Relationship-Based Access Control:
Its Expression and Enforcement Through Hybrid Logic

Glenn Bruns
Bell Labs, Alcatel-Lucent
Glenn.Bruns@alcatel-lucent.com

Philip Fong

ABSTRACT

Access control policy is typically defined in terms of at-
tributes, but in many applications it is more natural to de-
fine permissions in terms of relationships that resources, sys-
tems, and contexts may enjoy. The paradigm of relationship-
based access control has been proposed to address this issue,
and modal logic has been used as a technical foundation.
We argue here that hybrid logic — a natural and well-
established extension of modal logic — addresses limitations
in the ability of modal logic to express certain relationships.
We identify a fragment of hybrid logic to be used for
expressing relationship-based access-control policies, show
that this fragment supports important policy idioms, and
demonstrate that it removes an exponential penalty in ex-
isting attempts of specifying complex relationships such as
“at least three friends” . We also capture the previously
studied notion of relational policies in a static type system.

Categories and Subject Descriptors

D. Software [D.4 OPERATING SYSTEMS]: D.4.6 Se-
curity and Protection Subjects: Access controls

General Terms
Security

Keywords

Access-control models, Hybrid Logic, Relationship-based
Access Control

1. INTRODUCTION

Access control is typically specified and enforced in terms
of attributes: authenticated properties that must be pos-
sessed by the requester of a resource, the context of the
request or the resource itself in order to grant access.

But there are many applications in which the decision of
granting access should not primarily be based on attributes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODASPY’12, February 7-9,2012, San Antonio, Texas, USA.

Copyright 2012 ACM 978-1-4503-1091-8/12/02 ...$10.00.

Ida Siahaan
University of Calgary
{pwlfong, isriaha}@ucalgary.ca

117

Michael Huth
Imperial College London
M.Huth@imperial.ac.uk

(e.g. whether a VPN connection is on or off) but rather
on relationships that resources, systems, and contexts may
enjoy. For example, a teenager may want to share pictures
from a concert only with friends who actually went to the
event. Expressing such policies through attributes is hard
to do even within a monolithic and closed system, and is
simply not feasible in distributed and open systems.

The paradigm of relationship-based access control [12, 10,
8] has been proposed to address this shortcoming of at-
tributes. This research gives us a first understanding of
appropriate semantic notions for relationship-based access
control (see e.g. [8]). Yet, despite the initial progress re-
ported in [10], it is less clear what appropriate syntactic
counterparts these policies should have.

Ideally, a policy language for relationalship-based access
control should be

e expressive enough to capture important policy idioms

e not so expressive as to make reasoning intractable

e intuitive for expressing and enforcing access control,

e formal, to support policy analysis, implementation,
and optimization, and

e based on robust mathematical foundations.

Recent work [8, 10] has proposed the use of modal logics
as such a mathematical foundation. We entirely agree with
the spirit of that proposal, that a policy be specified as a
formula of some logic. But the work in [10] already recog-
nized that modal logic alone cannot express some pertinent
relationships. Features that appear to be lacking include:

e the ability to bind a node to a principal in a relation-
ship graph

e graded variants of modalities, e.g. “at least four friends”

e the ability to evaluate sub-policies from the perspec-
tive of a named principal, and

e the ability to efficiently compute a policy decision by
evaluating a formula on a relationship graph.

The latter point is crucial, since existing attempts to re-
alize the aforementioned features appear to do so at the
expense of losing efficieny of policy evaluation.

We argue here that a natural and well-established exten-
sion of modal logic — hybrid logic [3] — can overcome these
shortcomings and provide a robust mathematical foundation
for relationship-based access control.

A key contribution of this paper is the recognition that
fragments of hybrid logic are well-suited to the needs of
relationship-based access control. Another key contribu-
tion of this paper is the demonstration that our proposed
use of hybrid logic eliminates a known exponential penalty
incurred in expressing important policy idioms such as “at

t = n | x
¢ uw= t 1 pl ¢ ¢1Ag2 | (i) | (=i)p |
Qo | Jz¢

Figure 1: The syntax of a simple hybrid logic HL,
where n ranges over Nom, x ranges over Var, p ranges
over AP, and i ranges over I.

least two colleagues” in existing modal logics for relationship-
based access control [10].

As further evidence of the utility of hybrid logic, we also
devise a fragment of this hybrid logic that gives rise only
to policies whose access-control decisions depend only on
the connectedness structure between the owner and the re-
quester of a resource in a network graph.

Outline of paper.

We present a hybrid logic suitable for access control in Sec-
tion 2. We explain, in Section 3, how this hybrid logic can
be used for an access-control model based on relationships.
Section 4 is devoted to examples of useful policy idioms writ-
ten in this hybrid logic. A local model-checking algorithm
for policy decisions is given in Section 5. In Section 6, a type
system is developed for a fragment of our hybrid logic and
it is shown that type-safe such formulas determine so-called
relational policies. Related work is reflected upon in Sec-
tion 7. A paper summary and remarks about future work
conclude the paper in Section 8.

2. HYBRID LOGIC

We define the syntax and semantics of hybrid logic, with a
view towards its application in policy-based access control.

Syntax.

We take as given a set Nom of nominal symbols, an infinite
set Var of variable symbols, a set I of label symbols, and a
set AP of propositional symbols. Nominals and variables
allow us to bind nodes in relationship graphs to principals.
Labels represent the different relationships present in that
graph. Using these sets of symbols, we define formulas of
a hybrid logic HL in Fig. 1. Other logical symbols can be
derived in the usual way. For example,

[]]¢ < = (i)~
1 def pA-p

def
¢V = ~(=¢ A)
T &f pV —p
express a must modality for label 4, disjunction, falsity, and
truth (respectively).

Semantics.

We define models for HL, which express relationship
graphs for access control, as well as valuations, which map
variables to nodes in relationship graphs.

1. A model M of HL is a triple
(S;,{R: CSxS|iel},V) (1)
where S is a non-empty set of nodes, R; a binary re-
lation on S for alli € I, and V: (Nom U AP) — 2° a
total function with V(n) a singleton for all n in Nom.
2. A valuation g: Var — S is a total function. For some

such g, we write glx — s] for the valuation that maps
x to s, and maps t to g(t) if t # x.

DEFINITION 1.

118

M,s,g | = s=g(x)

Ms,g = = V(n) = {s}

M,s,g F p L osevp)

Mysg E ~6 E Msglko

M,s,g E &1 /NP2 def M,s,g = ¢1 and M, s,g = ¢2
M,s,g E (@i)¢ def M,s', g = ¢ for some (s,s’) € R;
M,s,g E (—i)¢ def M,s', g = ¢ for some (s',s) € R;
M,s,g E Q,¢ def M,s*, g = ¢ where V(n) = {s*}
Mg = G¢ E Mg@r)gks

Mg | deg E Msgloe s o

Figure 2: Satisfaction relation M,s,g E ¢ specifying
that formula ¢ of hybrid logic HL is true in node s
of model M under valuation g.

The intuition behind function V' is that V(p) is the set of
nodes at which p is true, and that V(n) is the set containing
the unique node in the relationship graph of M “named”
n by V. Valuations g are total functions from variables to
nodes. Note that attributes of principals can be expressed
in models of HL through propositions in set AP.

The meaning of formulas in HL is defined by a satisfaction
relation M, s, g = ¢, defined inductively in Figure 2.

Each nominal and variable is true at a single node. The
meaning of nominals is specified through function V; the
meaning of variables through valuation g. Propositions, on
the other hand, are true at zero, one, or more nodes.

The meanings of conjunction and negation are standard,
as is the meaning of the modalities. Formula (i)¢ holds at s
if there is some R;-successor s’ of s such that ¢ holds at s’.
Dually, (—i)¢ holds at s if there is some R;-predeccesor § of
S such that ¢ holds at s.

We now discuss the hybrid operators of HL. Intuitively,
Q¢ ¢ jumps to the node named by ¢, whereas | x ¢ binds
the current node to variable z. Formally, formula @, ¢ says
that ¢ holds at the unique node identified by ¢ with respect
to function V' (if ¢ is a nominal) or valuation g (if ¢ is a
variable). Formula |z ¢ holds at node s if ¢ holds at s, but
where now valuation g is updated so that x identifies s.

Notational conventions.

Operator |z is a binding operator with the usual notions
of free and bound variables. We fix some notation for satis-
faction checks.

DEFINITION 2. Let ¢ be a formula of HL.

1. If ¢ contains no free variables, we write M, s |= ¢ for
any M,s,g = ¢, as the evaluation of latter expression
is independent of the choice of valuation g.

2. If ¢ contains only free variables x1,...,x,, we write
M,s,[x1 > $1,...,Zn > Sp] E ¢ for any M, s, glz1 —
S1y.-+,Zn > Sn] E ¢, as the evaluation of the latter
expression is again independent of the choice of g.

8. If ¢ is the Boolean combination of formulas of the form
Q¢ v, we write M, g = ¢, as then either M, s, g = ¢ is
true at all nodes s or false at all nodes s.

‘We now use our hybrid logic HL to define an access-control
model, focusing on the policy-decision point of such a model.

3. ACCESS-CONTROL MODEL

We outline here an archetypical model for relationship-
based access control that uses hybrid logic for expressing
access-control policies.

Protection state.

A protection state is simply a model M of HL in which the
elements of S denote principals. The binary relations R; rep-
resent interpersonal relations tracked by the access-control
system. Each label i in I identifies one type of relation-
ship (e.g., “parent”), such that (s1,s2) is in R; iff principals
s1 and s2 participate in a relationship of type ¢. In short,
(S,{R: | i € I}) represents a directed, poly-relational so-
cial network. The valuation V specifies attributes of the
principals. Each propositional symbol p in AP denotes an
attribute. If a principal s in S has the attribute p, then
s is in V(p). Similarly, globally significant principals (e.g.,
trusted authorities) are identified by nominals via V.

Fragment of HL for specifying access-control policies.

Principals own resources and seek access on resources. We
associate with each object obj a formula ¢ in HL that ex-
presses a relationship between two parties: the owner and
the requester. Then the requester is permitted access to obj
if the owner and requester are in the relationship specified
by ¢. This approach has been suggested in [8] already, for a
different logic, and it is what makes the access-control model
relationship-based.

‘We propose to use two distinguished variables own and req
to denote the principal who is the owner and the requester
of the implicit object, respectively.

DEFINITION 3. Let HL(own, req) be the set of formulas of
HL that
e contain at most own and req as free variable, and
e are Boolean combinations of formulas of form Qown ¢
and Qyeq 1.

We refer to formulas of HL(own, req) as policies. A com-
mon policy pattern is a conjunction

Qown ¢ A Qreq ¥ (2)

This specifies an access-control policy of the resource
owner own via two sub-policies. Sub-policy Qqun ¢ represents
the perspective of the owner in the protection state, while
@req 1 represents the requester’s perspective. Note that (2)
is consistent with using only one such perspective. For ex-
ample, dropping the second conjunct amounts to choosing
1 to be T and so the righthand conjunct is redundant.

Authorization decision.

The access-control system arrives at an authorization de-
cision as follows. Given a protection state (i.e., a model) M,
a requesting principal r has permission to access an object
obj in Obj that is controlled by principal o according to a
policy pol in HL(own, req) iff the following condition holds:

®3)

Intuitively, the only free variables own and req of formula
pol of HL(own,req) get bound to the principals named by
the owner and requester, respectively, and this formula is
then evaluated with those bindings.

M, [own — o,req — 7] = pol

119

Thus, checking whether an access is granted amounts to
checking the satisfaction of a HL(own, req) formula with re-
spect to a valuation. We discuss a local model-checking
algorithm for HL(own, req) below.

Policy functions.

Through the semantics of hybrid logic, which has been de-
fined as a satisfaction relation, every policy ¢ in HL(own, req)
induces a policy function, which maps protection states to
binary permission relations.

DEFINITION 4. 1. A policy function P is a total func-
tion M = (S, ...) — P(M) from models M to binary
relations P(M) C Sy X S

2. The policy function induced by a policy @
HL(own, req), written p[d], is defined as follows:

pl¢] = {(o,7) € Sm xS | M, [own — o,req — 7] = ¢}

of

The intuition behind policy functions is that a requester r
can access an object of owner o in protection state M if (o, 1)
is in P(M) — and is denied access if (0,7) is not in P(M).
Note that a policy function maps a collection of relations
(plus a mapping for nominals and propositions) over a set of
principals to a single permission relation over the same set.

4. EXAMPLE POLICIES

‘We now provide example policies, starting with basic ones.

Basic policies.
If the owner of an object defines the policy to be

Qown {friend)req (4)

then every friend of the resource owner is granted access to
that resource. Note that this policy specifies no constraints
from the perspective of the requester. Similarly, the formula

Qown (friend)(req V {friend)req) (5)

captures a “friend or a friend of a friend” policy. The formula

(6)

specifies that all friends who are teammates get access. This
example already hints at the usefulness of hybrid logic. The
use of the variable req allows us to refer to some principal
who is both a teammate and a friend of the owner.

If req behaved like a normal proposition that could be true
at zero or more nodes, then we could not capture this seman-
tic conjunction in the logic; the existential quantification of
(i) does not distribute through conjunction.

The policies we have specified so far are variants or adap-
tations of policies written the logic E of [10]. To see the true
benefits of using HL, we write more complex policies next.

Qown ({teammate)req A (friend)req)

More complex policies.

Consider a teacher who wants to confine access to her
picture to friends who are teachers, but who also wants to
grant access to only those friends of such friends who are
not taught by friends. This is hard to express in English,
but there is a true case of an English teacher who had to
resign because her picture could be seen by student friends
of friends — unbeknownst to her. Hybrid logic can express

such a policy unambiguously. One possible formula is

Qown ({friend)(req A isTeacher) V
(friend)(isTeacher A (friend)reqA

—(student)req)) (7)

Note that this formula is indeed in HL(own, req). The first
disjunct specifies that access is granted if the requester is a
friend who is a teacher, where isT'eacher is in AP. The sec-
ond disjunct specifies that access is granted if the requester
is a friend of a teacher friend of the owner, but where the
requester is also not a student of that teacher friend.

‘We point out that this policy does not prevent the scenario
where access is granted to some student of a teacher friend,
since the may modality is an existential quantification.

This policy also illustrates the utility of propositions (at-
tributes), as we here want to express that a friend is some
teacher, not necessarily the teacher or student of the owner
or requester. This property could be expressed through
(teacher) T, someone is a teacher if they teach someone. But
such an encoding becomes ackward for unary relations such
as isDiabetic, so we do include propositions in our logic HL.

Dual policies.
The last example illustrates that we can compose negative
and positive permissions. For example, the policy

Qown (friend)(req A —Alice) (8)

says access is granted to all friends, except to Alice, a princi-
pal that is a nominal in Nom. Note that this policy makes no
assumption about whether or not Alice is actually a friend.
The policy expressed in (8) serves also as an example for
how one might “dualize” a policy written from the perspec-
tive of one of the principals into an equivalent one written
from the perspective of the other principal. The policy

Qreq ({(— friendyown A —Alice) 9)

is intuitively equivalent to that in (8), but of form Qyeq ¢.

Graded modalities.

A nice feature of hybrid logic is that it allows us to express
so called graded may modalities [3] as syntactic sugar of the
logic. To see this let n be a positive natural number, and let
(i) be the corresponding graded may modality for label .
The intuition of (i),»¢ is that it holds in node s iff there are
at least n many R;-successors of s at which ¢ holds.

For example, a policy that grants access if there are at
least 3 friends of the owner who satisfy ¢ can be specified as

Qown {friend)sd (10)
To see that (i)n¢ is expressible in HL, take n + 1 many
variables x, Y1, y2, ...Yn that do not occur in ¢ and define
(i)nd L (@) Ly (oA (11)
Qg (i) Ly2 (g1 AP A
Qg (i) Lys (g1 A —y2 AP A

def

@ (i) Ly (Y1 A2 Ao Amyn-1 A @))

This standard encoding says that at the current node,
named z, there is some R;-successor y1 of x that satisfies ¢,
and there is some R;-successor y2 of x that is different from

120

y1 and satisfies ¢, and so on. This clearly renders the desired
semantic effect of having at least n many R;-successors of
the currrent node that satisfy ¢.

Graded modalities give us the ability to count exactly as
well. To specify that there are exactly n R;-successors that
satisfy ¢, we may write

def .

(1)=n¢ = ()n@ A =(i)nt19

One can model a rudimentary trust level in a network of
friends by asking whether the requester is connected to the
owner by a path of friend labels of length at most k.

We can specify such policies inductively for £ > 1 as

(friend)req
depth[friend, k] V
(friend)depth|friend, k]

(12)

def

depth[friend, 1]
depth[friend, k + 1]

(13)
def

‘We can combine this trust mechanism with graded modal-
ities to express a policy that grants access if there are at least
two colleagues who have sufficient trust in the requester:

@own {colleague)odepth|friend, 3] (14)

Next, let us now consider a policy cfx based on common
friends. It grants access to the owner, to his friends, and to
those who have at least £k > 0 common friends. Through
graded may modality, we can express this in HL(own, req) as

cfr 2 Qg (req V {friend)req V (friend)(friend)req) (15)

The leftmost disjunct specifies that the owner has access,
the second disjunct says that friends of the owner have ac-
cess, and the third disjunct says that access is granted to
requesters who have at least k£ many friends in common with
the owner. The encoding assumes that R frjenq is symmetric.
If not, the last modality should be an inverse one.

Here is an example policy of HL(own, req) that has non-
dual subpolicies from the perspective of owner and requester:

Qown ((friend)req A (friend)sT) A Qyeq { friend)s—own (16)

This policy grants access if the requester is a friend of the
owner, the owner has at least three friends (counting or not
counting the requester), and if additionally the requester
has at least five friends other than the owner. Intuitively,
in order to express this policy in HL(own, req) we seem to
require both operators @Qrq and Q,,, as the policy involves
a form of counting in both nodes named by own and req.

S. LOCAL MODEL CHECKING

In our setting, we are given a model M as protection state,
and a policy pol in HL(own,req) as specification of access
control. We then wish to decide whether M, [own — o, req —
r] & pol for specified nodes o and r.

This form of evaluation is a kind of local model check-
ing. The term “local” is used because the intuition is that
the model M is explored only as needed from the nodes of
interest, those named by own and req. Local model check-
ing is a good fit for our needs as only those portions of the
model that are potentially needed to make an access-control
decision are explored.

Description of algorithm.
We now describe our local model-checking algorithm for
HL(own, req). Its pseudo-code is depicted in Figure 3. The

MC(s,g,¢) {

case {
¢ is x : return (areEqual(s,g(z)));
¢ is n : return (isElem(s,V(n)));
¢ is p : return (isElem(s,V(p)));
¢ is —p : return (!MC(s,g,¥));

¢ is 1 AN : return (MC(s,g,%1) && MC(s,g,%2));
¢ is (i) : return MCmay(s,g,v,i,fwd);

¢ is (—i)1p : return MCmay(s,g,v,%,bwd);

¢ is @Qu 1 : let t = hd(V(n)) in return MC({,g,v);
¢ is @Qz1p : let ¢t = g(x) in return MC(t,g,v);

¢ is Lz : let h = glz+— s] in return MC(s,h,?);
}

}

MCmay (s,g,¢,i,direction) {
if (direction == fwd) { X =
} else {X =
for (all s’ in X) {
if (MC(s’,g,¢)) { return
}
return false;

}

policyDecision(o,r,¢) { // ¢ in HL(own,req)
let g = [own— o, req— 7] in {
return MC(o,g9,%);
}
}

Figure 3: Local model checking algorithm for HL.

model M is implicit but its structure and local nodes and
valuations are explicit in the code.

The algorithm MC has as argument a local node s, a valu-
ation g, and a formula ¢ of HL. Its body is a case analysis
of the top-level operator of ¢. We assume that V(n) and
V(p) are implemented as lists, that isElem is a membership
test for such lists, that hd returns the first element of a non-
empty list, and that areEqual can check for node equality.

The algorithm does a recursive decent until it encounters
formulas that are variables, nominals, or propositions. The
cases of the forward and backward modalities require a call
to a sub-routine MCmay.

Routine MCmay first computes the set of all R;-successors
or predecessors of node s, where that choice is decided by
an inspection of a parameter value that indicates whether
the modality is a forward one (i) or a backward one (—i).

It then iterates through all these nodes until one of them
makes the formula true, in which case it does return true.
If no such node makes the formula true, it returns false.

A genuine implementation of algorithm MC would not pre-
compute the sets X, but would generate new elements of X
on demand until either a witness for truth has been found,
or all elements of X are revealed not to be such witnesses.
Also, to make this efficient each reached node would keep a
hash table of subformulas it has already evaluated so that
each subformula is evaluated at most once in each node.

We can use that local model-checking algorithm to imple-
ment a policy decision point in policyDecision. It takes as
input a node o representing the owner of the object, a node
r representing the requester of that object, and a formula ¢
of HL(own, req) representing the access-control policy. Then
it creates the valuation that binds own and req to o and r,
respectively. Finally, it returns the result of the local model
check on ¢ under valuation g.

6. RELATIONAL POLICIES

121

Previous work [2, 10] has noted that what distinguishes
relationship-based access control from traditional access-
control paradigms is its extensive use of relational policies.
Intuitively, a relational policy is one in which the authoriza-
tion decision is based solely on how owner and requester are
connected to one another (e.g., friend, friend-of-friend, etc).
Therefore, a relational policy does not base its authorization
decision on the requester’s identity (e.g., John can access),
attributes (e.g., managers can access), or social positions
(e.g., all those who have at least 100 friends can access).

The goal of this section is to identify a syntactic fragment
of the logic HL(own,req) that captures relational policies.
This then allows policy developers to efficiently verify that
their policy specifications determine relational policies.

Relational policies.

We begin by formalizing what it means for a policy func-
tion to be relational. We first define some auxiliary concepts
that use only the binary relations R; of models.

DEFINITION 5. Fiz models M = (Sar, {RM C Sn x Sur |

i€}, Vi) and N = (Sv,{RY C Snx x Sy |i € I}, V).
1. These models are isomorphic via a bijection f: Sy —
S, if, for alli € I: (s,t) € RM iff (f(s), f(t)) € RY.

2. Nodes s,t of Sm are connected, written s & t, if
either s = t, or inductively, there is an s’ in Sy with
(s,5") € RM U (RM)~!, for somei €I, and s' Mot

8. The shared component of nodes s,t in M, written
SC(M, s,t), is the relational structure (S,{R; C S X
S| i € 1}) defined as follows:

def

S= {s,t}U{s' € Sum | 8%8/78,*\%25}

CRM (S x S)

R; =

There are two parts to what it means to be a relational
policy function. First, the policy function must be topology-
based: it must consume neither attribute information (i.e.,
valuations are not considered) nor “identity information”

(i.e., isomorphic labeled graphs cannot be distinguished)
when an authorization decision is made.

DEFINITION 6. A policy function P is topology-based if,
for all models M and N, and all bijections f : Sm — Snw,
whenever M and N are isomorphic via f, then P(N) =

{(£(s), F@) | (s,8) € P(M)}.

Second, the policy function must be local: changes in per-
mission to a model must reflect a change in connectivity
between the owner and requester.

DEFINITION 7. A policy function P is local iff, for all
models M and N, and all s,t € Sy NSy, we have that

SC(M, s,t) = SC(N, s,t) implies P(M)(s,t) = P(N)(s,t).

The definition of “local” demands that any change in an
access decision must imply that either s and ¢ have gone
from being disconnected to being connected (or vice versa),
or the shared component of s and ¢ have been altered.

Such a requirement ensures that any change of authoriza-
tion decision is not caused merely by the social positions
of the requester or the owner (i.e., where exactly they are
in the relational structure). We note that this definition of
local-ness is equivalent to the one given in [10].

Y ou= T Llz| | Y1Age | ¥1Vi |
@Y | (= | [y | [=d¢ | @ | Lz
¢ = T | L] Qwmtp | Qeqd | 70 | ¢AQ | ¢V &

Figure 4: Syntax of candidate formulas for a rela-
tional fragment of HL(own,req), with =z from Var.

Example. The following formulas express local policies:

@own ({child)req A [child]req) (17)
Q@own (friend) (req A (spouse) T) (18)

Formula (17) demands the requester to be the only child
of the owner. Formula (18) requires the requester to be a
married friend of the owner.

The following formulas express policies that are not local:

@yeq (spouse) T (19)
@own [child]req (20)

Formula (19), which is a relaxation of (18), requires the re-
quester to be married. It is not local as a change of autho-
rization decision only requires the introduction (or elimina-
tion) of a spouse edge in the neighbourhood of the requester,
which may otherwise be disconnected from the owner.

Formula (20), which is a relaxation of (17), grants access
either if the owner has no child, or if the requester is the only
child. The following explains why it is not a local policy.
Suppose we start with a model M in which the owner has
no child, and the requester is disconnected from the owner.
The requester has access in M. Now the owner gives birth
to a child, resulting in a new model IV, in which the owner
is incident to a child edge. The requester loses his or her
access in protection state IV, but the owner and the requester
remain disconnected. (End of Example.)

We can now define the technical notion of relational policy.

DEFINITION 8. A policy function is relational iff it is both
topology-based and local.

A relational fragment of HL(own, req).

It is easy to show that every formula in HL(own,req) ex-
presses a topology-based policy. To obtain relational poli-
cies, the challenge is to ensure that formulas are constructed
to express only local policies. To better appreciate the na-
ture of this challenge, observe the following:

PrOPOSITION 1. The family of local policies contains
p[T] and p[L] and is closed under boolean combinations.

Thus complex local policies can be built up from primitive
ones using the boolean connectives offered by HL(own, req).
It is the modal operators (i) and (—i) that may break local-
ness of policies. The reason is that, in general, local-ness is
not preserved by relational composition.

Suppose P; and P» are policy functions. We write P o P>
to denote the policy function P such that P(M) = {(s,t) €
Sy X Sm | Js’ € Sar: (878,) S P1(M)7(S/7t) S PQ(M)}.
Even though policy functions P and P> may both be lo-
cal, P; o P, need not be local. An example is when P, is
p[T]. Thus (i)® may not be local even if ¢ is local. This is
illustrated by formula (19).

We define a relational fragment of HL(own, req) to ensure
that modal operators preserve local-ness. This relational

122

fragment is obtained in two steps. First, we constrain the
syntax of HL(own, req) by the grammar in Figure 4. Second,
we impose a type system (Figure 5) to further constrain for-
mula construction, such that only properly typed formulas
belong to the fragment.

DEFINITION 9. The hybrid logic fragment HL,. contains
those formulas ¢ as defined in Figure 4 such that:

e For all subformulas Qownt of &, we have
Local(req).

e For all subformulas Quq1 of ¢, we have ¥
Local(own).

We now explain the two steps of restricting HL(own, req) in
turn. First, the syntax of ¢ in Figure 4 reiterates the require-
ment of HL(own, req), that policy formulas are boolean com-
binations of subformulas of the form “@Qqyn 1" or “@req Y”. As
long as these subformulas express local policies, then Propo-
sition 1 ensures that ¢ is local.

Second, the inference rules in Figure 5 involve two type
judgments of form “ : Local(x)” and “¢ : OC(z)”, where z
is typically either own or req. Intuitively, the derivation of
judgment v : Local(req) means ¢ can be used within @gun
to form a local policy. Similarly, the derivation of judgment
1 : Local(own) ensures that @Qq is a local policy. The
judgment based on label OC(z) is for typing subformulas 1)
that are “owner-checkable (OC)” as defined in [10]. Although
OC formulas are not local, they can be combined with local
formulas in a conjuction to yield local formulas.

THEOREM 1 (TYPE SOUNDNESS). If % Local(req),
then p[Qown ¥] is a local policy. Similarly, if 1 : Local(own),
then p|Qreq Y] is a local policy.

To see an application of this theorem, consider the policy
n (18) of form @qwnt. The first conjunct type checks as
Local(req), the second one as OC(req). So their conjunction
and also ¢ both type check as Local(req). Theorem 1 ensures
the policy itself is local. The policy in (17) can be type
checked in a similar fashion.

An attempt to type check the policy of form Qqun 7 in (19),
however, fails: our type system can assign type OC(own) to
1 but this cannot be lifted to type Local(own). Policy (20)
fails to type check to Local(req) for a similar reason.

The encoding of graded modalities (i), ¢ given in (11) will
type check to Local(x) so long as ¢ type checks to Local(x).

Our typing rules can also type check the depth-first search
tree encoding of finitary relational policies [10, Appendix A].

In summary, we have identified a relational fragment HL,;
via a grammar and a type system. This allows policy devel-
opers to efficiently verify whether the policy formula under
development is indeed relational.

7. RELATED WORK

Modal logics for access control.

Access-control logics for distributed systems can be in-
terpreted as modal logics, with Kripke-style, possible-world
semantics. In ABLP [1], every principal is a modality, and
states in a model are epistemic states. ICL and its vari-
ants [11] can be compiled into formulas in the modal logic
S4. Following [8, 10], HL(own, req) formulas are interpreted
against models that capture principal attributes and social

9 : Local(x)

“§:0C(z) (O-SuB)
T:0C(x) (O-Top)
1:0C(x) (O-Bor)

y: OC(z) (O-Var)
j/;::oiocc(fx)) (O-Nor)

. :C;Cl(j)% :gfé(;)OC(m) (O-Or)
R Iatow
% (O-May)
% (O-Mus)

B ;jgj) oqifé : (O-Ar)
- f;q(;v) OC(;/);”é - (O-Dow)

L : Local(z) (L-Bo)
x : Local(z) (L-Var)
91 : Local(x) 1o : Local(z)
1 V g @ Local(z) (L-O%)
Y1 : OC(z) 12 : Local(z) (L-AND1)
11 A g : Local(x)
1 : Local(z) P2 : OC(z)
Y1 A2 : Local(x) (L-AND2)
¥ : Local(x) ’
()% - Local(z) (L-Mav)
¥ : Local(x) y#zx (L-AT)
@y 1 : Local(z)
¥ : Local(x) y#zx (L-Dow)

Jy : Local(z)

Figure 5: A type system for formulas from Fig. 4, identifying polices that are local. The typing rules for
inverse modalities (—i) and [—i], which closely parallel O-May, O-Mus and L-May, are omitted for brevity.

networks. The nodes of a model denote principals, modali-
ties correspond to relationship types, and accessibility rela-
tions express interpersonal relations.

Modal logics for relationship-based access control.

In [10], a modal logic E for relationship-based access con-
trol was developed as an extension and improvement of a
similar modal logic B [8]. So we focus our discussion on E
here.

Its abstract syntax is given by

pu=T | p| =¢ | ¢1nge | ()¢ | ()¢ [lpd | 1@

where p ranges over a set of propositional symbols with a re-
served symbol a, and ¢ ranges over a set of labels. In [10], the
operator | p is actually written @, but we chose the former
notation here, as it will aid our comparative discussion.

The models for E are similar to those for HL. Semantically,
propositions are treated in E like nominals in hybrid logic:
they are true in exactly one node. Symbol a represents the
requester of an access. The semantics of the | p operator is
actually that of the | n operator in hybrid logic, except that
Ja¢ is interpreted as L. Intuitively, | p ¢ identifies p with
the owner of the object.

Lastly, operator ¢ ® 1 holds if one can separate model M
into two parts of node sets that only overlap for the owner
and requester, and where ¢ holds in one of these parts and
2 holds in the other one.

This operator crucially increased the expressiveness of B
so that, e.g., thresholds on the number of specific successors
of a node can be expressed. Since one can encode graded
modalities and similar counting mechanisms in HL, we do
not need to add such an operator to our logic.

We view this fact as a big advantage of using HL instead
of E. For ¢ ® ¢ incurs a seemingly unavoidable exponential
penalty, since there are exponentially many partitions of the

123

set of nodes that need to be considered in its evaluation. The
evaluation of HL over models, however, is linear in the size
of the model and formula with appropriate caching in place.

Another advantage of HL is the greater flexibility of atomic
formulas: HL offers nominals, variables, and propositions
(i.e. attributes). Further, the operator @; is very useful as
it specifies where a policy should be evaluated. In fact, by
promoting HL(own, req) we suggest most policies would be
Boolean combinations of policies of form @ 1.

Hybrid logics for access control.

We are not aware of much other work on using hybrid logic
for access control. But in [5], a logical framework is used
to design an authorization logic for time-dependent access-
control decisions. The logic contains a variant of the @,
operator, AQI, which allows the relativization of the truth
of proposition A to the time interval I.

Local-ness in ReBAC policies.

Local-ness ensures that change of authorization decision is
due to a change in “connectivity” between the owner and the
requester of an object. The notion was originally formulated
in [2] (an extension of [9]), in which a local policy is one such
that, if there is a change of authorization decision due to
the introduction of one new edge, then the new edge must
be connected to both the owner and the requester. The
definition was based on social networks that are undirected
graphs, with no edge labels.

In [7], the definition was generalized to account for the
introduction of “one or more” edges. The two definitions
can be shown to be equivalent. In [10], the definition was
adapted to account for social networks that are directed and
poly-relational, such that the definition in [7] is merely a
special case. In this work we adopt a formulation of local-

ness that makes explicit the kind of graph structures that
local policies cannot distinguish. One can show that this
new formulation is equivalent to that of [10].

8. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed the use of hybrid logic for
the specification and enforcement of access-control decisions
in the relationship-based approach to access control.

Concretely, we presented a fragment of hybrid logic that is
customized to the needs of relationship-based access control.
We demonstrated that the models of that hybrid logic are
appropriate as models of protection states in relationship-
based access control. We showed how the semantics of hy-
brid logic on such models gives meaning to access-control
policies written in that logic.

Then we discussed how this semantics can be implemented
as a policy-decision point, via a local model-checking algo-
rithm. Next, we featured numerous examples of policies and
showed how they can be elegantly specified in our hybrid
logic. Importantly, we showed how hybrid logic can express
graded modalities such as “at least three friends”.

To understand better connections with related work, we
identified an attribute-free fragment of our hybrid logic, via
a static type system, in which only policies can be specified
that are relational in a technical sense from the literature.

We then discussed related work and how our approach
improves on it. Let us finally point out future work.

Heterogeneous protection state.

It would be beneficial to let nodes model either subjects or
objects, so that relationships can also be expressed between
subjects and objects. An example of the sort of policy one
could then write in HL is

Qreq (sameFloor)resc A Qoun {collaborator)req A
Qyesc 18 Printer A Qg 1s PDE

This says that a print job should be granted those re-
questers req who are on the same floor as the resource resc,
and where additionally the resource resc is a printer, the file
file to be printed is in PDF format, and the owner own is a
collaborator of the requester req.

Policy composition.

One may think of policies written in HL as just one as-
pect of control to resources. Different aspects of controlling
access could then be combined. For example, in [8] there
is a mechanism for determining an appropriate context for
evaluating a policy function, where the context is an appro-
priate model for that policy. Since policies ¢ in HL determine
policy functions as well, one can readily use the protection
model of [8] with our hybrid logic HL.

Another example is when we have an attribute-free lan-
guage, e.g. HL with empty AP. Then we may treat each HL
policy as a “rule”, and then combine rules in a PBel style pol-
icy composition language [4], perhaps with rules from other
policy languages that refer to attributes.

Footprint of policy evaluation.

Our local model-checking algorithm can be made to run
linearly in the size of the model. This low complexity is little
comfort for social networks graphs with hundreds of millions
of nodes. But policies used by people in social networks ap-

124

pear to have a small footprint, meaning that only few nodes
and edges of the social relationship graph are reached and
computed upon during local model checking. We illustrate
this point with a Facebook style policy.

In Facebook, access policies are given by fixed options such
as Everyone, Friends of Friends, Only Friends, and Customize
[6]. The default policy is Everyone which involves no rela-
tions. Policies commonly use the options Only Friends or
Customize. In the option Customize the owner builds lists of
groups or lists of friends that are granted or denied access.

In contrast, option Friends of Friends, specified in (5),
grants access to all friends and friends of friends. Its evalua-
tion may visit all friends-of-friends nodes. But its equivalent

policy
Qown (friend)(reqV |z Qreq (friend)x)

only explores the owner’s friends nodes.

Acknowledgments

We thank Ian Hodkinson for having pointed out to us a
wealth of literature on hybrid logic and for always having
been willing to discuss technical issues.

9. REFERENCES

(1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A
calculus for access control in distributed systems. ACM
Transactions on Programming Languages and Systems,
15(4):706-734, Sept. 1993.

M. Anwar, Z. Zhao, and P. W. L. Fong. An access control
model for Facebook-style social network systems. Technical
Report 2010-959-08, Department of Computer Science,
University of Calgary, July 2010. Submitted for review.
C. Areces and B. ten Cate. Hybrid logics. In P. Blackburn,
J. van Benthem, and F. Wolter, editors, Handbook of
Modal Logic. Elsevier, 2007.

G. Bruns and M. Huth. Access control via Belnap logic:
Intuitive, expressive, and analyzable policy composition.
ACM Trans. Inf. Syst. Secur., 14(1):9, 2011.

H. DeYoung. A logic for reasoning about time-dependent
access control policies. Senior Research Thesis
CMU-CS-08-131, School of Computer Science, Carnegie
Mellon University, 20 May 2008.

Facebook, 2011. http://www.facebook.com/about/
privacy/your-info-on-fb#controlprofile.

P. W. L. Fong. Preventing Sybil attacks by privilege
attenuation: A design principle for social network systems.
In Proc. of the 2011 IEEE Symposium on Security and
Privacy (S&P’11), pages 263-278, Oakland, CA, USA,
May 2011.

P. W. L. Fong. Relationship-based access control:
protection model and policy language. In CODASPY,
pages 191-202, 2011.

P. W. L. Fong, M. Anwar, and Z. Zhao. A privacy
preservation model for Facebook-style social network
systems. In Proc. of the 14th European Symp. on Research
In Comp. Sec. (ESORICS’09), volume 5789 of LNCS,
pages 303—-320, Saint Malo, France, Sept. 2009.

P. W. L. Fong and I. Siahaan. Relationship-based access
control policies and their policy languages. In SACMAT,
pages 51-60, 2011.

D. Garg and M. Abadi. A modal deconstruction of access
control logic. In FOSSACS’2008, volume 4962 of LNCS,
pages 216-230, 2008.

C. E. Gates. Access control requirements for Web 2.0
security and privacy. In Proc. of IEEE Web 2.0 Privacy
and Security Workshop (W2SP’07), Oakland, California,
May 2007.

2]

[3]

[4]

[5]

(6

[7]

(8]

[9]

(10]

(11]

(12]

