transitions are not modelled in this work.

2.3.1 Confederation Schema
The schema of a confederation is a 6-tuple F = 〈Id ,
{Σi}i∈Id ,U ,R, Q, I〉, where:

• Id is a finite set of system identifiers. Each identi-
fier uniquely identifies an SCS in the confederation. A
typical member of Id is denoted by i.

• {Σi}i∈Id is a family of countable sets, indexed by sys-
tem identifiers. Each Σi is the set of all possible pro-
tection states for the SCS i. The sets are assumed to
be pairwise disjoint (i.e., they don’t intersect with one
another). We write Σ for

⋃
i∈Id

Σi . A typical member

of Σ is denoted by σ.

• U is a countable set of user identifiers. By Assump-
tion 1, we do not differentiate the different user names
of the same user in different SCSs. We are not suggest-
ing that actual implementation of this model needs to
have a centralized identity management infrastructure.
The global user identifiers are but a mathematical ab-
straction of users within the model.

• R is a countable set of resource identifiers. Again,
this is but a mathematical abstraction of resources
within the confederation (Assumption 2).

• Q is the universe of atomic queries (or simply que-
ries). For instance, friends, friends-of-friends, and
acquaintances are queries known to Facebook, and
friends, co-located, in, nearby are queries known to
Foursquare. Because the same query may be known
across multiple systems (e.g., friends), we postulate
that there is a common universe of queries. A typi-
cal member of Q is denoted by q.

• The interpretation function I : Σ × U ×
U × Q → Bool defines the semantics of atomic
queries. Suppose σ ∈ Σi . That I(σ, u, v, q)
= 1 signifies that query q is satisfied by owner u and
requestor v in protection state σ of system i . Other-
wise, q is not satisfied by u and v when i is in state σ,
or q is not supported by system i , or one of u and v
does not have a corresponding identity in system i , or
q is not applicable when system i is in state σ.

2.3.2 Privacy Configuration
A confederation can be configured with different privacy

settings over its life cycle. A privacy configuration (or
simply a configuration) is an abstraction of such settings.
Intuitively, a configuration specifies (a) the access control
policies of user resources and (b) static properties of a re-
source such as the SCS in which the resource is created (As-
sumption 2). Formally, given a schema F = 〈Id , {Σi}i∈Id ,
U ,R, Q, I〉, a configuration is a tuple C = 〈U,R, org , own, pol〉,
in which:

• U ⊆ U is a finite set of active users.

• R ⊆ R is a finite set of active resources that is cur-
rently being protected by the systems.

• Every resource is assumed to have been created in ex-
actly one system. The function org : R→ Id identifies
the origin of each resource.

• The function own : R → U identifies the owner of
every resource in the confederation.

• The function pol : R → PO(Q, Id) assigns a shared
access policy to each resource. Note that this policy
is not used for protecting a resource against native
accesses. This policy controls shared accesses after a
resource is shared to another SCS. Lastly, PO(Q, Id)
is the set of all policies. The syntax and semantics of
policies are described in §2.4.

2.3.3 Protection State
The protection state (or simply state) of a confederation

is a pair S = 〈sta, cur〉, such that:

• The function sta : Id → Σ assigns a protection state
to each system identifier such that sta(i) ∈ Σi .

• The binary relation cur ⊆ R× Id records the SCSs to
which each resource has been shared. A resource may
have been shared to multiple systems at one time. An
additional requirement is that (r , org(r)) 6∈ cur . That
is, a resource is never “shared” to its origin.



2.4 Policy Language
We present a policy language (i.e., the set PO(Q, Id)

in §2.3.2) for expressing shared access policies in federated
SCSs. The most distinctive feature of the policy language
is that one can specify policies as atomic queries to be in-
terpreted at specific SCSs, thereby ensuring that their SCS-
specific semantics are honoured. Such atomic queries can
then be composed into composite policies via boolean con-
nectives. To simplify discussion (especially in §4), we use
propositional logic for policy composition. We could have
adopted, for example, the Belnap Logic [5] as our policy
composition framework, but such an extension is trivial.

2.4.1 Syntax
A policy is a propositional formula with the following ab-

stract syntax:

φ, ψ ::= > | q@t | φ ∨ φ | ¬φ
t ::= i | org | cur

where q ∈ Q and i ∈ Id . A situated query q@t is an atomic
query q that will be evaluated at the SCS represented by
the location tag t (Assumption 3). A location tag t can be
either absolute (i.e., a system identifier i) or relative (i.e.,
org or cur). The relative location tag org means that the
tagged query is to be evaluated at the originating SCS of the
resource that the policy is protecting. The relative location
tag cur means that the tagged query is to be evaluated at
the SCS in which the resource is being accessed. We write
PO(Q, Id) for the set of all policies.

Standard derived forms can be defined as follows:

⊥ = ¬> φ ∧ ψ = ¬(¬φ ∨ ¬ψ)

2.4.2 Semantics
The semantics of the policy language is defined with re-

spect to a schema F = 〈Id , {Σi}i∈Id ,U ,R, Q, I〉, a config-
uration C = 〈U,R, org , own, pol〉, and a S = 〈sta, cur〉. In
particular, the semantics is defined via a preprocessing func-
tion and a satisfaction relation.

First, the preprocessing function translates all occurrences
of relative location tags to absolute ones. Suppose the sys-
tem identifiers io and ic are the SCSs to which org and
cur respectively represent, and φ is a policy formula. Then
preprocio ,ic (φ) is obtained from φ by replacing occurrences
of org and cur by io and ic respectively. The preprocessed
formula contains only absolute location tags.

Second, the following satisfaction relation specifies the
meaning of a formula φ with only absolute location tags:

I, sta, u, v |= φ

in which u, v ∈ U are the owner and requestor respectively.
The satisfaction relation is defined inductively as follows:

• I, sta, u, v |= > always hold.

• I, sta, u, v |= q@i iff I(sta(i), u, v, q) = 1.

• I, sta, u, v |= ¬φ iff I, sta, u, v 6|= φ.

• I, sta, u, v |= φ ∨ ψ iff either I, sta, u, v |= φ or I, sta,
u, v |= ψ.

2.5 Access Requests and their Authorization
A user v working in an SCS with system identifier i may

request to access a resource r that has been shared to i.
Such a request is characterized by the triple (v, r , i), and is
authorized when both of the following two tests succeed:

(r , i) ∈ cur (1)

I, sta, u, v |= φ (2)

where u = own(r), φ = preprocio ,i(ψ), io = org(r), and
ψ = pol(r). Test (1) is simply a sanity check, while test (2)
evaluates the preprocessed policy against the owner of the
resource.

3. PRIVACY VIA PFE
According to Assumption 3, each SCS opens up part of its

authorization mechanism as a queriable service in order to
support the distributed evaluation of shared access policies.
This results in the disclosure of their protection states and
thus user information. As a case in point, since interpersonal
relationships are part of the Facebook protection state and
user location claims are part of the Foursquare protection
state, evaluating the situated queries friends@Facebook and
nearby@Foursquare leads to disclosure of user information.
If no further measures are imposed, then this could breach
user privacy or compromise the SCSs’ competitive advan-
tages (i.e., competitors harvesting your business data).

Preserving the privacy of the SCSs’ protection states dur-
ing the evaluation of shared access policies is therefore an im-
portant privacy goal. To this end, we adopt secure multi-
party computation (SMC) to carry out policy evaluation
in a secure manner. In particular, this section focuses on the
application of a variant of SMC known as private function
evaluation (PFE).

In this section, we first review basic backgrounds on SMC
and PFE (§3.1). We then survey a number of architectures
in which the distributed evaluation of shared access policies
is conducted in a secure manner with the help of PFE (§3.2).

3.1 Secure Multiparty Computation
Secure Multiparty Computation (SMC) allows a group

of parties P1, . . . , Pn each with their own private inputs
x1, . . . , xn to collectively compute a function f of their in-
puts without revealing any additional information. SMC
is a fundamental problem in cryptography and distributed
computing and has been studied for over thirty years with
seminal results on its feasibility in various settings [31, 15, 7,
3]. Recent work on practical SMC has even led to the design
and implementation of several SFE/MPC frameworks [22],
VIFF [10], Sharemind [4], Tasty [16], and many more.

The two most common guarantees provided by SMC pro-
tocols are privacy and correctness. Loosely speaking, pri-
vacy means that no “admissible” collusion of dishonest par-
ties are able to learn any information about the honest par-
ties’ inputs besides what is derived from their own input
and output. Correctness means that a similar collusion of
dishonest parties, cannot trick the honest parties to learn
and/or reveal an incorrect function f ′ of their input. Addi-
tional guarantees not discussed here but provided by some
SMC protocols include output delivery, input independence,
and fairness. Dishonest parties are allowed to behave in two
different ways, i.e., semi-honest or malicious. Semi-honest
parties follow the steps of the protocol but try to learn more



information by looking at the transcripts. Malicious par-
ties, on the other hand, are not restricted in any way and
can behave arbitrarily. In this paper we only need SMC with
security against semi-honest adversaries (Assumption 4).

The above security guarantees for an SMC protocol πf
computing a function f are usually formalized by comparing
the actual execution of πf in the real world (the real exe-
cution), with an ideal execution wherein each party sends
his input to a trusted third party (TTP) through a secure
channel, and receives an honestly computed output in re-
turn. One then declares πf “secure” if for any adversary
corrupting a subset of parties in the real execution, there
exists a simulator corrupting the same parties in the ideal
execution where the final output of the real-execution adver-
sary and the ideal-execution simulator are indistinguishable.
Given that the extent of the simulator’s cheating is very lim-
ited in the ideal-execution, security of πf implies that the
real-world adversary cannot do much better either. We re-
fer the reader to [14], for a more formal presentation of the
above intuition. An important benefit of proving protocols
secure in this fashion is that once we prove πf secure, we can
treat it as an ideal functionality, and when describing larger
systems that use πf as a building block, replace πf with this
ideal functionality that simply receives each parties’ input
and returns to him the portion of the output that belongs
to him.

3.1.1 Private Function Evaluation
In the above discussion, we assumed that the function f

is publicly known to all the participants in the SMC. But
this is not always the case in practice. The function may be
proprietary, or may otherwise contain private and sensitive
information. Private Function Evaluation (PFE) is a vari-
ant of SMC that tries to address this problem. In a PFE
protocol, unlike SMC, we assume that f is the private input
of one of the parties (say P1), while each party Pi also holds
a private input xi of its own. The protocol then computes
P1’s private function on parties input in a secure manner.
The security definitions for PFE are essentially identical to
SMC, as PFE can be seen as an SMC protocol where the
description of f is part of P1’s private input. The descrip-
tion of the ideal functionality can also be adjust to take as
P1’s input not only x1 but also the function f .

Several implementations of PFE protocols have been con-
sidered in the literature [21, 18, 25]. We also note while
it is usually assumed that f is known by a single party in
PFE, many of the existing constructions can be naturally
extended to consider the case where f is secretly shared be-
tween a subset or all the parties but no individual party
knows the function itself.

3.1.2 Safe Functions for SMC
In SMC protocols, traditionally, we assume that parties

have agreed on a function f and are willing to reveal to oth-
ers anything that can be derived from its output. In other
words, SMC does not try to determine which functions are
“safe” and delegates this to the participants of the SMC. To
see why some functions are not “safe,” and knowledge of its
output allows one to infer its inputs (even if SMC proto-
cols are used for function evaluation), consider the following
boolean function: f(x, y) = x ∧ y. If one learns that the
output of f is 0, then one can infer that x and y are both 0.

3.2 Three PFE-based Architectures
When a shared access to resource r is requested in an

SCS i , i will need to evaluate policy φ = pol(r) to reach an
authorization decision. To do so, it requires the truth values
of the situated queries that appear in φ. In the interest of
privacy, the SCSs that are referenced in the location tags of
the situated queries cannot simply send those truth values
to i . Instead, the evaluation of φ will be conducted using
SMC, and the output is made available to i .

A potential hole in this scheme is that φ may not be a
safe function (§3.1.2). By reading the output of φ, a curious
i may still infer information about the truth values of some
of the situated queries that appear in φ.

In this work we employ two approaches to address this
issue. A first approach is to hide pol(r) from the SCSs, so
that they do not know what function the SMC protocol is
computing. In that way, simply learning the output of an
unknown function does not allow i to infer the truth values
of the situated queries. This requires the deployment of PFE
protocols (§3.1.1).

The advantage of this approach is that there is almost
no restriction on what φ can be. The core challenge is to
ensure that the shared access policies are hidden from the
SCSs involved. The assumption behind this approach is that
SCSs are semi-honest (Assumption 4).

We will examine a number of architectures that are the
natural starting points for realizing this approach. Our goal
is not to advocate PFE as the optimal solution, but to care-
fully examine the design forces at play in the problem, so as
to motivate the second approach (formulation of safe func-
tions) that we advocate in §4.

In the following, we will first describe the three archi-
tectures without passing value judgement (§3.2.1, §3.2.2,
§3.2.3), and then assess them in §3.2.4. We conclude this sec-
tion by pointing out the fundamental limitation of achieving
our privacy goal via PFE (§3.2.5), thereby paving the way
to the next section.

3.2.1 Origin Tracks Policy (Origin)
In the Origin architecture, each SCS keeps track of the

shared access policies for resources that originate from that
SCS: i.e., SCS i stores pol(r) whenever org(r) = i .

When a user v requests to access a shared resource r on
SCS ic , site ic will contact the originating SCS io = org(r)
to initiate the computation of authorization decision. The
originating SCS io will then look up the shared access policy
φ = pol(r), and compute ψ = preprocio ,ic (φ) (i.e., replacing
relative location tags by absolute ones). Based on the policy
formula ψ, io identifies the parties that should participate
in PFE, and then initiate πψ. The participants include io
(who contributes the formula ψ), the SCSs who appear in
the situated queries in ψ (if the situated query q@i appears
in ψ, then SCS i will contribute the input that corresponds
to the truth value of q@i), and ic (who reads the output of
φ). The output of the PFE protocol will be visible only to
ic , the SCS from which the request was first raised.

3.2.2 User Tracks Policy (User)
In the User architecture, each user stores the shared ac-

cess policies of the resources that she owns, on a user-owned
storage. For example, a user can save her shared access poli-
cies on a network attached storage, or in her cloud storage
account. Whenever an access to a shared resource is re-



quested, the storage site will have to participate in the PFE
protocol as the party to contribute the function as an input
to the protocol. The rest is similar to the Origin architec-
ture. The architectural price is that the storage service that
tracks the user’s policies must now need to understand the
confederation architecture as well as the PFE protocol.

3.2.3 Third Party Tracks All Policies (TP)
In the TP architecture, rather than having a vast num-

ber of storage services involved, as in the case of the User
architecture, we postulate the existence of a centralized pol-
icy storage service, who is an honest third party denoted by
T̂ . We assume that the SCSs may collude with each other
except with T̂ .

The centralized policy storage service will be contacted
when a shared access is to be authorized, and it will be the
party to contribute policy formulas as inputs to the PFE
protocol. The policies are hidden from all SCSs except for
T̂ . The architectural price is much lower in this case: only
one additional party other than the SCSs need to understand
the confederation architecture and the PFE protocol.

3.2.4 Assessment
We analyze the pros and cons of the three architectures.

Privacy.
Can the three architectures achieve the core privacy goal

by keeping the policies hidden from the SCSs in the confed-
eration?

Consider the Origin architecture. Suppose the policy
contains the relative location tag org, or an absolute location
tag that is identical to org(r), then the originating SCS will
be contributing both the function to be evaluated as well as
one of the inputs to the function when it participates in the
PFE protocol. As a result, the originating SCS may end up
learning something about the protection states of the other
SCSs who are named in the situated queries of the policy.
One way to prevent this issue is to ban the use of the relative
location tag org, or the mentioning of the originating SCS
in situated queries. Such a restriction reduces the flexibility
of the architecture.

The User architecture can effectively hide the policies
from the SCSs in the confederation. Yet, practical consid-
erations suggest that the SCSs are likely to be the cloud
storage service providers adopted by the users. For exam-
ple, Google+ belongs to the confederation, and a user stores
his shared access policies in Google Drive. In such a case,
it is difficult to convince the other SCSs that Google Drive
(being aware of the confederation architecture) will not leak
the policy to Google+, thereby compromising the privacy of
the other confederation members.

The TP architecture meets the privacy goal by hiding the
policies from the SCSs, so long as the assumptions in §3.2.3
are met.

Knowledge of Query Vocabulary.
In order to participate in the PFE protocol, the party who

stores the policy and contributes the function to be evalu-
ated must understand the query vocabulary of all the SCSs
in the confederation. In the Origin architecture, this means
that every SCS in the confederation must understand the
full query vocabulary of all the other confederation mem-
bers. This is a rather high price to pay. The same objection

can be said of the User architecture, only that the situation
is even worse: the storage services outside of the confedera-
tion are involved. In comparison, only one party (T̂ ) needs
to have such knowledge in the TP architecture.

Fault Tolerance.
With a centralized storage service, TP presents a single

point of failure. If T̂ is not available, the entire confederation
is rendered dysfunctional. With the Origin architecture,
the failing of one SCS in the confederation affects the policy
lookup of all resources originating from that SCS. This is
actually not bad as native accesses would not be possible
either if the originating SCS is down. The User architec-
ture appears to be the most fault tolerant: the failing of a
policy storage provider will affect only the shared resources
of the users who use that provider for storing policies. The
situation will be worsen if there is an oligopoly in the cloud
storage service industry.

Final Assessment.
Balancing various considerations, TP appears to be a vi-

able foundational architecture on which future work can be
built. Origin can be considered a compromise if one is will-
ing to live with syntactic restrictions on the policy language.
User does not seem to be viable as storage services outside
of the confederation are required to participate in PFE.

3.2.5 The Challenge of Policy Administration
Implicit in the presentation of the protection model and

the three architectures above is the assumption that every
user must specify a shared access policy for every resource
that she might want to share to other SCSs in the future.
It is unlikely that a user will bother to go through such a
tedious exercise. An obvious way to alleviate this problem
is to allow the specification of default policies for vari-
ous categories of resources. For example, a user can spec-
ify friends@org∨ co-located@cur as the default shared access
policy for all her photo albums across all the SCSs in the
confederation. In fact, the provision of relative location tags
has exactly this application in mind.

With default policies, keeping policies hidden from the
SCSs becomes an unrealistic assumption. As default policies
are shared by multiple resources, and different users tend to
end up adopting similar default policies, curious SCSs can
make educated guesses of what policies are involved in the
PFE protocol1. Consequently, adoption of PFE for policy
evaluation is not sufficient for guaranteeing privacy.

4. PRIVACY VIA SAFE FUNCTIONS
Rather than hiding the shared access policies from the

SCSs in the confederation, in this section we consider a so-
lution in which all shared access policies are allowed to be
publicly known, thereby accommodating the use of default
policies. In particular, we ensure that the policies are “safe,”
in the sense that even if a party obtains the output of the
SMC protocol, it will not be able to deduce any information
regarding the inputs to the function.

This approach employs regular SMC rather than PFE.
At the centre of the approach is the static analysis of the
shared access policies to detect if they are safe. When a

1That Facebook takes “friends-of-friends” as the default pol-
icy is a widely discussed and well documented issue.



shared access policy is detected to be unsafe by an SCS who
needs to supply the truth values of situated queries, that
SCS can refrain from participating in the SMC protocol,
thereby preserving its privacy.

We begin our discussion by fixing some notations (§4.1).
We then offer offer a novel formalization of safety (§4.2) and
its application to the distributed evaluation of shared access
policies (§4.3). We then study the time complexity of the
static analysis for determining if a give policy is safe (§4.4).
Lastly, we will look at useful policy idioms (§4.5).

4.1 Preliminaries
Let f : A → B be a function. We write ran(f) for the

range of f : i.e., the set {y ∈ B | ∃x ∈ A . f(x) = y}. We
write pref (y) for the preimage of f at y, which is the set
{x ∈ A | f(x) = y}.

In the following, we use the term boolean functions to refer
to functions with type signature Bn → B, where B = {0, 1}.
We are not particularly concerned with the representation
of the functions (i.e., whether they are represented as propo-
sitional formulas, circuits, or binary decision diagrams, etc).
We simply assume that the evaluation of the function can
be performed in time polynomial to the size of the input and
the size of the representation of the function.

Given a bit vector ~u ∈ Bn, and a set I = {i1, i2, . . . , ik}
such that 1 ≤ i1 < i2 < . . . < ik ≤ n, we write projI(~u) to
denote the bit vector ui1ui2 · · ·uik . We also write proji as a
shorthand for proj{i}.

Given two bit vectors ~u,~v ∈ Bn, we write ~u =I ~v whenever
projI(~u) = projI(~v).

4.2 Input Nondeducibility
Our formal definition of“safe”functions is based on Suther-

land’s classical definition of information flow via the notion
of deducibility [29, §2], which we reproduce here.

Definition 5 (Information Flow). Given a set of
possible worlds W and two functions f1 and f2 with do-
main W , we say that information flows from f1 to f2 if
and only if there exists some possible world w and some el-
ement z in the range of f2 such that z is achieved by f2 in
some possible world but in every possible world w′ such that
f1(w′) = f1(w), f2(w′) is not equal to z.

The intuition behind this definition is the following. Suppose
the world is in the state w. There is an observer O2 who
does not know that the world is in state w. Yet O2 observes
the world state indirectly through an information function
f2. His observation is z = f2(w). So O2 is aware that
the actual world state must be among the set pref2(z). In
the meantime, O2 is also aware of the existence of another
observer O1, as well as the fact that O1 observes the world
state through the information function f1. Now O2 wants
to infer something about the observation of O1. O2 knows
the following: (a) y is a potential observation of O1 (i.e.,
y ∈ ran(f1)); (b) for every possible world state w′ ∈ pref1(y)

that produces observation y, f2(w′) 6= z (in other words,
pref1(y) ∩ pref2(z) = ∅). With this, O2 can safely conclude
that f1(w) cannot be y, and thus O1 is not observing y, even
though O1 does not know that w is the current world state.
Since such a deduction is possible, we say that information
flows from f1 to f2.

Sutherland observed that information flow in the above
sense is symmetric [29, §2]: i.e., information flows from f1

to f2 if and only if it flows from f2 to f1. So we only need
to say that there is information flow between f1 and f2.

In our application, we are particularly concerned with the
inference of input values from output values.

Example 6. Suppose f(x, y) = ¬x ∨ y. If we know that
f(x, y) = 0, then we can infer that x = 1. However, if we
know that f(x, y) = 1, then we cannot infer any information
about x, for both f(1, 1) = 1 and f(0, 1) = 1.

This notion of inference can be captured by the definition of
Sutherland, by observing that the value of an input is simply
the output of a projection function. Suppose we are dealing
with a boolean function f : Bn → B. The set of possible
worlds here is Bn. Let proji be the projection function for the
i’th argument: that is, proji(x1, . . . , xn) = xi. According to
Sutherland’s definition, one can deduce information about
the i’th input from examining the output of f whenever
information flows from proji to f .

Definition 7. A function f : Bn → B is input nonde-
ducible for a non-empty set I of size k, where I ⊆ {1, . . . , n},
if and only if for every b ∈ B, if there exists ~w ∈ Bn for which
f(~w) = b, then for every ~v ∈ Bk, there exists ~u ∈ Bn such
that projI(~u) = ~v and f(~u) = b.

If I is a singleton set {i}, then we simply say f is i’th
input nondeducible.

In short, f is input nondeducible for I if and only if there
is no information flow between projI and f , and f is i’th
input nondeducible if and only if there is no information
flow between proji and f .

4.3 Application and Generalization
To see how input nondeducibility captures the notion of

safe function, consider this scenario. Suppose a shared ac-
cess to resource r is requested in SCS ic, and the shared
access policy is φ = pol(r). Suppose further that φ is the
boolean function f(x1, . . . , xn), where each input of f is the
truth value of a situated query. Say the input xj is the situ-
ated query q@i , for some i 6= ic. Assume for the time being
that ic does not contribute any input to the SMC protocol
πf . In order for SCS i to be convinced that participating in
πf will not leak information about xj to ic, i will check that
f is j’th input nondeducible. In fact, SCS i will repeat this
check for every xj that it contributes.

Now the above scenario has an assumption, that ic, the
SCS who obtains the authorization decision (the output of
f), does not contribute any input to πf . That is, φ does not
contain situated queries that refers to ic. We know that this
may not be avoidable, especially when the relative location
tag cur is involved. This situation requires special attention.

Definition 8. Given a function f : Bn → B, suppose
I, J ⊆ {1, . . . , n} such that I 6= ∅ and I ∩ J = ∅. Let k = |I|
and m = |J |. Function f is input nondeducible for I despite
J if and only if for every ~a ∈ Bm and b ∈ B, if there exists
~w ∈ Bn such that projJ(~w) = ~a and f(~w) = b, then for
every ~v ∈ Bk, there exists ~u ∈ Bn such that projI(~u) = ~v,
projJ(~u) = ~a, and f(~u) = b.

If I is a singleton set {i}, then we simply say f is i’th
input nondeducible despite J .

Note that Definition 7 is a special case of the definition above
(when J = ∅). The set J is essentially the set of inputs



contributed by the reader of the output (ic). If a function f
is i’th input nondeducible despite J , then even though the
reader of the output knows the inputs in J , he still cannot
infer the value of the i’th input. Therefore, in the general
case, an SCS must ensure that f is i’th input nondeducible
for J , for every input i that it contributes, with J being the
set of inputs contributed by the SCS who reads the output.
In summary, an SCS determines the safety of participating
in an SMC protocol by deciding input nondeducibility.

4.4 Deciding Input Nondeducibility
We examine the computational complexity of deciding in-

put nondeducibility. We begin with defining two correspond-
ing decision problems.

Definition 9. IND0 is the set of all pairs (f, I) for which
f is input nondeducible for I. IND is the set of all triples
(f, I, J) for which f is input nondeducible for I despite J .

The following result shows that IND0 and IND are in the
second level of the polynomial hierarchy [1]. We begin with
an upper bound for the time complexity of IND (consult
Appendix A for a proof).

Proposition 10. IND is in Πp
2.

The following proposition gives a lower bound for the time
complexity of IND0 (see Appendix B for a proof).

Proposition 11. IND0 is Πp
2-hard.

Since there is a trivial polynomial-time reduction from IND0

to IND, the following is a corollary of the above results.

Corollary 12. Both IND0 and IND are Πp
2-complete.

To implement the static analysis, one can encode the IND
instance as a Quantified Boolean Formula (QBF), along the
line of formula (3) in Appendix A, and then use an existing
QBF solver to test the satisfiability of the QBF.2 As (3) is
a 2QBF (i.e., a QBF with two alternations of quantifiers),
one can employ dedicated 2QBF solvers [17, 2] for better
efficiency.3 As we shall see in §4.5, safe policies are relatively
small in practice, and thus present no performance challenge
to these solvers.

4.5 Policy Idioms
To facilitate discussion, we adopt the following conven-

tion.

Convention 13. Suppose the inputs of a function f(~x)
is named by variables ~x (e.g., f is represented by a propo-
sitional formula). When we assert that f is input nonde-
ducible for I, the set I may be specified as a subset of {~x}.

The following example demonstrates the rarity of input
nondeducible functions.

Example 14. Of the 222 = 16 boolean functions with two
inputs, only XOR and its negation are i’th input nonde-
ducible for i ∈ {1, 2}. That means the usual boolean combi-
nations such as conjunction and disjunction do not guaran-
tee input nondeducibility.
2Examples of QBF solvers are Quantor, NanoFlex, DepQBD
and Bloqqer by Armin Biere and Florian Lonsing, and Cirqit
by Alexandra Goultiaeva and Fahiem Bacchus.
3Efficient implementations of 2QBF solvers in-
clude Mini2QBF and Free2QBF by Sam Bayless
(www.sambayless.ca).

While XOR appears not to be particularly useful for com-
posing policies, there are indeed boolean functions that are
both useful and input nondeducible, so long as we are willing
to consider boolean functions of higher arities.

Example 15 (Threshold Function). Define the
threshold function τm/n(x1, . . . , xn) such that 1 is returned
if at least m of the inputs are 1, and 0 is returned other-
wise. Note that τm/n is i’th input nondeducible for each of
the inputs xi if 1 < m < n.

Observe that boolean disjunction and conjunction are re-
spectively τ1/n and τn/n. They do not satisfy the require-
ment of 1 < m < n, and thus it is no surprise that they
are not input nondeducible. The smallest m and n to satisfy
1 < m < n are 2 and 3 respectively.

More generally, τm/n is i’th input nondeducible despite J ,
for a set J of size k, if it can be guaranteed that 1 + k <
m < n − k. If k = 1, then the smallest m and n to satisfy
the above requirement are respectively 3 and 5. That is, for
τ3/5, if the adversary knows the output as well as one of the
inputs, it still cannot infer any of the other 4 inputs.

Example 16 (Conditional Function). Consider the
boolean function if:

if(x1, x2, x3) = (x1 ∧ x2) ∨ (¬x1 ∧ x3)

Function if is i’th input nondeducible for each i ∈ {1, 2, 3}.
Intuitively, the input x1 “confuses” the adversary who learns
of the output, making it impossible for it to infer which of
x2 or x3 that it is observing through the output.

Note, however, function if is not i’th input nondeducible
despite J for J 6= ∅. If an adversary knows of the output and
at least one other input, it may be able to infer the value of
input xi.

A generalization of if is the following function:

switch(x1, . . . , xn; y0, . . . , y2n)

Depending on which of the 2n values in Bn that the bit vector
x1 · · ·xn assumes, one of the yi’s will be selected as output.
The function if(x1, x2, x3) is equivalent to switch(x1;x3, x2).

The input x1 in if and the inputs x1, . . . , xn in switch are
called condition inputs. The inputs x2 and x3 in if and
the inputs y1, . . . , y2n are called branch inputs.

When |J | < n, function switch is i’th input nondeduciable
despite J . If J is a singleton set, then the smallest n that
meets the above precondition is 2.

The two functions in Examples 15 and 16 offer us replace-
ments for boolean disjunction and conjunction. Specifically,
conjunction is used in policy formulation in strengthening
the authorization condition, so that multiple criteria need
to be met before access can be granted. The threshold func-
tion can be used in a similar way. So long as m of the n
criteria are met, authorization will succeed. The adversary
is “confused” by the surplus of n criteria, not know which of
the m-subsets of the n criteria had been used for establish-
ing access. On the other hand, disjunction is used in pol-
icy formulation by providing alternatives to justify access.
The conditional function switch can be used as a replace-
ment. The criteria are passed as yis, and n additional xis
are passed as “confusion factors.”

Input nondeducible functions have limited composability,
as the following result shows.



Proposition 17 (Limited Composability). If a
function is input nondeducible for I, then so is its negation.

Suppose ~x and ~y are two disjoint lists of boolean vari-
ables, and f(~x) and g(~y) are input nondeducible for If and
Ig respectively (where If ⊆ {~x} and Ig ⊆ {~y}). Then
h∨(~x, ~y) = f(~x) ∨ g(~y) and h∧(~x, ~y) = f(~x) ∧ g(~y) are input
nondeducible for If ∪ Ig.

Considering the rarity of functions that are provably in-
put nondeducible, and the limited composibility that input
nondeducible functions have, it is unwise to leave it to the
users to formulate their own shared access policies that can
be safely evaluated by SMC. Instead the users are presented
with templates of policies that are known to be “safe,” and
given guidance on how to instantiate the templates. This is
an acceptable practice in the industry: even though there
is a vast space of policies for Facebook-style Social Network
Systems (FSNSs) [13, 12], Facebook offers a standard vo-
cabulary of common policies for users to choose from (e.g.,
me-only, friends-only, friends-of-friends, everyone). In the
following, we describe two safe policy templates that are
based on threshold and conditional functions.

Policy Template 18 (Threshold Policies). This
policy template guides a user into formulating a threshold
policy (τm/n). The user will be asked to specify five (5) sit-
uated queries, with the following restrictions: (a) each of
cur and org can be referenced in at most one of the situated
queries, and (b) each system identifier can be referenced as
an absolute location tag in at most one situated query.

After preprocessing, no system identifier appears more
than twice (remember org and cur must refer to two distinct
system identifiers, as we are only concerned with shared ac-
cesses). If the identifier of the SCS to read the output ap-
pears twice, then the function to be evaluated by SMC will be
τ2/3 with the remaining three (3) situated queries as argu-
ments. This is safe (i.e., i’th input nondeducible) according
to Example 15, as the three situated queries do not refer to
the SCS to read the output. Otherwise, the identifier of the
SCS to read the output appears no more than once, and the
function to be evaluated will be τ3/5, with all the five (5) sit-
uated queries as arguments. According to Example 15, this
is safe (i.e., i’th input nondeducible despite J , for |J | ≤ 1).

Policy Template 19 (Conditional Policies). This
template guides a user in formulating a conditional policy
(switch). The user will be asked to specify four (4) situated
queries called branch queries, plus two (2) situated queries
called condition queries. The following requirements apply:
(a) the system identifiers that appear as absolute location
tags in the condition queries must be distinct, (b) the sys-
tem identifiers that appear as absolute location tags in the
branch queries must be distinct, and (c) each of org and cur
must appear at most once, as a relative location tag in a
branch query.

After preprocessing, no system identifier appears twice in
the branch queries (recall that org and cur must refer to two
distinct system identifiers, since we are only concerned with
shared accesses). Denote by ic the system identifier of the
SCS to read the output of policy evaluation. If ic appears
at most once among all the situated queries, then the func-
tion to be evaluated will be switch, with the branch queries
as branch inputs, and the condition queries as condition in-
puts. According to Example 16, this switch policy is i’th
input nondeducible despite J , since |J | = 1 < 2.

Otherwise, in the worst case, ic appears in two branch
queries and one condition query. That is, there are at least
one condition query and at least two branch queries for which
ic does not appear as location tags. Call these “clean” queries.
In that case, the function to be evaluated will be if, with two
clean branch queries as branch inputs, and one clean con-
dition query as the condition input. (When there are more
clean queries than is needed, break ties randomly.) According
to Example 16, this if policy is i’th input nondeducible.

5. RELATED WORK
In recent years, a great deal of attention has been invested

on access control models for social computing applications
[6, 13, 27, 8]. Although a protection model has been pro-
posed in each of the above works, none of them deals with
the protection of contents shared to other social computing
systems.

The privacy problem of shared contents in SCSs was first
identified by Ko et al. [20]. We are aware of two lines of
previous work that address this problem. The first is the
pioneering work of Ko et al. [19] and its follow-up work
[26]. They proposed a cross-site interaction framework, x-
mngr, which features cross-site policies (i.e., what we call
shared access policy) for protecting shared contents. They
proposed the use of a trusted third party for managing cross-
site policies and arbitrating accesses. Another distinctive
feature is their identity mapping feature, which is based on
machine learning technologies.

We learned from their work the use of shared access poli-
cies, as well as the need of trusted third party for policy
tracking (in the TP architecture). Our work differs from
theirs in the following respects. First, the policies they con-
sidered are in the form of access control lists, and thus they
do not represent typical policies found in social computing.
Our policies are boolean combinations of atomic policies de-
fined in the policy vocabulary of individual SCSs. This al-
lows us to directly confront the issue of State Fidelity. Sec-
ond, we see the account connection feature not only as a
content migration mechanism, but also as a manual, on-
demand identity mapping mechanism. Third, we consider
not only a centralized architecture (TP) for policy tracking,
but also other alternatives (Origin and User).

In the ambitious work of [28], Squicciarini et al. proposed
a policy enforcement mechanism for content sharing across a
distributed system based on self-controlling objects (SCO).
An SCO is a movable data container, composed of Content,
Application and Network components. The Content com-
ponent encapsulates a shared data and its security policy.
Application and Network sections are responsible for policy
enforcement and synchronization between SCOs. Policy en-
forcement can be done at the time of access by each SCO
itself, since the core security modules are embedded in the
Application section. For preserving consistency of SCOs,
modification to an SCO’s content will be propagated to all
the SCO copies with the help of a synchronization algorithm.

Their work has a much wider scope than the current one
(i.e., content sharing in SCSs). As we pointed out in the in-
troduction, their work considers policies that are not typical
for social computing, and thus they do not have to consider
the problem of State Fidelity, which our work is targeting
to address.

A novel aspect of our work is the formalization of “safe”
functions for SMC, together with static analysis for detect-



ing safe functions, as well as the enumeration of idiomatic
safe functions. The problem of defining “safe” functions and
determining which functions are indeed safe, is an important
and open research direction in the study of SMC protocols.
We are aware of two lines of work that attempt to answer
this question, yielding very different notions of “safe” func-
tions. Differential privacy [11], when considered in the con-
text of SMC [24], tries to add randomized noise to the out-
put the function being computed in order to guarantee that
any party’s decision to participate in the protocol does not
change the probability of any observable event except with
a small probability (for all possible inputs). The definitions
are strong and independent of the input distributions but
also quite hard to achieve and often require adding signifi-
cant noise to the desired output. Belief tracking [9], when
considered in the context of SMC (e.g., see [23]), tries to
reason for each party, whether it is beneficial to take part
in the protocol or not. This is done by tracking the other
participants’ believes about the value of the party’s input
before and after the protocol takes place. Our definition
of “safe” functions is the first one that is deterministic and
non-probabilistic.

6. CONCLUSION AND FUTURE WORK
We proposed a protection model for shared contents in a

confederation of SCS. The model allows the formulation of
policies that are typical in social computing, and achieves
all of Policy Fidelity, Mechanism Fidelity and State Fidelity
through distributed evaluation of policies. We considered
two approaches to achieve privacy in policy evaluation, one
based on PFE, the other based on the novel characterization
of “safe” functions.

Future directions include the following: (a) a framework
for administrating shared access policies in our model, (b)
supporting the resharing of contents, (c) extending the model
so that it is resilient to the breaking down of part of Assump-
tion 1 (i.e., when manual identity mapping through account
connection is not consistent), and (d) supporting third-party
applications.
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APPENDIX
A. MEMBERSHIP OF IND IN ΠP

2

Proof. To demonstrate that IND is in Πp
2, we note that

the complement of IND is in Σp2, as every triple (f, I, J) that
does not belong to IND satisfies the following:

∃~a ∈ Bm . ∃b ∈ B . ∃~v ∈ Bk . ∃~w ∈ Bn . ∀~u ∈ Bn .
P (~a, b, ~u,~v, ~w) (3)

where P (~a, b, ~u,~v, ~w) holds whenever:

(projJ(~w) = ~a) ∧ (f(~w) = b) ∧(
(projI(~u) 6= ~v) ∨ (projJ(~u) 6= ~a) ∨ (f(~u) 6= b)

)
Predicate P is obviously checkable in polynomial time.

B. ΠP
2 -HARDNESS OF IND0

Proof. To demonstrate that IND0 is Πp
2-hard, we reduce

a known Πp
2-complete problem to IND0. The specific Πp

2-
complete problem we will use is Π2SAT [1, Example 5.6].

Problem: Π2SAT

Input: a boolean formula φ(~x, ~y), where ~x and ~y are disjoint
lists of variables in φ

Question: Is it the case that ∀~x . ∃~y . φ?

Let φ(~x, ~y) be a propositional formula. We specify below
the construction of a pair (ψ, I).

• Let z1 and z2 be boolean variables that do not belong
to {~x, ~y}.
• Let ψ = z1 → (¬φ ∧ z2).

• Let I = {~x, z2}.
We claim that φ(~x, ~y) is in Π2SAT if and only if (ψ, I) is in
IND0.

Suppose ∀~x . ∃~y . φ. Note that ψ = 1 is realizable by set-
ting z1 = 0. In that case, ~x and z2 can assume any value and
ψ would remain 1. Note also that ψ = 0 is realized when
z1 = 1 and φ = 1. The supposition above guarantees that
for every setting of ~x, φ can be turned to 1. The value of z2
does not matter. In summary, (ψ, I) ∈ IND0.

Suppose ∃~x . ∀~y .¬φ. Note that ψ = 0 is realizable by
setting z1 = 1 and z2 = 0. For ψ = 0, it must not be the case
that (¬φ ∧ z2) = 1. Yet the above supposition guarantees
there exists some ~u such that if ~x = ~u then ¬φ = 1 no matter
what ~y is. Further setting z2 = 1 renders (¬φ ∧ z2) = 1.
Therefore, (~x, z2) must not be (~u, 1) when ψ = 0 is realized.
In summary, (ψ, I) 6∈ IND0.


