Towards Defining Semantic Foundations for
Purpose-Based Privacy Policies

Mohammad Jafari, Philip W.L. Fong, Reihaneh Safavi-Naini, Ken Barker
Department of Computer Science
Univ of Calgary
2500 University DR NW, Calgary, AB, Canada, T2N-1N4

{jafarm,pwlfong,rei,kbarker}@ucalgary.ca
Nicholas Paul Sheppard

Library eServices,
Queensland Univ of
Technology
GPO Box 2434, Brisbane
. Australia, QLD 4001
nicholas.sheppard@ieee.org

ABSTRACT

We define a semantic model for purpose, based on which
purpose-based privacy policies can be meaningfully expressed
and enforced in a business system. The model is based on
the intuition that the purpose of an action is determined
by its situation among other inter-related actions. Actions
and their relationships can be modeled in the form of an
action graph which is based on the business processes in a
system. Accordingly, a modal logic and the corresponding
model checking algorithm are developed for formal expres-
sion of purpose-based policies and verifying whether a par-
ticular system complies with them. It is also shown through
various examples, how various typical purpose-based poli-
cies as well as some new policy types can be expressed and
checked using our model.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security

Keywords
Purpose, Privacy Policy, Access Control, Modal Logic

1. INTRODUCTION

Privacy policies and enforcement technologies are crucial
for mitigating risks involved in storage and processing of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODASPY’11, February 21-23, 2011, San Antonio, Texas, USA.
Copyright 2011 ACM 978-1-4503-0465-8/11/02 ...$10.00.

data in digital form and making such systems safe and re-
liable. Purpose of access is one of the core concepts in pri-
vacy which considers the data user’s intent as a factor in
making access control decisions. This enables differentiat-
ing between access to the same piece of data, even by the
same person, when it is for a different purpose. For example,
a patient may want to allow a physician to see the blood-
test results for the purpose of medical treatment; but deny
access to the same data by the same person for a purposes
such as research.

Purpose has been considered in major privacy legislations,
such as the U.S. Privacy Act (1974) and Canada’s Federal
Privacy Act (1983). These laws and similar ones in other
countries stipulate that personal information must be used
only for the purpose that was declared at collection time.
More recent research considers purpose a decision factor in
privacy-oriented access control models [5, 2, 19] and in policy
languages [27, 25, 20].

One major issue is that in nearly all existing models, pur-
poses are treated as opaque labels (i.e. a character string)
with little or no semantics. This leads to ambiguity and ar-
bitrary interpretation of purposes in privacy policies, often
contrary to the interests of data owners. For example, if the
privacy policy of a company states that data collected from
customers may be used for the purpose of service improve-
ment, this is likely to be very unclear to the customers who
do not get to have a clear understanding of what exactly
this entails, under what conditions it is violated, and how it
is enforced.

Besides, and in our opinion as a consequence of such a
lack of semantics, enforcing purpose-based policies contin-
ues to be a challenging problem. The main difficulty in
purpose enforcement is how to identify the purpose of an
agent when it requests to perform an action. Some common
proposed mechanisms are self-declaration in which the agent
explicitly announces the purpose of data access (e.g. [16]),
and role-based enforcement in which the purpose is identi-
fied based on the agent’s role in the system (e.g. [5]). The
first method obviously cannot stop a malicious agent from
claiming false purposes. The second method has been criti-
cized to be inefficient in capturing purpose of an action since



roles and purposes are not always aligned and members of
the same organizational role may practice different purposes
in their actions [15]. Therefore, identifying the purpose of
an action, or verifying a claimed purpose remains an open
question, partly because enough attention has not been paid
to the link between actions and their purposes.

This paper addresses these problems by: (a) developing
a formalism with which purpose, and its relationship to ac-
tions is clearly defined, and (b) designing a corresponding
mechanism using which the purpose of an action can be iden-
tified and thereby adherence to purpose-based policies can
be verified and enforced.

Section 1.1 gives an overview of our work by discussing
the concept of purpose and how it relates to actions in Sec-
tion 1.1.1, sketching our formal framework in Section 1.1.2,
and showing how our proposed framework will be used in
a practical scenario in Section 1.1.3. Section 1.2 goes over
some related work and Section 2 formalizes the basics for
definition of purpose. Section 3 develops a modal logic to
articulate actions and their teleological relationships which
is the foundation for formally defining purpose-based poli-
cies. Section 4 defines the form of a purpose-based policy in
our model and illustrates how various examples of common
purpose-based policies can be expressed using the developed
language. This section also demonstrates how our model is
capable of expressing new types of policies that are not con-
sidered in the current literature. Compliance checking for
policies is discussed in Section 5 by giving a model check-
ing algorithm that tests whether a given system adheres to
some given policy. Section 6 provides a further elaboration
of several key points about the framework, leaving Section 7
to make some concluding remarks.

1.1 Our Work

This section briefly describes our conceptual framework,
the formal tools that we have developed on its basis, and a
walk-through of how it can be used in practice.

1.1.1 Conceptual Framework

Intentional actions are often assigned a purpose that refers
to the aim and rationale to perform them. One may ask or
talk about the purpose of reading a book, increasing salaries,
or collecting information. Hence, everyday usages of pur-
pose presume a sense of teleology (or final aim) concerning
the goal behind executing an action and its ultimate con-
sequences. Thus, the purpose of reading a book may be
to entertain, or by increasing salaries the ultimate intention
may be to attract high-quality workforce, and information
may be collected to do medical research.

Observing how purpose is used in the natural language
reveals that purposes often refer to an action or a set of
actions. A web search for “for the purpose of” yields top
results such as: disseminating information, pricing, promot-
ing, language verification, etc. all of which are names of
some abstract actions. Typical purpose names mentioned
in privacy standards and guidelines also refer to actions;
for example, completion and support of activity and website
and system administration in P3P [27], or treatment and
research in Healthcare XSPA [21] and Dimitropoulos’s re-
port [8]. The correspondence of purposes and actions has
also been observed by others in the literature as it will be
mentioned in Section 1.2.

In the first place, purpose of an action is something that
only exists in the mind of the agent performing the action.
However, an agent’s purpose for an action affects other ac-
tions performed, so, the set of actions that precede or follow
the action are affected by the agent’s purpose. Thus, related
actions can be indicative of the purpose and the purpose of
the action may be revealed by looking at the actions that
precede or follow it. For example, when someone borrows
money and later uses the money to pay a phone bill, it can
be inferred that the purpose of borrowing money has been to
pay the bill. Conversely, it is possible to enforce a purpose
by restricting the surrounding actions. Thus, the purpose of
paying the bill can be enforced by forbidding the agent from
doing anything but making the payment as a consequence
of borrowing the money.

Thus, purpose can be defined by the situation of an ac-
tion within a larger context containing other actions and
the relationships among them. This context can be defined
as a network of relationships that capture the intention, or
more precisely, the purpose of the action. Accordingly, we
can define the purpose of an action as its placement in a
collection of other related actions; we call such network of
inter-related actions a plan. This is the fundamental as-
sumption that forms the basis of our purpose model in this
paper.

Intuitively, a plan is a collection of interrelated actions to-
gether with various relationships among them. Later in Sec-
tion 2, we define action graph as an abstract model to cap-
ture such plans with only two types of relationships. These
two types of relationships are based on the following obser-
vations of two types of purposes:

Purpose as a High-Level Action.

In some contexts, purpose refers to a more abstract, or se-
mantically higher-level action in a plan. Thus, doing some-
thing for some purpose, actually means doing it as a part,
or a sub-action, for that higher-level action. For example,
when Alice checks some patient’s blood pressure for the pur-
pose of surgery, it means that checking the blood pressure
is a part of a more complex and abstract action of surgery.
Similarly, when it is said the a surgery is performed for the
purpose of treatment, it is because the high-level action of
medical treatment includes surgery as a part.

In some contexts purpose refers to a desired state of af-
fairs, such as doing some action for the purpose of happiness.
In such cases we assume that the purpose refers to the ab-
stract action of reaching that state. Thus, doing something
for the purpose of happiness, can be interpreted as doing
something as part of the abstract action of pursuing happi-
ness, which is the higher-level action.

Purpose as a Future Action.

In some contexts, purpose is used to indicate that an ac-
tion is performed as a prerequisite of another action in fu-
ture. For example, when Bob withdraws money from a bank
account for the purpose of paying the bills, it means the for-
mer action is done as a prerequisite to performing the latter.

1.1.2  Formal Framework

We develop formal tools for expressing and verifying purpose-

based policies. A formal model is developed for the business
processes in the system. This can be used to formalize the
relationships between different high-level and low-level ac-



tions in a business system in the form of a graph. Corre-
spondingly, a formal language is also developed using which
purpose-based policies can be expressed about such business
processes. The model checking algorithm can be used to
check whether the business processes in a particular system
comply with the policies.

1.1.3  Walk-Through

We motivate our framework by explaining how it can be
used in practice. Suppose there is an organizations with
well-defined business processes. The aim is to check whether
the business processes in this organization comply with a set
of purpose-based privacy rules.

Step 1: Vocabulary.

A common terminology is necessary for referring to sys-
tem’s actions so that business processes and policies can use
the same vocabulary. Low-level actions such as read, write,
etc. are well-known and common across many domains with
clear and standard meanings. More complex and abstract
actions like surgery, marketing, etc. can be taken from stan-
dard vocabularies that exist in many domains such as clinical
systems in healthcare (e.g. [22]). In this paper, we do not
discuss how such a vocabulary is developed and assume it
exists.

Step 2: Abstract Model of Actions in the System.

The next step is to make a formal model of actions in
the system and their relationships. The action names in
such a model are taken from the common vocabulary and
their relationships can be extracted based on the business
processes in the system. This model reflects how the sys-
tem works and is used to evaluate whether it complies with
the purpose-based policy. Definition and explanation of this
model is given in Section 2.

Step 3: Policy.

Purpose-based policy is a set of rules about the purposes
of actions in the system. For example, one may want to
make sure some data is not used for the purpose of mar-
keting, or patient files are not modified when used for the
purpose of research. Such rules come from different origins;
there are global system-wide rules that apply to an entire
organization or even multiple organizations, and are usu-
ally authored by a management authority. For example, a
jurisdictional policy may stipulate that employee ethnicity
data must not be used for the purpose of promotions in any
organization in the country. On the other hand, there are
data-dependent policies, such as patient consents, that are
specific to treatment of a particular piece of data and are
effective only if that piece of data is being processed. Such
policies are usually defined by the data owner.

Policy rules should be formalized using a language we de-
velop in Section 3. The atomic propositions in the language
(e.g. marketing, research, and promotion in the previous ex-
amples) are taken from the common vocabulary described
above. The semantics of the language is defined based on
the formal model of the actions in the system, and therefore,
what is expressed in the language has a clear meaning about
the actions in the system and their relationships.

Step 4: Model Checking and Policy Enforcement.

Our final goal is to test whether the system complies with
the policies. Having a formal model of the actions in the
system and after formalizing the policy rules using the devel-
oped language, a model checking algorithm is used to check
whether the model satisfied the rules. The model checking
algorithm can also be used to enforce the policy at run-time
by blocking access if the model did not comply with it. For
example, if Alice’s consent requires that her blood test re-
sults cannot be read for the purpose of research, the model
checking algorithm can be run when a read access is re-
quested to her file and test whether the purpose-based rule
is satisfied.

1.2 Related Work

The conceptual link between purposes and actions has
been observed by a number of others in the literature and
can be considered supportive to our approach of defining
purpose using related actions.

van Sataden et. al. suggest that purpose names can be
taken from the verbs in a standard dictionary [26]. Similarly,
Powers et. al. mention that business purposes are a form of
high-level action and argue that in high-level privacy policies
instead of referring to low-level actions such as read or write,
high-level business purposes such as treatment or diagnosis
are used [23].

In the context of an object-oriented system, Yasuda et al.
associate purpose with the caller method [28]. For exam-
ple, if the housekeeping method of a person object calls the
withdraw method of a bank account object, the implication
is that money is withdrawn for the purpose of housekeeping.
This is consistent with our definition of purpose in its first
meaning that refers to a higher-level, more abstract action.

In their development of a formal semantics for privacy
policies, Breaux and Antén propose to model purpose as an
auxiliary related action [4]. For example, the policy that
data is collected for the purpose of marketing is taken to
mean the primary action of data collection is related to the
auxiliary action of marketing that happens later. This is
very similar to our notion of purpose as a future action.

HL7 Reference Information Model (“RIM”) specifications,
a data model used as the basis for designing many healthcare
systems, mentions the has reason relation between two ac-
tions for specifying that one is the reason for the other [11].
In this design, reason is similar to purpose of an action,
especially in its sense as as future action.

There are some proposals [9, 10, 6, 15] that suggest asso-
ciating purpose with the units of work in a system. They
argue that tasks or workflows, can be used to identify the
purpose of an action by looking at the higher-level unit of
work in which it takes place. The higher-level unit of work
is basically equivalent to our definition of more abstract ac-
tions, so this approach is consistent with the first type of
purpose as defined above. Our proposed model is more gen-
eral and can encompass these approaches as very simple spe-
cial cases. Moreover, our work extends earlier approaches by
considering both meanings of purpose as future event and
more abstract action. Also, it allows multiple purposes to
be present for a single action which is a feature that is not
considered in any other works on purpose-based models as
far as we are aware (see Section 6.6).

A different line of research on obligations in access control
systems is also concerned about actions and how they relate



to future actions (e.g. [12, 13]). The part of our model that
considers future actions has some similarities to this line of
work, but we are also concerned about other relationships
among actions which are not of interest in the study of obli-
gations. Also, even in the study of future actions we do
not follow a strict linear notion of time and our model al-
lows multiple future actions whose order is immaterial (see
Section 2).

As the formal language, we use modal logic to articulate
the relationships among actions. Temporal logic, which is a
special type of modal logic, has been used previously to for-
malize different relationships between actions; for example,
control flow [17] or obligations policies [12].

We introduce action graphs as an abstract model of dif-
ferent actions in the system and their order. Our model
of action graph is similar to control flow graph used to as-
sess programs in programming languages [1] and hierarchical
planning in the artificial intelligence literature [24].

2. MODELING PLANS: ACTION GRAPH

Based on the discussion in Section 1.1.1, we define a for-
malism for a plan that captures the actions and two types of
relationships among them. The action graph can be thought
of as an abstract model based of the business processes in
a system. We define an action graph as a directed graph
in which nodes correspond to actions (both high-level and
low-level) and edges denote the relationships among them.

There are two types of edges each corresponding to one
type of relationship mentioned in Section 1.1.1: prerequisite-
of and part-of. The prerequisite-of relationship signifies that
one action is performed as an antecedent for another action,
and the part-of relationship indicates that one action is per-
formed as part of a higher-level more abstract action. For
brevity, we will refer to the prerequisite-of and part-of rela-
tionships, respectively as the F- and A-relationships, short
for future and abstract.

An example of such a graph is shown in Figure 1 where
various purposes can be identified based on F- and A-edges.
For example, the purpose of opening the file (node g), is
to read its contents (node h), which is manifested by the
F-relationship between the two that says opening the file
is a prerequisite for reading its content. Moreover, both
opening and reading the file are for the purpose of loading
the patient’s information (node f). This means that opening
and reading the file are part of the realization of the load
patient’s file action. Similarly, loading the patient’s file is
in turn for the purpose of checking blood pressure history
(node e), and so on. Eventually, as the graph shows, all
of the actions in the graph are for the purpose of cancer
treatment (node a) as they are all part of the realization of
this action.

Note that an action can be assigned numerous purposes.
For example, the action of opening the file can at the same
time be associated with the purpose of reading the file, surgery
preparation, cancer treatment, etc.

2.1 Defining the Model

The action graph is a directed graph with two sets of
edges, each corresponding to one type of relationship as dis-
cussed above. It is defined as AG = (V, A, F') in which V is
the set of vertices each of which corresponds to an action,
and A and F' are subsets of V' x V, and respectively cor-
respond to A- and F-relationships. We will use the shorter

form wu' instead of the more common (u,u’) to denote pairs
throughout this paper. The action graph satisfies the fol-
lowing conditions:

(a) ANF =0,

(b) (V, A) is a tree with its root being the only sink vertex,
(c) wu' € F — Jv. {uv,u'v} C A, and

(d) (V,AUF) is a directed acyclic graph.

Intuitively, an action graph is a hierarchical workflow,
with nodes representing actions. Condition (a) says that
the A— and F- relations cannot co-occur between the same
pair of nodes. Condition (b) requires that an action can
only be part of a single higher-level action, and there exists
a single highest-level action. Condition (c) settles that the
prerequisite of an action should be part of the same higher-
level action. Finally, condition (d) forbids circularity in the
graph.

Based on the intuition that F— and A- relationships can-
not be circular, we assume that the action graph does not
have a cycle, and hence property (d). Real workflows and
business processes may however contain cycles which makes
it difficult to build an action graph based on them. We leave
solving this problem as a future work and assume the action
graphs is acyclic for the moment.

Theorem 1 extends property (c) to the reflexive transi-
tive closure of the F-relationship. The proof is given in Ap-
pendix A.

Theorem 1.
wu' € F* = Jv. {uv,u'v} C A where F* is the transitive
closure of F. |

In order to accommodate action attributes into the model,
we define the labeling function L. Suppose P is the set of
all atomic propositions defined by the vocabulary. These
propositions can refer to different facts about the actions,
such as their names, locations, etc. The labeling function
L : V — 2F maps each action to the set of all atomic propo-
sitions that hold true for that action, i.e. all of its attributes.
The simplest of such attributes is the name of the action; for
example the node representing the surgery action is mapped
to a surgery proposition which belongs to the vocabulary.
See Section 6.1 for a discussion of other attributes such as
authorized roles, location, etc. and how they can be used to
model more complex policies.

3. AMODAL LOGIC FOR FORMALIZING
PURPOSE-BASED POLICIES

Since purpose is captured in the form of A— and F-edges
in an action graph, defining purpose-based rules requires a
language capable of expressing constraints on these relation-
ships. For instance, if the purpose of marketing is forbidden
for action a, this is interpreted in the action graph as the
restriction that action a should not lead to marketing along
F- and A-edges in the graph; in other words, it must not
be a prerequisite, nor be a part of, a marketing action.

In this section, we define a modal logic with different
modal operators useful to capture such restrictions. There
are four basic modal operators and two derived forms. The



(a)

Cancer Treatment

1
(b)
Surgery
/ \

© | (d)

Surgery Preparation Operation

AN
©)

Check Blood

Pressure History

|

(f)
Load Patient File
() L _ . (h)
Open the File Read the File

Figure 1: An example of an action graph as defined
in Section 2. The F— and A—edges are shown with
dashed and solid arrows respectively. Actions are
labeled with letters for convenient later reference.

six modal operators are analogous to the conventional tem-
poral logic operators, i.e. <, O, and (), that are particular-
ized for F—- and A-relationships. We will first give the formal
definition of the syntax and semantics of the language, and
then, explain the meaning of the operators using some ex-
amples.

The syntax of the language is presented in Backus-Naur
Form as follows:

pu=TIpl=d|ond| (Ao | (FellAle|[Fl¢ (1)

where p is any atomic proposition.

The semantics of the language is defined by a satisfaction
relation (=) in the context of a certain vertex v in the action
graph AG = (V, F, A), and a labeling function L. We write
AG,L,v = ¢, or more simply v = ¢ where the context is
clear; we also write v [= ¢ when it is not the case that v = ¢.
The satisfaction relation |= is defined as follows:

e v = T always holds.

e v |=p holds iff p € L(v).

v = —¢ holds iff v [~ ¢.
v E ¢1 A ¢2 holds iff v = ¢1 and v = @a.

v = (A)¢ holds iff Jvv’ € A,v" | ¢.

v = (F)¢ holds iff v’ € F,v' = ¢.

v = (A)¢ holds iff Jvv’ € A", = ¢.
e v = (F)¢ holds iff v’ € F*,0v' = ¢.

A* and F™* are the reflexive transitive closures of respectively
A and F.

We also define the following derived forms to facilitate
expressing more complex formulas:

LY T

$1 Vs Y (g1 A —¢2)

¢1H¢2d;fﬁ(¢1/\ﬁ¢2)
(Al Z —(A)(—¢)
[Flp L ~(F)(~¢)

Based on the action graph of Figure 1, several examples
are presented to clarify the operators’ meanings. To keep the
examples simple, we assume that the set of atomic propo-
sitions is the same as the set of vertices and the labeling
function is an identity in that each vertex maps to its name.
In other words: P =V and Vv € V. L(v) = v.

F—Next and A—Next.

(F)¢ and (A)¢ mean that ¢ is true at least in one of
the immediately following nodes along the F— or A—edges
respectively. For example, in the graph of Figure 1, we have
¢ = (F)d, since d is a next node of ¢ according to the F—
relation (i.e. (¢,d) € F), and d = d. Similarly, we have
e = (A)(F)d, since c is a next node of e according to the A—
relation (i.e. (e,c) € A), and ¢ = (F)d as discussed above.

F-Diamond and A-Diamond.

(F)¢ and (A)¢ mean that in the paths of F—, or respec-
tively, A—edges beginning inclusively from the current node,
there exists at least one node for which ¢ is true. For exam-
ple, in the graph of Figure 1, we have g |= (F)(A)f because
along the path of F—edges beginning from g, there is a node,
namely h, satisfying (A)f. Similarly, e |= (A)(F)d, because
along the path of A-edges beginning inclusively from e, there
is a node, namely ¢, that satisfies (F)d.

F-Box and A—Box.

[Fl¢ and [A]¢ mean that along the paths of F—, or re-
spectively, A—edges beginning inclusively from the current
node, all of the nodes satisfy ¢. For example, in the graph
of Figure 1 we have g = [F](A)f, since along the only
path of F—edges beginning inclusively from g, all of the
nodes (i.e. g and h) satisfy (A)f. Similarly, we also have
g E [A](c — (F)d), because along the path of A—edges be-
ginning from g, the formula ¢ — (F)d is true for all nodes.
Note that since A—edges by definition form a directed tree
there is only one such path.

Theorem 2 is crucial in simplifying policy formulas (see
the proof in Appendix A).

Theorem 2.
Any formula of the form (x)...(*)¢ in which * can be either
of A or F is equivalent to:

o (A)¢ if it has the form (A)"¢,

o (F)¢ if it has the form (F)"¢,

o (F)(A)¢ if it has the form (F)"(A)™¢ (m,n € N),
e and (A)(F)¢ otherwise.

Similarly, [*]...[«]¢ in which * can be either of A or F, is
equivalent to:



[A]# if it has the form [A]" @,

[Fl¢ if it has the form [F]|"¢,

[F][A]¢ if it has the form [F]"[A]™¢ (m,n € N),
and [A][F]¢ otherwise.

4. PURPOSE-BASED POLICY

A purpose-based policy is a set of rules based on the pur-
poses of actions. A simple example of such rules is to forbid
reading a some piece of information for the purpose of mar-
keting. In this paper, we only consider purpose-based au-
thorization policies, i.e. those policies that allow or forbid
some actions in the system based on their purposes. More
complex types of policies that go beyond a yes-or-no decision
about an action are left as future work but briefly glanced
at in Section 6.3.

Based on our conceptual framework (Section 1.1.1), we
assume that a purpose-based policy can be expressed in the
form of a set of restrictions on an action graph. For in-
stance, the simple policy that a file should not be read for
the purpose of marketing, can be interpreted as a restriction
that the action of reading the file should neither be part of
marketing action, nor be a prerequisite for a future market-
ing action. The modal logic defined in Section 3 provides a
language to express such restrictions, so, we can define the
purpose-based policy by assigning formulas of that language
to actions. A purpose-based policy will be a set of such rules.

On this basis, we define the purpose-based policy POLICY
as a set of formulas of the form a; — ¢; in which a;’s are
action names (i.e. atomic propositions belonging to the vo-
cabulary), and ¢;’s are formulas belonging to the modal logic
language defined in Section 3. Each such rule states that the
purpose-based formula ¢; should hold when action a; is to
be performed. If this is not the case, the action graph in
question (and hence the corresponding business process) is
deemed as non-compliant, or a reference monitor blocks the
action.

An action graph AG = (V, A, F) satisfies a policy if all
the rules of the policy hold in all of its nodes:

Yv € V.Vr € POLICY w = r

4.1 Types of Policy Rules

This section describes several types of rules in purpose-
based policies that can be expressed using the developed
language. The current purpose-based policies found in the
literature fall into the first three types discussed here. The
rest are new types that are a contribution of this paper.

4.1.1 Required Purposes

One type of rule is to require that some action be for some
particular purpose; for example, “action a must be for the
purpose of treatment”. To formulate this, one should es-
sentially say that the treatment purpose should be visited
at some point by traversing along F— or A—edges. Accord-
ing to Theorem 2 any formula of such a form can be re-
duced to either (A)(F)treatment, or one of: (A)treatment,
(F)treatment, or (F)(A)treatment. Since the latter three
cases all imply the former, the disjunction of the four is

equivalent to the former, and hence, the rule can be written
in the following form:

POLICY 3 (a — (A)(F)treatment)

Since in our model, it is possible that an action be associated
multiple purposes (see Section 6.6), a rule can require more
than one purpose. For example, an action may be required
to be both for the purpose of order-processing and delivery.
Using the logical conjunction, this can be formulated as:

((A){F)order-processing) A ({A){F)delivery)

4.1.2 Forbidden Purposes

There are cases where a purpose must be forbidden for an
action; for example, “action a should not be for the purpose
of marketing”. This is actually the negation of the type
discussed in Section 4.1.1 and can be formulated as:

POLICY > a — (—(A)(F)marketing)
or equivalently, as:

POLICY > a — ([A][F]-marketing)

4.1.3 Compound Forbidden and Required Purposes

A rule may arbitrarily forbid or allow purposes. For ex-
ample, a rule may forbid performing action a for the purpose
of marketing unless the treatment purpose is also involved.
In other words, it should either be that the marketing pur-
pose is not involved, or both marketing and treatment are
present. Using the types of rules already discussed in Sec-
tions 4.1.1 and 4.1.2, we can write this as:

POLICY 3 a — ({A){F)marketing — (A)({F)treatment)

4.1.4 Order-Based Rules

There are cases where the order of purposes matters; for
example, suppose that an insurance company covers the
costs of the activities performed for the purpose of surgery,
but it also wants to make sure that the surgery is in turn for
the purpose of treatment, and not for other purposes such
as cosmetics, or birth control. In such cases, not only the
presence of certain purposes, but also their order is impor-
tant. The above rule, for instance, requires that the surgery
purpose appear and also be in sequence with the treatment
purpose. The first part (existence of the surgery purpose)
is a simple rule of the type discussed in Section 4.1.1. The
latter part dealing with the order is a new type with which
we are concerned here.

As shown in Section 4.1.1, the requirement that the treat-
ment purpose should appear is formulated as (A)(F)treatment
and this should hold for the surgery node, hence:

¢ = (surgery — (A)(F)treatment)

Now, we want to say that ¢ should hold at all of the nodes
accessible from the current node, that is the right-hand side
of the implication must hold for any surgery node visitable
by traversing along the A— and F—edges. This can be stated
using a formula of the form discussed in Theorem 2, which
is eventually reduced to the following simple form according
to that theorem:

POLICY 3> a — ([A][F] (surgery — (A)(F)treatment))



Figure 2: Four cases for a treatment (t) purpose at
the distance of two.

Note that a simpler rule that requires both surgery and treat-
ment purposes does not necessarily describe the same re-
quirement. Imagine a scenario where someone wants to per-
form a cosmetic surgery but has a blood pressure problem
that makes such a surgery dangerous and therefore needs to
go through a treatment process to cure that problem first.
In such a case, both treatment and surgery purposes are in-
volved, but the order is contrary to what is desired, that is,
the treatment is for the purpose of surgery.

It is possible to simplify order-based rules by assigning
them to a different node in the action graph. For instance,
the above rule can be simplified by finding all the surgery
nodes (accessible from a) and requiring them to be for the
purpose of treatment by a simpler rule of the type discussed
in Section 4.1.1:

POLICY > surgery — ((A){F)treatment)

This can help an organization to simplify such rules by
converting them into a simpler form and assigning them to
different nodes of the action graph.

4.1.5 Distance-Based Rules

Another possible type of rules limits the distance between
the purpose and the action in order to forbid access even for
valid purposes, when they are very indirect and rendered
irrelevant due to the degree of indirectness. For example,
a rule may allow access for treatment purpose only within
a distance of 3, or in other words, when the treatment pur-
pose is involved but there are at most two other intervening
purposes.

Distance-based policies are a bit more complex to formu-
late. First, we consider exact (rather than maximum) dis-
tances. For example, a distance of 2 for treatment can be
formulated with the following which captures different cases
of a distance of 2. These cases are shown in Figure 2.

(A)*treatment V (F)*treatment
V(F)(A)treatment V (A)(F)treatment

Higher distances can be formulated similarly, with longer
formulas. A maximum distance rule then, can be formulated
by the disjunction of all distances lower than the maximum;
for example, 3, or 2, or 1, for the maximum distance of 3.
The following notation [3] can facilitate formalizing distance-
based rules. Note that * is used to represent either of F or

A:
W= \/ '

0<i<d

l research }* - *>[ treatment l l treatment }* - *>{ research

read file read file

Figure 3: An example showing how the difference
between purpose as prerequisite-of and purpose as
part-of can affect the policy.

4.1.6 Other Miscellaneous Rules

In all rule types discussed so far, we have treated A— and
F-relationships similarly and did not distinguish between
purposes resulting from these two relationships. However,
there are cases where the rule is based on such a distinction.
As an example, consider the following two scenarios:

e A patient’s data is used in some research project, and
the results of the research will eventually be used to
improve the treatment of some disease.

e The patient’s data is used in the course of treatment,
but the results of the treatment will later be used for
research purposes.

In both cases the data is used for the purpose of research
and treatment, but the difference between purpose as part-of
and purpose as prerequisite-of distinguishes them. Figure 3
shows these two scenarios. Thus, the patients can be more
precise in their consent to allow the data be used only as
part of a treatment process and not as part of some research
that will subsequently be used in treatment. Such a rule can
be formulated as:

(A)treatment

Figure 3 illustrates how this rule allows the first case, but de-
nies the latter. Note that a simpler rule of the type discussed
in Section 4.1.1 that require treatment purpose, would be
satisfied by both cases, contrary to what is desired.

As another example, consider a case where a customer
is giving contact information to a company and does not
like this information to be used for marketing purposes with
the exception of receiving free promotion product samples.
Thus, the rule is that access is not allowed for marketing un-
less there is also a delivery purpose involved as part of the
marketing. Note that a delivery that leads to marketing,
that is, done as a prerequisite for a marketing action in fu-
ture, is not allowed because it may, for example, correspond
to the case where an item is delivered and the address is kept
for later use when sending marketing mails, which is unac-
ceptable to the customer. Such a case can be formulated
as:

(A)(F)marketing —
((A)(F)delivery A [A][F] (delivery — (A)marketing))
This rule says that if the marketing purpose is present, the

delivery purpose must also be present and it must be part
of a marketing purpose.

S. MODEL CHECKING

Model checking is the problem of deciding whether or not
a node in a given action graph satisfies a formula. The in-
put to the algorithm is the formula ¢, an action graph AG,



QPe000e

Figure 4: The abstract syntax tree of the formula
[A][F](b — (A){(F)a) and the ordered set of its subfor-
mulas based on its post-order traversal.

a certain node v, and the labeling function L; the output
is a yes-or-no answer that indicates whether AG,L,v = ¢
holds. In other words, model checking is the process of test-
ing whether a plan adheres to a policy rule.

Figure 5 outlines a model checking algorithm. This algo-
rithm is based on the standard model checking algorithm for
CTL [7] and the model checking algorithm for history-based
access control policies [18], so we only give a brief discussion
here.

The main idea of the algorithm is that evaluating a for-
mula at a certain node can be performed recursively by (a)
evaluating its subformulas on that node, and (b) evaluating
it on the current and immediately proceeding nodes along
the F—and A—edges in the action graph. For example, check-
ing (A)¢ can be performed recursively by checking whether
¢ holds in the current node, and (A)¢ holds in any of the
immediately next nodes along A-edges.

Using dynamic programming, the result of this recursive
algorithm can be built bottom-up. For this purpose, a mech-
anism is needed for ordering both subformulas and the nodes
of the action graph so that the two-dimensional array of the
dynamic programming can be formed. For ordering the sub-
formulas, we use the post-order traversal of the abstract syn-
tax tree of the formula. Figure 4 shows an example of such
a tree. This guarantees that the subformulas of a complex
formula are evaluated first and allows evaluating a formula
in a bottom-up manner, beginning from the atomic proposi-
tions. The algorithm for post-order traversal is straightfor-
ward. For ordering the nodes of the action graph, we rely on
a topological sort based on A— and then F—edges, beginning
from the sink. As an example, the order of nodes for the
action graph of Figure 1 is: a, b, d, ¢, e, f, h, and g.

The algorithm fills a two-dimensional array, like the one
of Figure 6, in which each cell indicates whether or not
the corresponding sub-formula holds true at the correspond-
ing node. It begins by evaluating the first sub-formula (an
atomic proposition) on the first node of the action graph (the
sink node) and continues to fill the array using the following
rules:

e Evaluation of an atomic proposition on a node n is
simply checking whether it is a member of L(n).

[o I B S

I I T S Gy ey g
AWM~ O©O®NO®N A ®NEEOO®

25
26
27
28
29
30
31
32
33
34
35
36
37
38

Input: AG=(V,A,F), L, ¢
Output: Res: evaluation of ¢ on every node in AG.

Subformulas= post-order traversal of ¢’s abstract syntax tree
Nodes = Topological sort of AG.V
Res //stores the results
foreach (n in Nodes)
foreach (f in Subformulas)
if (f.isAtomic())
Res[f,n]=(f € L(n))
else if (f.operator== -)
Res[f,n]=—(Res[f.operand,n])
else if (f.operator== A)
Res[f,n]=Res[f.operandl,n] A Res[f.operand2,n]
else if (f.operator== (A))
Res[f,n]=false
foreach (a so that (n,a) € AG.A)
if (Res[f.operand,al==true)
Res[f,n]=true
else if (f.operator== (F))
Res[f,n]=false
foreach (a so that (n,a) € AG.F)
if (Res[f.operand,al==true)
Res[f,n]=true
else if (f.operator== (A))
Res[f,n]=false
if (Res[f.operand,n]==true)
Res[f,n]=true
else
foreach (a so that (n,a) € AG.A)
if (Res[f,al==true)
Res[f,n]=true
else if (f.operator== (F))
Res[f,n]=false
if (Res[f.operand,n]==true)
Res[f,n]=true
else
foreach (a so that (n,a) € AG.F)
if (Res[f,al==true)
Res[f,n]=true
return Res

Figure 5: The pseudo-code of the model checking
algorithm.

e Evaluation of logical operators are done based to the
rules of logic. Note that because of the post-order
traversal, the operand subformulas are already evalu-
ated.

e Formulas of the form (A)¢ and (F)¢ are evaluated
by checking whether ¢ is evaluated as true at least
in one of the nodes immediately following the current
node along the A— and F—edges respectively. Note that
because of the topological sort, proceeding nodes are
already evaluated and the results already exist in the
table.

e Formulas of the form (A)¢ and (F)¢ are evaluated to
true if they are true for one of the immediately pro-
ceeding nodes along the A— and F—edges respectively,
or if ¢ has been evaluated to true for the current node.

e Formulas of the form [A]¢ and [F]¢ are evaluated to
true if they are true in all immediately proceeding
nodes, respectively along the A— and F—edges, and also
¢ has been evaluated to true at the current node.

Figure 6 shows the dynamic programming array evaluated
for the formula of Figure 4 on the action graph of Figure 1.
We have assumed a simple labeling function that maps nodes
to their names as a proposition. Note that this algorithm



a|lbld|c|le|f|h]|g
Q| a 11/0[{0|0|0|0|0]O
e | (Fo 11/0{0|0|0|0O|O0]O
| (A8 tlrj11f1]1]1]1
(4 I o(1|j]o0fjojo0ofj0|0]O0
0| 66 1|11 {1|1j1f{11]1
e | [rle tl1f1 11111
0| A6 tlrfaff]f1]1

Figure 6: The dynamic-programming array for eval-
uating the formula of Figure 4 on the action graph
of Figure 1.

will end up evaluating the formula for all nodes in the action
graph; it can be changed to halt as soon as it evaluates the
formula on the particular node of interest. It is also note-
worthy that for evaluating multiple formulas it will be more
efficient to extract all the subformulas and then evaluate all
formulas in a single pass.

The correctness of the algorithm can be checked by notic-
ing that the recursive part of the dynamic programming cal-
culation matches the definition of the operators. The com-
plexity of the algorithm is O(|¢|(e + n)) in which |¢] is the
size of the formula (i.e. the total number of atomic proposi-
tions and operators), e is the number of edges in the action
graph, and n is the number of its nodes. Note that based on
the loops of line 4 and 5 of Figure 5, all subformulas (with
a total number of |¢|) are evaluated at each node. The eval-
uation in the worst case needs examining that node and all
of its outgoing edges. If d; shows the out-degree of the ith
node, the complexity is O(|¢|((1+d1)+...+ (14dx))) which
in turn yields O(|¢|(e + n)).

6. DISCUSSION

Several additional aspects of this work should be consid-
ered:

6.1 Modeling More Complex Policies

The labeling function L maps actions to the set of propo-
sitions that hold true for that node (see Section 3). So far,
we have only used very simple labeling functions that map
each node to its name as a proposition. However, the la-
beling function can model other attributes of actions, such
as the authorized roles, input data types, time and loca-
tion constraints, etc. This enables defining more complex
policies, particularly those that combine purpose constraints
with other types of constraints, e.g. role-based, or time- and
location-based. For example, a policy that settles any ac-
tion for the purpose of research must be limited to business
hours can be formulated as the following, assuming that biz-
hours is a proposition that holds true for actions that are
restricted to business hours:

[A][F]({(A)(F)treatment — biz-hours)

Another interesting example is the case of an action’s lo-
cation which can be important in privacy policies. Suppose
that third-party is a proposition that is true for actions per-
formed by collaborator organization, and false for actions
that are performed within the organization. Using such a
scheme, an inter-organizational workflow can be modeled as
a single unified action graph in which the location of actions
is captured using this third-party attribute. A policy rule

such as “reading for the purpose of research is not allowed
by third parties” can then be modeled as:

[A][F](reading A {A)(F)research — — third-party)

Note that these formulas do not consider the semantics
of the biz-hours or third-party propositions; but, given that
the evaluation of this proposition is otherwise taken care of,
they regulate the relationships between purpose-based rules
and other types of constraints in a system. We leave further
exploration of this extension as a future work.

6.2 Setting Distance-Based Policies

Since the granularity of an action graph depends on how
the system is designed, distance-based policies (recall Sec-
tion 4.1.5) are very system-dependent. For example, a max-
imum distance of three may be very far in one system and
very close in another, based on the granularity of the ac-
tion graph. Therefore, the policy maker should be aware
of the internal structure of the system to build meaningful
distance-based policies. This can be true in case of orga-
nizational policies where the policy maker is aware of the
details of the organization and the systems in use, but in
cases such as the ethics consent in healthcare, the policy
maker is an outsider to the organization and such policies
cannot be meaningfully settled.

Distance can also be defined between two purposes and
make the ground for a new type of policy. For example, one
scenario may require that the surgery purpose be within 3
steps of the treatment purpose. We did not discuss such
policies here, as we could not imagine a pragmatic case for
them.

6.3 Purpose-Based Obligations

Obligations are commitments that should be incurred af-
ter an agent performs an action [12]. Currently our model
only considers allowing or blocking an action based on the
purpose-based policy. A further step would be to enable
assigning obligations to agents as a result of performing
an action. For example, the billing system in a hospital
may charge a patient’s or insurer’s account with different
amounts, depending whether the surgery is for the purpose
of treatment or cosmetics. Or, different fees may be charged
when a movie is played for the purpose of entertainment
or education. We did not discuss purpose-based obligations
in this paper but believe it is an interesting topic of future
work.

6.4 Obligations and the F-Relationship

Suppose action a is related to ar by an F- relationship.
At run-time, if the reference monitor allows an agent to per-
form a based on a purpose-based policy that relies on the
performance of ar, it can be said that it is under the con-
dition that the action ar is performed in future. In fact,
if ar is not performed the policy would be violated. This
matches the classic notion of obligation and the reference
monitor can issue an obligation in such cases.

This observation points out the relationship between obli-
gation policies and purpose-based policies which is another
interesting topic for future work.

6.5 Use of First-Order Predicate Logic

The logic we have built for formalizing purposes is a modal
logic over a propositional logic. However, using proposi-



tional logic has a scalability problem. For example, if there
are one million health records in a system, atomic proposi-
tions should be used to express the policy regarding each of
them which will make the system very complex. In other
words, lack of quantifiers and predicates may lead to scal-
ability issues in formalizing policies. On the other hand,
first-order predicate will make the verification of policies un-
decidable in the general case. One direction of future work
could be to extend the logic to first-order logic and then
study the conditions under which an efficient algorithm for
policy evaluation can be developed.

6.6 Multiple and Nested Purposes

The current literature generally assumes that a single pur-
pose is associated with an action. In practice, however, a
single action may have multiple purposes that are indepen-
dent or tangentially related. For example, the purpose of
reading a book may be both to enjoy the literature and to
prepare for an exam. In turn, the purpose of preparing for
the exam may be to pass the course and subsequently to
get a degree. One can observe that a single action may be
associated with a chain of multiple nested purposes and/or
multiple independent purposes. Capturing this broader as-
pect of purposes is one contribution of our model.

6.7 Simplified Version of the Logic

If we simplify the logic to only contain the A—relationships,
the action graph will be reduced to a directed tree. In such a
tree, the purposes of an action can be captured as a chain of
nested purposes and a simplified version of our logic, resem-
bling a simple temporal logic, would be adequate to express
the restrictions on such a chain. This simpler case of the
model allows the chain of nested purposes to be associated
with the stack context in a programming language, or a
workflow as it shows the hierarchy of nested actions each of
which is being performed as part of the other. Therefore,
a reference monitor can be implemented very straightfor-
wardly by watching the stack. This result has not appeared
in the literature yet but is available through our tech report
series [14].

6.8 Other Types of Relationships

In our current model of action graph, we only consider
two types of relationships between actions. These two have
obviously an implication of purpose as we discussed in Sec-
tion 1.1.1. Other types of relationships such as temporal
precedence or causality exist between actions and they may
also be captured in an extended model of the action graph.
Deciding whether or not to include other types of relation-
ships in the action graph and how they may or may not
imply a purpose is a topic of future work.

7. CONCLUSION

We developed a framework for expressing and enforcing
purpose-based privacy policies. We defined the semantics of
an action’s purpose in terms of its situation among other
related actions. A modal logic was developed to enable ex-
pressing restrictions about the relationships among actions;
thereby expressing purpose-based policies. Finally, a model
checking algorithm was described to check the compliance of
a system with such policies. We also showed how our frame-
work is capable of formalizing common purpose-based pol-
icy rules and also introduced some new types of such rules.

The main future work is to evaluate the model by studying
a practical case of formalizing and enforcing purpose-based
policies in a business system.

8. REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools, 2nd
Edition. Addison-Wesley, 2006.

[2] C. A. Ardagna, S. De Capitani di Vimercati, and
P. Samarati. Enhancing user privacy through data
handling policies. In Data and Applications Security,
pages 224-236, Sophia Antipolis, France, 2006.

[3] C. Baier and J.-P. Katoen. Principles of Model
Checking. MIT Press, 2008.

[4] T. D. Breaux and A. I. Antén. Deriving semantic
models from privacy policies. In IEEE POLICY’05,
pages 6776, Stockholm, Sweden.

[5] J.-W. Byun, E. Bertino, and N. Li. Purpose based
access control of complex data for privacy protection.
In SACMAT ’05: Proceedings of the tenth ACM
symposium on Access control models and technologies,
pages 102-110, New York, NY, USA, 2005. ACM.

[6] W. Cheung and Y. Gil. Towards privacy aware data
analysis workflows for e-science. In Proceedings of the
2007 Workshop on Semantic e-Science (SeS2007),
Vancouver, Canada, pages 17-25, July 2007.

[7] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching-time
temporal logic. In Logic of Programs, Workshop, pages
52-71, London, UK, 1982. Springer-Verlag.

[8] L. L. Dimitropoulos. Privacy and Security Solutions
for Interoperable Health Information Exchange. http:
//healthit.ahrq.gov/portal/server.pt/gateway/
PTARGS_0_241358_0_0_18/IAVR_ExecSumm.pdf, 2006.

[9] S. Fischer-Hiibner. IT-Security and Privacy: Design
and Use of Privacy-Enhancing Security Mechanisms.
Springer, Berlin, Germany, 2001.

[10] Q. He. Privacy enforcement with an extended
role-based access control model. Technical Report
TR-2003-09, North Carolina State University, 2003.

[11] Health Level Seven Inc. HL7 Reference Information
Model, ANSI/HL7 V3 RIM, R1-2003, 2003.

[12] M. Hilty, D. Basin, and A. Pretschner. On obligations.
In ESORICS 2005: Proceedings of the 10th European
Symposium On Research in Computer Security.

[13] K. Irwin, T. Yu, and W. H. Winsborough. On the
modeling and analysis of obligations. In C'CS "06:
Proceedings of the 13th ACM conference on Computer
and communications security, pages 134—143,
Alexandria, Virginia, USA, 2006.

[14] M. Jafari. Nested purposes. Technical report,
(unpublished), December 2009.

[15] M. Jafari, R. Safavi-Naini, and N. P. Sheppard.
Enforcing purpose of use via workflows. In WPES ’09:
Proceedings of the 8th ACM workshop on Privacy in
the electronic society, pages 113-116, 2009.

[16] M. Jawad, P. S. Alvaredo, and P. Valduriez. Design of
PriServ, a privacy service for DHTs. In International
Workshop on Privacy and Anonymity in the
Information Society, pages 21-26, Nantes, France,
2008.



[17] T. Jensen, D. Le Metayer, and T. Thorn. Verification
of control flow based security properties. pages 89
—103, Oakland, CA, USA, May 1999.

[18] K. Krukow, M. Nielsen, and V. Sassone. A logical
framework for history-based access control and
reputation systems. J. Comput. Secur., 16(1):63-101,
2008.

[19] Q. Ni, E. Bertino, J. Lobo, and S. B. Calo.
Privacy-aware role-based access control. IEEE
Security and Privacy, 7(4):35-43, 2009.

[20] Organisation for the Advancement of Structured
Information Standards. Privacy policy profile of
XACML v2.0.
http://docs.oasis-open.org/xacml/2.0/access_
control-xacml-2.0-privacy_profile-spec-os.pdf,
2005.

[21] Organisation for the Advancement of Structured
Information Standards. Cross-Enterprise Security and
Privacy Authorization (XSPA) Profile of Security
Assertion Markup Language (SAML) for Healthcare
Version 1.0, 2009.

[22] I. H. T. S. D. Organization. SNOMED CT,
Systematized Nomenclature of Medicine-Clinical
Terms. http://wuw.ihtsdo.org/snomed-ct/.

[23] C. S. Powers, P. Ashley, and M. Schunter. Privacy
promises, access control, and privacy management. In
ISEC °02: Proceedings of the Third International
Symposium on Electronic Commerce, pages 13-21,
Research Triangle Park, North Carolina, US, 2002.
IEEE Computer Society.

[24] S. J. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach (8rd Edition). Prentice Hall, 2009.

[25] M. Schunter and C. Powers. The Enterprise Privacy
Authorization Language (EPAL 1.1).
http://www.zurich.ibm.com/security/
enterprise-privacy/epal, 2003.

[26] W. van Staden and M. S. Olivier. Purpose
organisation. In ISSA2005: Proceedings of the Fifth
Annual Information Security South Africa Conference,
Sandton, South Africa, 2005.

[27] World-Wide Web Consortium. The Platform for
Privacy Preferences 1.1 (P3P1.1) Specification, 2006.

[28] M. Yasuda, T. Tachikawa, and M. Takizawa. A
purpose-oriented access control model. In Proceedings
of Twelfth International Conference on Information
Networking, pages 168-173, Jan. 1998.

APPENDIX
A. PROOFS

THEOREM 1. wu' € F* = Jv {uv,u'v} C A where F* is

the transitive closure of F'.

PROOF. uu’ € F* implies either uu’ € F, in which case
Fv {uv,u'v} C A holds based on the property (c), or there
exist ui, ..., Un, so that:

uur € FAuius € FA...ANupu € F

Applying property (c) for each of the terms yields
Fv1 {wvi,uiv1} C A, Fua {urve, usv2} C A, and so on.

1

Figure 7: Proof of Lemma 1.

And since according to the property (b) (V, A) is a tree,
ui1v1 € A A uive implies v1 = vy. Similarly it follows that
all v;’s are the same and hence Q.E.D. [

LEMMA 1. The following is a valid formula:

(FHAD = (FroV (A)¢

PROOF. Assuming that v satisfies the left-hand side, and
based on the definition of (F), it follows that Jv’ € V.vv' €
F* A" | (A)¢. Extending the definition of (A), it follows
that:

F’ E V' e V' € F* Av'v" € A* Av” ): 0]

If v =" it follows that 30’ € V.iuv' € F* Av' = ¢ which
in turn leads to: v = ( ).

Now suppose that v" # v”’. The fact that vo’ € F* implies
that Ju.{vu,v'u} C A according the Theorem 1. On the
other hand, v'v"" € A* implies one of the following cases
when v' #v”: (A1) v'v" € A
(A.2) F'v'u € AN u' e A*.

In case (A.1), v'v" € A and since we already had v'u €
A it follows that u = v"” as (V, A) is a tree. Then, since
v | ¢, it follows that u = ¢, and as vu € A, it follows that
v |= (A)¢ which implies the right-hand side.

Now consider Figure 7 for case (A.2). since we have al-
ready proved that v'u € A, the fact that v'u’ € A implies
u=1u"as (V, A) is a tree, which leads to the conclusion that
v € A*, since we already proved that vu € A above, and
have u'v" € A* from the assumption of case (A.2). And as
v" & ¢, we have v = (A)¢ which implies the right-hand
side.

Proving the converse is easy since it straightforwardly fol-
lows from the semantic definitions that each of the terms in
the right-hand side imply the left-hand side. [

LEMMA 2. The box and diamond operators are idempo-
tent, i.e. the following are valid formulas for all n € N:

(F)'¢ = (F)o
(A)'¢ = (Ao
[FI"¢ < [Fl¢
[A"¢ < [Al¢

ProOOF. For the diamond operators, we only prove the
case for (A) as the proof for (F) is straightforwardly similar.
Also, we only need to prove the case {(A)(A)¢p < (A)¢p and
the general case for n follows inductively.

According to the definition of (A), v = (A)({A)¢ implies
Fo' € V' € A* A" € vv'v” € A" Av" = ¢. But then, it
follows by transitivity that vv” € A*. Therefore, v = (A)¢.



Now, suppose v = {(A)¢. Then, I’ € Avv' € A* A € ¢.
Note that vv € A*. Thus, v = (A)(A)¢.

For the box operators, we can prove that [F]?¢ =
follows, using the first part of the theorem:

[FI[F]¢ = ==[FI[Fl¢ < ~(F)[Flp < ~«(FNF)~¢
~(F)=¢ < [Flo.

[Flo as

a

THEOREM 2. Any formula of the form (x)...(x)¢ in which
* can be either of A or F is equivalent to:

o (A)¢ if it has the form (A)"¢,

o (F)¢ if it has the form (F)"¢,

o (F)(A)o if it has the form (F)"(A)"¢ (m,n € N),
e and (AY(F)¢p otherwise.

Similarly, [*]...[¥]¢ in which x can be either of A or F, is
equivalent to:

o [A]¢ if it has the form [A]"¢,

o [Fl¢ if it has the form [F]|"¢,

o [Fl[A]¢ if it has the form [F]"[A]"¢ (m,n € N),
o and [A][Fl¢ otherwise.

PrOOF. We begin by the first part about diamond oper-
ators. Applying Lemma 2 to remove all consecutive repeti-
tions of (A) and (F) will reduce the formula either to one
of the trivial cases, or to one of the following forms (n > 2):

(A DA F)" o

where ¢' = (F)({A(F))""2¢. Applying the Lemma 1
we will have (A)((F)¢' V (A)¢’) and since diamond oper-
ators can be distributed over disjunctions, it follows that
(AY(F)o' v (A)(A)¢" and then (A)(F)¢’ Vv (A)¢'. But this
yields to (A)(F)¢’ since (A)¢p' — (A)(F)¢'. Replacing ¢’

and applying Lemma 2 we will have:
(AN FNFY(ANF)" ¢ = (ANF)(ANF))" ¢
= ((AF)" 1o

This will recursively lead to (A){F)

Case (A.2): Applying case (A.1) we will get (A)(F)(A)¢p
and then by applying Lemma 1:

(A ((F)oV (A)g) — (A)(F)o Vv (A)(A)¢
<= (A(Fro Vv (A)¢

And since (A)p — (A)(F)¢, if will follow that (A)( )

Case (A.3): Rewriting the formula as (F)({A)(F))" " (A)¢

)

and applying the result of case (A.1) we will get to (F)(A
And then using Lemma 1:

V
V
V
And since (F)¢p — (A)(F)¢ and (A)yp — (A)(F)¢ the
formula can be simplified to (A){F)a.

Case (A.4): Using the result of case (A.3), it follows that
(F)(AY(F)¢ and then (F)(F)pV (A)(F)¢, and again, since
(Fyp — (A)(F)¢ this is equivalent to (A)(F)e.

The second part, for box operators can be proved straight-
forwardly by applying the result of the first part:

[ [4]¢ = ==[x]..[f]¢ = =(x)... ()0
= ~(ANF)~¢ — [A][Flo



