
The Specification and Compilation of
Obligation Policies for Program Monitoring

Cheng Xu Philip W. L. Fong
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

{ cxu, pwlfong }@ucalgary.ca

ABSTRACT
An extensible software system must protect its resources
from being abused by untrusted software extensions. The
access control policies of extensible software systems are tra-
ditionally enforced by some form of reference monitors. Re-
cent study of access control policies advocates the use of
obligation policies, which impose behavioural constraints to
the future actions of the accessor after the access is granted.
It is argued that obligation policies provide continuous pro-
tection to the system.
Not all obligation policies can be enforced by reference

monitors. We argue that humans have long recognized the
unenforceability of naively formulated obligation policies,
and have devised standard policy idioms to cope with the
issue. We therefore developed tool support to assist a policy
developer in using such policy idioms. First, we designed a
policy language to capture the idiomatic elements of obliga-
tion policies, in such a way that the elements are modular
and composeable. Second, we designed a type system for
capturing patterns of policy composition that preserve en-
forceability, such that well-typed policies are enforceable.
Third, we designed a compilation algorithm that compiles
well-typed policies into reference monitors. Such a frame-
work helps policy developers articulate obligation policies
and refine them into enforceable ones.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls; F.4.1
[Mathematical Logic]: Temporal Logic

General Terms
Security, Language, Theory

Keywords
Enforceability, guarantee property, obligation policy, policy
compilation, policy language, reference monitor, safety prop-
erty, type system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’12,May 2–4, 2012, Seoul, Korea.
Copyright 2012 ACM 978-1-4503-0564-8/11/03 ...$10.00.

1. INTRODUCTION
Complex software systems are usually structured as an

extensible system, which is composed of a core system
and a set of third-party extensions. The extensions aug-
ment the functionality of the core system. For example, a
mobile phone platform, such as Android, can be extended
by installing mobile applications; word processors, like Mi-
crosoft WordTM, support macro programming; and Internet
web browsers, like Firefox, can be extended with plugins and
applets. A threat to extensible systems is the lack of assur-
ance about the extensions’ behaviour. A malicious extension
can compromise the core system because the two share the
same set of resources.

One way to address the security challenge above is to de-
ploy a reference monitor [4] to ensure that the behaviour
of the extensions comply with pre-defined security policies.
A reference monitor intercepts actions of the extensions and
takes remedial measures on actions that may cause dam-
age to the integrity of the system (e.g., by suppressing the
offending actions, or terminating the offending extensions).
A modern implementation of this enforcement mechanism
is Inlined Reference Monitor (IRM) [13], in which, the
target program (extension) is modified, through a trusted
program rewriter, to include the functionality of a reference
monitor.

Previous work [20, 12] noted that some security proper-
ties that need to be imposed on untrusted programs are
obligation policies [8, 23]. While a traditional access con-
trol policy either grants or denies access, an obligation pol-
icy grants access “with strings attached”: access is granted
with the condition that future actions of the accessor con-
form to some behavioural constraints. For example, consider
the Log-After-Access-Denial policy presented in [12]: when
a user attempts to access a document for which he lacks
the required credentials, every subsequent attempt to access
documents by that user must be logged.

Unfortunately, not all obligation policies are enforceable
by a reference monitor. Schneider [37] showed that enforce-
able properties must be safety properties. Yet, Dougherty
et al. [12] pointed out that obligation policies relevant to
software security are safety and guarantee properties as well
as their boolean combinations [10].

Devising strategies to cope with unenforceability has been
an important theme of obligation policy research. Irwin et
al. [23, 34] proposed an alternative security goal — account-
ability. Assuming that other subjects behave properly (in a
technical sense), if a subject has enough permissions to carry
out the obligations imposed on her, then she is accountable

for the unfulfillment of the obligation. That is, although the
obligation policy cannot be enforced, at least one can reason-
ably hold a subject accountable for failure. Dougherty et al.
[12] attempted to approximate an unenforceable obligation
policies by a safety properties (for detecting failure) and a
guarantee property (for detecting fulfillment). Nevertheless,
some execution traces may still be left as unclassified by this
approximation.
We argue that humans have long noticed the unenforce-

ability of naively formulated obligation policies, and have de-
vised standard policy idioms to cope with the issue. Specif-
ically, notions such as deadlines, rewards and penalties are
created to turn an otherwise unenforceable policy into an
enforceable one. For example, the obligation policy “return
book eventually”may not be enforceable, but its variant, “re-
turn book in 3 weeks, or else a penalty of $1 per day will be
imposed”, is a perfectly enforceable policy. For us, the re-
search opportunity is therefore to assist policy developers
in adopting such standard policy idioms, and ensuring the
usage of the idioms results in obligation policies that are
enforceable.
The contribution of this work is the design of tool support

for helping policy developers to compose enforceable obliga-
tion policies out of idiomatic policy elements. We envision
the workflow of an obligation policy developer to involve
three stages: specification, implementability check, and im-
plementation (Fig. 1). Our specific contributions can be
classified according to the stages.

1. The specification stage involves the translation of an
informal obligation policy (in natural language) to a
formal one. In Sec. 3, we propose a policy language
for specifying obligation policies. Inspired by [20], our
language is a temporal logic, and thus has a formal
semantics. What distinguishes our policy language is
that the language captures standard idioms of obliga-
tion policies (e.g., time window, reward/penalty) in a
modular and composeable manner (as opposed to a
monolithic syntax).

2. The policy developer then performs an implementa-
bility check, to determine if the obligation policy can
be enforced by a reference monitor. The result of the
implementability check will be fed back to the policy
developer, who can either go back to the specification
stage, or move forward to the implementation stage.
Sec. 4 presents a type system for determining if an obli-
gation policy written in our policy language is either
a safety or guarantee property [10]. The type system
captures patterns of policy composition that preserve
enforceability. We demonstrate through a case study
that the type system can provide feedback to the policy
developer so that she can refine the obligation policy
into an enforceable one.

3. The implementation stage involves the construction
of an enforcement mechanism for an enforceable obli-
gation policy. Sec. 5 reports a compilation algorithm
that we developed for compiling well-typed obligation
formulae to their corresponding enforcement mecha-
nisms. The compilation algorithm is directed by the
type system. In a sense, the compilation algorithm
justifies the soundness of our type system: for each
pattern of policy composition that is identified by the

Specification
Implementability

Check
Implementation

(Obligation Policy
Language)

(Type System) (Compilation)

Feedback

Figure 1: Workflow for obligation policy develop-
ment

type system to be preserving enforceability, there is a
corresponding construction of an enforcement mecha-
nism for the composite policy out of the enforcement
mechanisms of the component policies.

2. PRELIMINARIES
This section introduces notions that will be used through-

out this paper.

Basic notations.
Given a set S, [S]k denotes the set of all k-element subsets

of S, and [S]<ω denotes the set of all finite subsets of S.
The notation 2S denotes the powerset of S (i.e. the set of
all subset of S).

Program model.
Recall that our motivation is the monitoring of untrusted

programs to ensure compliance to obligation policies. We de-
scribe here the program model that will be adopted through-
out this paper.

At run time, a program performs actions that belong to
a set Σ. A program execution can be characterized by a
trace, which is either a finite or infinite sequence of actions.
Intuitively, a finite trace represents either a terminated ex-
ecution or a partial execution; an infinite trace represents a
non-terminating execution. (This representation is similar
to the program models of [37, 27].) We denote by Σ∗ the set
of finite traces over Σ, and by Σω the set of infinite traces
over Σ. Then, Σ∞ = Σ∗ ∪ Σω is the set of all traces over
Σ. The empty sequence is denoted by ǫ. Given u ∈ Σ∗ and
v ∈ Σ∞, we write u · v (or simply uv) to denote the con-
catenation of u and v. If w = u · v, we say u is a prefix
of w, v is a suffix of w, and we write u � w and v ⊑ w.
Specifically, if u 6= w, then we write u ≺ w; if v 6= w, then
we write v < w. We also write w/v to denote u, and w − u
to denote v.

Properties.
A property Φ is a set of traces (i.e., Φ ⊆ Σ∞). If w ∈ Φ

then w satisfies Φ. Otherwise, w violates Φ. In [12] obli-
gation policies are taken to be of two kinds: (a) obligation
policies that can be enforced by reference monitors are safety
properties, and (b) obligation policies for which fulfillment
can be detected by reference monitors are guarantee prop-
erties. Since our program model involves finite traces, we
adapt the definition of safety and guarantee property for
our program model.

Property Φ is a safety property1 iff:

∀w ∈ Σ∞ : (w 6∈ Φ ⇒

∃u � w : (u 6∈ Φ ∧ ∀v ∈ Σ∞ : uv 6∈ Φ))

Property Φ is a guarantee property iff:

∀w ∈ Σ∞ : (w ∈ Φ ⇒

∃u � w : (u ∈ Φ ∧ ∀v ∈ Σ∞ : uv ∈ Φ))

A safety property Φ is a k-bounded safety property iff:

∀u ∈ Σ∗ : (|u| ≥ k ∧ u ∈ Φ ⇒ ∀v ∈ Σ∞ : uv ∈ Φ)

Intuitively, a violation of a k-bounded safety property can
only occur at or before the kth step. A reference monitor
can safely give up detecting violation after failing to find one
in the first k steps. A guarantee property Φ is a k-bounded
guarantee property iff:

∀u ∈ Σ∗ : (|u| ≥ k ∧ u 6∈ Φ ⇒ ∀v ∈ Σ∞ : uv 6∈ Φ)

A fulfilment of a k-bounded guarantee property can only
occur at or before the kth step. A reference monitor can
safely give up detecting fulfillment after failing to find one
in the first k steps2.

Action assertion language.
We assume that an action assertion language has been

provided for classifying actions. Given the set Σ of actions,
an action assertion language LΣ is a pair 〈P,〉, where P is
a countable set of action propositions, and ⊆ Σ × P is
a binary relation specifying which proposition is satisfied by
which action. Action formulae (ψ) denote boolean com-
binations of action propositions. The syntax of an action
formula is given below:

ψ ::= true | false | p | !ψ | ψ &&ψ | ψ ||ψ

where p is an action proposition. Let Φ(LΣ) be the set of
action formulae defined over LΣ. The satisfaction relation
() can be extended to action formulae in a standard way.
That is, we write a ψ whenever action a satisfies action
formula ψ. For example, a ψ1 &&ψ2 whenever both a ψ1

and a ψ2. The other cases are analogous.

3. AN OBLIGATION POLICY LANGUAGE
By examining the structure of obligation policies found

in the literature [30, 17, 23, 20, 11], we identified the four
common components of obligation policies: (1) Trigger de-
fines the applicability of an obligation policy. Obligations
are imposed whenever the trigger condition is satisfied. (2)
Obligation is the core of an obligation policy. It specifies
the actions that are obliged (or prohibited) to be performed

1Note that the definition of safety and guarantee properties
in formal verification literature concerns only infinite traces
[2, 10]. Our definition of safety property for both finite and
infinite traces closely follows that of [27]. Our adaptation of
guarantee properties to account for both finite and infinite
traces is obtained in a similar fashion.
2In formal verification literature [2, 10], in which complete
program executions are modelled as infinite traces, there is
no difference between a k-bounded safety property and a k-
bounded guarantee property. Yet, in our model, in which
partial executions and terminated executions are modelled
as finite traces, the two notions refer to two distinct families
of properties.

by the target program. (3) Temporal constraint defines
the time window in which the obligation is imposed. (4)
Penalty (Reward) is the access control implication if the
target program violates (or fulfills) the obligation. Except
for the obligation component, every component is optional.
Consequently, rather than designing a monolithic syntax for
a policy clause, we instead design a reusable construct for
each component, and use a temporal logic to provide means
to mix and match the components.

Our policy language is a temporal logic, in which a for-
mula is evaluated against a trace. Consequently, formulae in
the policy language are called trace formulae (φ) to distin-
guish them from action formulae (ψ). We capture the stan-
dard components of obligation policies by various temporal
operators (or their derived forms) in the language. This al-
lows the policy developer to compose expressive obligation
policies in a flexible manner.

3.1 Syntax and Semantics

Syntax.
The syntax of trace formulae (φ) is given below.

φ ::= ⊤ | ψ | ¬φ | φ ∧ φ | Eventually φ |

Before
+ φ : φ | After+ φ : φ | Ignoring ψ : φ

Semantics.
Given a trace w ∈ Σ∞ and a trace formula φ, we write

w |= φ to assert that w satisfies φ:

1. w |= ⊤. (That is, ⊤ is satisfied by any trace.)

2. w |= ψ iff there exists an action a � w such that
a ψ. (Intuitively, the trace formula ψ is satisfied by
a non-empty trace with its first action satisfying the
action formula ψ. Note that ψ specifies a guarantee
property.)

3. w |= ¬φ iff w 6|= φ.

4. w |= φ1 ∧ φ2 iff both w |= φ1 and w |= φ2.

5. w |= Eventually φ iff there exists suffix v ⊑ w such
that v |= φ. (That is, Eventually φ holds whenever
φ holds for some suffix of w. Eventually is therefore
semantically equivalent to the temporal operator F in
LTL [33].)

6. w |= Before+ φ1 : φ2 iff either (a) there exists prefix
u � w such that (i) u |= φ1, (ii) for every proper prefix
u′ ≺ u, u′ 6|= φ1, and (iii) u |= φ2, or (b) for every
prefix u � w, u 6|= φ1, and w |= φ2. (The meaning
of Before+ φ1 : φ2 is illustrated in Fig. 2. Suppose
t is the first instant when φ1 is fulfilled by a prefix
a1a2 . . . at of w. Then φ2 is imposed on that prefix.
If φ1 is never fulfilled by any prefix of w, then φ2 is
imposed over w itself. The intended usage is that φ1

shall be a guarantee property and φ2 shall be a safety
property. When used this way, Before+ φ1 : φ2 is a
safety property.)

7. w |= After+ φ1 : φ2 iff either (a) there exists prefix
u � w such that (i) u |= φ1, (ii) for every proper
prefix u′ ≺ u, u′ 6|= φ1, and (iii) w − u |= φ2, or (b)
for every prefix u � w, u 6|= φ1. (Fig. 2 illustrates

· · · · · ·
a0 a1 a2 at at+1 at+2

before at after at

Figure 2: Illustration of “before” and “after” a cer-
tain time instant t.

the meaning of After+ φ1 : φ2. Suppose t is the first
instant when φ1 is fulfilled by a prefix a1a2 . . . at of
w. Then φ2 is imposed on the suffix at+1at+2 If
φ1 is never fulfilled by any prefix of w, then there is
no further obligations. The intended usage is that φ1

shall be a guarantee property and φ2 shall be a safety
property. When used this way, After+ φ1 : φ2 is a
safety property.)

8. w |= Ignoring ψ : φ2 iff w|ψ |= φ2, where w|ψ is the sub-
sequence of w obtained by removing from w all actions
a for which a ψ.

Derived forms.
The following derived forms are defined to capture further

idiomatic elements in obligation policies.

⊥
def
= ¬⊤ φ1 ∨ φ2

def
= ¬(¬φ1 ∧ ¬φ2)

Always φ
def
= ¬Eventually ¬φ

Before
− φ1 : φ2

def
= ¬Before+ φ1 : ¬φ2

After
− φ1 : φ2

def
= ¬After+ φ1 : ¬φ2

〈1〉
def
= true 〈k〉

def
= After

− 〈1〉 : 〈k− 1〉

[ψ]
def
= ¬(!ψ)

Whenever φ1 : φ2
def
= Always After

+ φ1 : φ2

Fulfilling
k φ1 ?φ2 : φ3

def
=

(After+ (Before− 〈k〉 : φ1) : φ2) ∧

((Before+ φ1 : ¬〈k+ 1〉) ∨ After
+ 〈k〉 : φ3)

Some of the derived forms are merely standard duals (⊥,
∨, Always). Before− φ1 : φ2 is intended to be a guaran-
tee property, imposing both guarantee properties φ1 and
φ2, and requiring φ2 to be discharged no later than φ1.
After− φ1 : φ2 is intended to be a guarantee property, im-
posing guarantee property φ2 after guarantee property φ1 is
discharged. (The superscripts + and− indicate the intended
usage of the four Before and After constructs: the + versions
are intended to form safety properties, and the − versions
are intended to form guarantee properties.) 〈1〉 is a guaran-
tee property fulfilled by a trace of length one or more; 〈k〉
extends the lower bound to k. [ψ] is a safety property vio-
lated by a non-empty trace for which the first action violates
the action formula ψ. ([ψ] is therefore the safety counterpart
of the guarantee formula ψ.) Whenever φ1 : φ2 imposes φ2

whenever φ1 is triggered. Fulfillingk φ1 ?φ2 : φ3 asserts the
following: if a guarantee property φ1 is discharged within k
steps, then impose φ2 after fulfillment, otherwise impose φ3

after k steps.

Convention.
To reduce unnecessary brackets, the following binding pri-

orities are adopted: unary operators (¬, Eventually, Always)
bind most tightly; next in order comes binary boolean oper-
ators (∧, ∨); then comes binary temporal operators (Before,
After, Whenever, Ignoring).

Expressing Obligation Policies.
A generic template for a typical obligation policy can be

encoded in our policy language as follows:

Whenever φtrig : Fulfillingk (Before− φtc : φobl) ?φr : φp

The clause φtrig , φtc , φobl , φr and φp correspond to the trig-
ger, the temporal constraint, the obligation, the reward and
penalty component of an obligation policy respectively. The
formulae φtrig and φobl are intended to be guarantee prop-
erties. The formula φtc is intended to specify a guarantee
property that is fulfilled when the deadline of the obliga-
tion is reached. The formulae φr and φp are intended to be
safety properties, with φr granting a more liberal level of
access than φr .

3.2 Case Studies: Obligation Policies in Soft-
ware Systems

We illustrate the use of our language by the following ex-
amples.

Policy 1 (File check-out and return [12]). In a
code versioning tool, a developer who checks out a file is
obliged to check the file back in.

This policy can be expressed as Formula (1) in Fig. 3. The
action propositions pcout and pcin are satisfied respectively
by file-check-out and file-check-in operations respectively.
Formula (1) demands that, once the file is checked out (pcout),
no other check-out (pcout) is allowed before the file is checked-
in (pcin) again.

Policy 2 (Log after access denial [12]). When a
user attempts to access a document for which he lacks the
required credentials, every subsequent attempts to access doc-
uments by that user must be logged.

This policy can be captured by Formula (2) in Fig. 3. The
action propositions punauth acc , pacc and plog are satisfied re-
spectively by actions that access documents without creden-
tials, actions that access documents (with or without creden-
tials), and actions that log the subsequent document-access
attempt of the user. Formula (2) states that: after the first
unauthorized access attempt to a document (punauth acc), any
subsequent document-access operations (pacc) are disallowed
unless a log operation (plog) has been performed, and mean-
while, there is no two consecutive document-access opera-
tions (pacc) without a log operation (plog) between them.

Policy 3 (Secured connect after read [1]). An
application can only open a file for reading. Once the file has
been accessed, the application has to obtain approval from the
user each time a connection is to be opened.

Formula (3) in Fig. 3 encodes this policy. The action propo-
sitions pwrite , pread , pacq appr and pconn are satisfied respec-
tively by program actions that access a file for write, actions
that access a file for read, actions that acquire user approval

Whenever Eventually pcout : (Eventually pcin ∧ Before+ Eventually pcin : Always ¬pcout) (1)

After+ Eventually punauth acc : ((Before+ Eventually plog : Always ¬pacc)∧

Whenever Eventually pacc : Before+ Eventually plog : Always ¬pacc) (2)

Always ¬pwrite ∧ After+ Eventually pread : (Before+ Eventually pacq appr : Always ¬pconn)∧

(Whenever Eventually pconn : Before+ Eventually pacq appr : Always ¬pconn) (3)

(Whenever Eventually punsec conn : Before+ Eventually pclose conn : Always ¬pacc pim)∧

(After+ Eventually pacc pim : Always ¬punsec conn) (4)

Before+ Eventually pappr : Always ¬pcritical acc (5)

Whenever Eventually pcritical acc : Before+ Eventually pappr : Always ¬pcritical acc (6)

Before+ Eventually pacc : Always ¬pappr (7)

Whenever Eventually pacc :

Fulfilling1plog ? (After
+ Eventually pappr : Before+ Eventually pcritical acc : Always ¬pappr) : (Always ¬pappr) (8)

Figure 3: Examples of policy formulas.

to connect to Internet, and actions that make Internet con-
nection. Thus, Formula (3) states that: (a) writing to a file
(pwrite) is not allowed; (b) after a file has been read (pread),
the application is not allowed to connect to Internet (pconn)
before it has acquired approval from the user (pacq appr), and
meanwhile, there is no two consecutive connect-to-Internet
operations (pconn) without an acquire-user-approval opera-
tion (pacq appr) in between.

Policy 4 (Secured PIM access [12]). An applica-
tion must not access the Personal Information Manager
(PIM) while unsecured connections are open, and it must
only open secure connections after the PIM is accessed.

Formula (4) in Fig. 3 captures this policy. The action propo-
sitions punsec conn , pclose conn and pacc pim are satisfied respec-
tively by program actions that make a HTTP connection3,
actions that close the opened HTTP connection, and actions
that access the PIM respectively. Formula (4) states that:
(a) once an HTTP connection has been opened (punsec conn)
, then before the connection is closed (pclose conn), the ap-
plication is not permitted to access the PIM (pacc pim); (b)
after the PIM has been accessed (pacc pim), HTTP connec-
tions are not permitted (punsec conn).

Policy 5 (Access to critical documents). An ap-
plication must explicitly request permission from the user be-
fore every access to a critical document. In addition, such a
request is not even allowed until the application can demon-
strate its trustworthiness by dutifully logging every document
access (including non-critical documents). If this logging
obligation is at any time violated, then the application will
forever loss its right to accessing critical documents.

Critical documents are sensitive resources. Their accesses
are not available to an application until the application can

3In contrast to the HTTPS connection, the HTTP connec-
tion are considered insecure.

demonstrate that it fulfills a certain obligation. Here, the
obligation is imposed in a continuous manner: the applica-
tion has to honor the obligation repeatedly. Once the appli-
cation violates the obligation, the application will be penal-
ized with deprival of rights to access sensitive resources.

Suppose the action propositions pappr , pcritical acc , pacc and
plog are satisfied respectively by program actions for ac-
quiring user approval to access critical documents, actions
for accessing critical documents, actions for accessing either
critical or non-critical documents, and actions for logging a
document-access operation. The above policy can be speci-
fied as the conjunction of four formulas:

φ1 ∧ φ2 ∧ φ3 ∧ φ4

The definition of the four conjuncts are given below.

1. Conjunct φ1 is specified as Formula (5) in Fig. 3, which
requires the following: without user approval (pappr),
access to critical documents (pcritical acc) is not permit-
ted.

2. Conjunct φ2 is specified as Formula (6) in Fig. 3, which
requires the following: there is no two consecutive
pcritical acc operations without a pappr operation in be-
tween.

3. Conjunct φ3 is specified as Formula (7) in Fig. 3. Be-
fore the application can demonstrate that it fulfills the
log-following-access obligation (i.e., it has performed
a document-access operation (pacc) at least once), it
is not allowed to acquire user approval to access the
critical documents (pappr).

4. Conjunct φ4 is specified as Formula (8) in Fig. 3. If
the target application fulfills the obligation of logging
(plog) immediately after a generic document access op-
eration (pacc), then, as a reward, the application un-
locks the privilege to acquire user approval for ac-
cessing critical document (pappr). Such a privilege is

granted in only a constrained way: i.e., when it ac-
quires user approval to access critical documents
(pappr), it has to perform the critical-document-access
operation (pcritical acc). If the aforementioned obliga-
tion is violated, the application is not allowed to ac-
quire user approval to access critical documents (pappr).

4. RECOGNIZING ENFORCEABLE AND
MONITORABLE POLICIES

Type System.
Not all policies specified in our policy language are en-

forceable. This section introduces a type system that can
be used for recognizing if a given obligation policy (written
in our policy language) is enforceable. Specifically, Fig. 4
specifies the inference rules that define the typing assertion
“φ : T”, where T is the type of φ. If T is of the form k-enf ,
where k ∈ N∪ {ω}, then φ is recognized to be a non-empty
safety property: i.e., the empty trace satisfies the property,
and thus the property is not empty. The implication is that
φ is enforceable by a reference monitor. If k ∈ N then φ
is a k-bounded safety property, meaning that the reference
monitor can stop monitoring if no violation is detected in the
first k steps. If T is of the form k-mon , where k ∈ N∪{ω},
then φ is recognized to be a non-universal guarantee prop-
erty: i.e., there is at least one trace, the empty trace, that
does not satisfy the property. The implication is that the
discharging of φ can be detected by a reference monitor.
Such a property is said to be monitorable. If k ∈ N then
φ is a k-bounded guarantee property, meaning that the ref-
erence monitor can safely stop monitoring if the property
is not discharged in the first k steps. The soundness of the
type system is ensured by Theorem 12. In summary, the
type system captures patterns of policy composition that
yields policies that are enforceable or monitorable.

Incremental Refinement of Obligation Policies.
This type system can guide a policy developer to incre-

mentally refine an obligation policy into one that is enforce-
able by a reference monitor. Specifically, the type system
identifies components of the policy that are causing prob-
lem. The following case study demonstrates this use.
Suppose a policy developer is to write a library loan policy,

which states that every book checked out from the library
has to be returned. The goal is to formulate the policy in
such a way that it is enforceable. Let the action propositions
pcout and pret refer to the check-out and return operations
respectively. Suppose further that each time point corre-
sponds to a day. We start with a naive formulation that
captures the main intention of the policy.

Policy 6. Every book checked out from the library has to
be retured.

Whenever Eventually pcout : Eventually pret

Note that Whenever is merely a shorthand for Always After+.
By TE-Af, the formula is not well-typed (Fig. 5), meaning
that the formula is not enforceable. TE-Af also identifies
the subformula (Eventually pret) to be the cause (i.e., that
subformula is monitorable but not enforceable).
One standard way to turn a monitorable policy into an

enforceable policy is by the use of reward and penalty. Such

a policy structure is captured in the Fulfilling construct,
which, according to TE-Fu, takes a monitorable policy as an
operand, and produces an enforceable policy. So the policy
developer refines the policy as follows.

Policy 7. Every book checked out from the library has to
be retured, otherwise the book user will be penalized for not
allowing to borrow any books from the library.

Whenever Eventually pcout :

Fulfilling
k
Eventually pret ?⊤ : Always¬pcout

Note that the formula is still not well typed because TE-
Fu expects (Eventually pret) to be a k-bounded guarantee
property for some finite k (Fig. 6). That means a deadline
k must be imposed on book returning.

Policy 8. Every book checked out from the library has
to be retured within 30 days, otherwise the book user will be
penalized for not allowing to borrow any book.

Whenever Eventually pcout :

Fulfilling
30 (Before− 〈30〉 : Eventually pret) ?

⊤ : Always ¬pcout

The policy developer now sets a deadline for the Eventually

clause, making the obligation a bounded guarantee property.
The type system recognizes this formula to have type ω-enf ,
meaning that the formula is enforceable (Fig. 7).

Discussions.
A reasonable implementation of the type checker can in-

fer both the bound in the Fulfilling construct and the signs
(+ or −) of the Before and After constructs. So the policy
developer can in theory omit these details.

5. POLICY COMPILATION
This section reports an algorithm for compiling obliga-

tion policies to their enforcement or monitoring mechanisms.
The algorithm translates well-typed policies to their corre-
sponding enforcement, and thus serves as a soundness proof
for the type system.

We begin with a representation of enforcement and mon-
itoring mechanisms called obligation monitors. This repre-
sentation is the “assembly language” of our compilation.

5.1 Obligation Monitors
An Obligation Monitor (OM) can be used for repre-

senting either an enforcement mechanism for a safety prop-
erty, or a monitoring mechanism for a guarantee property.
Partly inspired by [41], it is designed to facilitate the in-
lining of monitoring logic, and is fully capable of expressing
deontic concepts such as rights, prohibitions, obligations and
dispensations [24].

Definition 9. An OM M is a quadruple of the form
〈LΣ,O, ι, S0〉.

1. LΣ is an action assertion language over the set of
actions Σ.

2. O is a countable set of obligation identifiers.

ψ : 1-mon (TM-Ax)

φ : k-enf

¬φ : k-mon
(TM-Ne)

φ : k-mon

Eventually φ : ω-mon
(TM-Ev)

φ1 : k1-mon φ2 : k2-mon
k = max (k1, k2)

φ1 ∨ φ2 : k-mon
(TM-Or)

φ1 : k1-mon φ2 : k2-mon
k = max (k1, k2)

φ1 ∧ φ2 : k-mon
(TM-An)

φ1 : k1-mon φ2 : k2-mon

Before− φ1 : φ2 : k2-mon
(TM-Be)

φ1 : k1-mon φ2 : k2-mon
k = k1 + k2

After− φ1 : φ2 : k-mon
(TM-Af)

φ : k-mon

Ignoring ψ : φ : ω-mon
(TM-Ig)

k ∈ N

〈k〉 : k-mon
(TM-Co)

[ψ] : 1-enf (TE-Ax)

φ : k-mon

¬φ : k-enf
(TE-Ne)

φ : k-enf

Always φ : ω-enf
(TE-Al)

φ1 : k1-enf φ2 : k2-enf
k = max (k1, k2)

φ1 ∨ φ2 : k-enf
(TE-Or)

φ1 : k1-enf φ2 : k2-enf
k = max (k1, k2)

φ1 ∧ φ2 : k-enf
(TE-An)

φ1 : k1-mon φ2 : k2-enf

Before+ φ1 : φ2 : k2-enf
(TE-Be)

φ1 : k1-mon φ2 : k2-enf
k = k1 + k2

After+ φ1 : φ2 : k-enf
(TE-Af)

φ : k-enf

Ignoring ψ : φ : ω-enf
(TE-Ig)

φ1 : k1-mon k1 ∈ N

φ2 : k2-enf φ3 : k3-enf
k = k1 +max (k2, k3)

Fulfillingk1 φ1 ?φ2 : φ3 : k-enf
(TE-Fu)

Figure 4: Inference rules for the type system

pcout : 1-mon

Eventually pcout : ω-mon
(TM-Ev)

pret : 1-mon

Eventually pret : ω-mon
(TM-Ev)

After+ Eventually pcout : Eventually pret
(Err:TE-Af)

Always After+ Eventually pcout : Eventually pret
(TE-Al)

Figure 5: Derivation tree for Policy 6. (Err:TE-Af) indicates that an error occurs when applying rule TE-Af.

pcout : 1-mon

Eventually pcout : ω-mon
(TM-Ev)

pret : 1-mon

Eventually pret : ω-mon
(TM-Ev)

k1 = ω

pret : 1-mon

¬pret : 1-enf
(TE-No)

Always ¬pcout : ω-enf
(TE-Al)

Fulfillingω Eventually pret ?⊤ : Always ¬pcout
(Err: TE-Fu)

After+ Eventually pcout : Fulfillingω Eventually pret ?⊤ : Always ¬pcout
(TE-Af)

Always After+ Eventually pcout : Fulfillingω Eventually pret ?⊤ : Always ¬pcout
(TE-Al)

Figure 6: Derivation tree for Policy 7. (Err:TE-Fu) indicates that an error occurs when applying rule TE-Fu.

pcout : 1-mon

Eventually pcout : 1-mon
(TM-Ev)

30 ∈ N

〈30〉 : 30-mon
(TM-Co)

pret : 1-mon

Eventually pret : ω-mon
(TM-Ev)

Before
−

〈30〉 : Eventually pret : 30-mon
(TM-Be)

k1 = 30

pret : 1-mon

¬pret : 1-enf
(TE-No)

Always ¬pcout : ω-enf
(TE-Al)

(Fulfilling
30

Before
−

〈30〉 : Eventually pret ?⊤ : Always ¬pcout) : 30-enf
(TE-Fu)

(After
+

Eventually pcout : Fulfilling
30

Before
−

〈30〉 : Eventually pret ?⊤ : Always ¬pcout) : ω-enf
(TE-Af)

(Always After
+

Eventually pcout : Fulfilling
30

Before
−

〈30〉 : Eventually pret ?⊤ : Always ¬pcout) : ω-enf
(TE-Al)

Figure 7: Derivation tree for Policy 8

3. ι : O → oblM assigns to each obligation identifier
an obligation from oblM, where oblM = Φ(LΣ) ⊎
(Φ(LΣ)× [O]<ω × 2O).

4. S0 ∈ statesM is the initial state.

An OM is a state machine. The set statesM of states is
defined as [O]<ω: i.e., a state is a finite set of obligation
identifiers. The initial state S0 is one of such states.
The obligation identifiers in a given state encode the tran-

sitions allowed for that state. Specifically, the function ι in-
terprets an obligation identifier as an obligation. There are
two kinds of obligations. First, an obligation of the form
ψ ∈ Φ(LΣ) is called a simple condition. Intuitively, an
action a ∈ Σ is allowed to be performed at a state S only if
a satisfies every simple condition identified in S. Second, an
obligation of the form 〈ψ,Oadd ,Odel〉 ∈ Φ(LΣ)× [O]<ω×2O

is called a trigger rule, where:

• ψ is the trigger condition, specifying the actions that
would render the trigger rule applicable to the monitor
state,

• Oadd identifies a finite set of obligation identifiers to
be added to the monitor state when this trigger rule is
applied, and,

• Odel identifies a set of obligation identifiers to be deleted
from the monitor state when this trigger rule is ap-
plied.

Intuitively, if an action a ∈ Σ is allowed to be performed
at a monitor state S, then the trigger rules identified in S
will be tested for applicability, and those applicable trigger
rules will specify how S will be changed. We formalize state
transitions in the following.

Transition.
Given a monitor state S ∈ statesM, we define condM(S) =

{o ∈ S | ι(o) ∈ Φ(LΣ)} as the set of obligation identifiers
in S that refer to simple conditions. Similarly, ruleM(S) =
{o ∈ S | ι(o) ∈ Φ(LΣ) × [O]<ω × 2O} is the set of obliga-
tion identifiers in S that refer to trigger rules. We define
trigM(S, a) = {o ∈ ruleM(S) | ι(o) = 〈ψ,Oadd ,Odel〉 ∧ (a

ψ)} to be the set of obligation identifiers for those trigger
rules that are “triggered” by a at state S (i.e., the trigger
condition is satisfied). Moreover, we define addM(S, a) and
delM(S, a) as the sets of obligation identifiers that will be
added and deleted after applying all the rules that are fired
by a at the monitor state S. Formally,

addM(S, a)
def
=

⋃

{Oadd | o ∈ trigM(S, a),

ι(o) = 〈ψ,Oadd ,Odel〉 }

delM(S, a)
def
=

⋃

{Odel | o ∈ trigM(S, a),

ι(o) = 〈ψ,Oadd ,Odel〉 }

Given an action a ∈ Σ, a transition S1
a

−→M S2 can be made
iff both of the following hold: (1) for every o ∈ condM(S1),
we have a ι(o); (2) S2 = (S1 ∪ addM(S1,
a))\delM(S1, a). One can extend the one-step transition
relation to a multi-step transition relation in a standard

way: we write S
ǫ

−→M S, and write S1
a·w
−→M S2 when-

ever S1
a

−→M S3 and S3
w

−→M S2 for some S3 ∈ statesM.

From OMs to Properties.
We say that the OM M accepts the sequence w ∈ Σ∞

iff for any u � w, S0
u

−→M S for some S ∈ statesM; and
it recognizes the sequence w ∈ Σ∞ iff there exists u � w,
S0

u
−→M ∅. Let Lacc(M) be the set of action sequences

accepted by M. An OM M enforces a property L iff
L = Lacc(M). Let Lrec(M) be the set of action sequences
recognized by M. An OM M monitors a property L iff
L = Lrec(M). Note that Lacc(M) is a non-empty safety
property (non-empty because ǫ ∈ Lacc(M)), and Lrec(M) is
a guarantee property.

Special OMs for Guarantee Properties.
An OM that contains only trigger rules (but no simple

conditions) is called a pure obligation monitor. It turns
out that simple conditions are not needed for monitoring
guarantee properties.

Proposition 10. If a guarantee property L is monitored
by an OM, then L is also monitored by a pure OM.

Our compilation algorithm will thus generate only pure OMs
when the policy formula represents a guarantee property.

The pure OMs generated by our compilation algorithm
have further structures.

Proposition 11. Suppose L is a non-universal guaran-
tee property (i.e., non-universal meaning ǫ 6∈ L and thus
L 6= Σ∞). If L is monitored by a pure OM, then L is also
monitored by a pure OM M = 〈LΣ,O, ι, S0〉 for which there
is a set Of ⊆ O of trigger rule identifiers such that:

∀w ∈ Σ∗. ∀S1 ∈ statesM.

{

(S0
w

−→M S1 ∧ S1 6= ∅) ⇒

∀a ∈ Σ . ∀S2 ∈ statesM.
[

(S1
a

−→M S2 ∧ S2 = ∅) ⇔

(trigM(S1, a) ∩ Of 6= ∅)
]

}

Of is the set of identifiers for the final trigger rules of
M.

Final trigger rules have a role analogous to “final states”.
They are triggered if and only if the next state is an empty
state (i.e., the guarantee property has been fulfilled). The
proposition above says that every guarantee property (ex-
cept for Σ∞) can be monitored by a pure OM with a set
of final trigger rules. Our compilation algorithm compiles a
guarantee property into a pure OM with final trigger rules.

5.2 Compilation Algorithm
We devised a compilation algorithm, compile(φ), that

takes obligation policy φ as argument, and returns a tuple
〈T ,B,M,Of〉, where:

• T ∈ {enf , mon} is the type of φ assigned by the type
system;

• B ∈ N ∪ {ω} is the bound of φ assigned by the type
system;

• M = 〈LΣ,O, ι, S0〉 is an OM, which enforces φ if T =
enf , or monitors φ if T = mon ; in the latter case, M
is a pure OM;

• Of ⊆ O is the set of final trigger rules for M if T =
mon . Of = ∅ if T = enf .

The complete specification of the compilation algorithm is
given in the companion technical report [40]. Here, we
present the compilation of three example cases.

Caseψ.
A monitor for trace formula ψ examines only the first ac-

tion of the input trace. If the first action satisfies ψ, then the
monitor transitions to an empty state. Otherwise it moves
to a non-empty state and stays there forever. To generate
this monitor, we define compile(ψ) = 〈mon , 1,M, {o1}〉,
where M = 〈LΣ, {o1, o2, or}, ι, {o1, o2}〉 such that:

ι(o1) = 〈ψ, ∅, {o1, o2}〉

ι(o2) = 〈!ψ, {or}, {o1, o2}〉

ι(or) = 〈true, ∅, ∅〉

At the initial state, if a ψ for the input action a, then o1 is
fired. This removes both o1 and o2 from the state, and puts
M into an empty state. Otherwise, a 6 ψ, and thus o2 is
fired. This removes o1 and o2 from the state, while adding
back or. As a result, M is trapped at a non-empty state.

CaseBefore+ φ′ : φ′′ .
The compilation of formula Before+ φ′ : φ′′ depends on

the recursive compilation of its subformulae φ′ and φ′′. Sup-
pose compile(φ′) = 〈mon , k′,M′,O′

f〉 and compile(φ′′) =
〈enf , k′′,M′′, ∅〉 where M′ = 〈LΣ,O

′, ι′, S′
0〉 and M′′ =

〈LΣ,O
′′, ι′′, S′′

0 〉.
Semantically, Before+ φ′ : φ′′ enforces φ′′ before φ′ is ful-

filled. So the intuitive compilation involves the running of
M′ and M′′ in parallel. As soon as M′ detects the fulfill-
ment of φ′, M′ terminates M′′ by “erasing” the state infor-
mation of the latter. We define compile(Before+ φ′ : φ′′) =
〈enf , k′′,M, ∅〉 where M = 〈LΣ,O

′ ⊎ O′′, ι, S′
0 ⊎ S′′

0 〉 such
that:

ι(o) =

ι′(o) if o ∈ O′\O′
f

ι′′(o) if o ∈ O′′

〈ψ,Oadd,Odel ⊎ O′′〉 if o ∈ O′
f ∧

ι′(o) = 〈ψ,Oadd,Odel〉

First, M starts at initial state S′
0 ⊎ S

′′
0 (the initial states of

M′ and M′′), so that the simulation of both M′ and M′′

begins simultaneously. Suppose a trace fulfills φ′, but does
not violate φ′′ up to the point of fulfillment of φ′. The trace
will fires some trigger rule o′ ∈ Of, which removes O′′ from
the state, and transitions M′ to an empty state. As a result,
M′′ stops enforcing φ′′.

CaseEventually φ′ .
Suppose compile(φ′) = 〈mon , k′,M′,O′

f〉 is the compila-
tion for φ′, where k′ is a finite bound, and M′ = 〈LΣ,O

′, ι′,
S′
0〉.
Semantically, Eventually φ′ looks for the fulfillment of φ′

in every suffix the target trace. If any of the suffice satisfies
φ′, then Eventually φ′ is satisfied. A naive compilation will
initiate a fresh instance of M′ at every step, and run all the
instances of M′ concurrently, until one of them detects a
fulfillment. Yet, k′ is a finite bound, and thus each instance
need to be executed only for k′ steps. To conserve space,
rather than generating an infinite number of concurrently
executed instances, existing instances that have executed for
longer than k′ steps are restarted, so only a finite number of

instances are needed for detecting fulfillment.
Let M′

1, M
′
2, · · · , M

′

k+1 be k′+1 copies of M′, such that
for each i ∈ {1, 2, · · · , k′ + 1}, M′

i = 〈LΣ,O
′
i, ι

′
i, S

′i
0 〉, and

O′
i ∩ O′

j = ∅ if i 6= j.
Then the compilation for Eventually φ′ is given below:

compile(Eventually φ′) = 〈mon , ω,M,O′1
f ⊎ · · ·O′k′+1

f 〉

where

M = 〈LΣ,O
′

1 ⊎ · · · ⊎ O′

k+1 ⊎ O∗, ι, S′1
0 ⊎ {o∗1}〉

O∗ = {o∗i | i = 1, 2, · · · , k′ + 1}

Here we assume that the o∗i ’s are fresh obligation identifiers
such that O∗ ∩ O′

i = ∅. The interpretation function ι is
defined as follows:

ι(o) =

ι′i(o)
if o ∈ O′

i\O
′i
f

〈ψ,Oadd,O
′
1 ⊎ O′

2 ⊎ · · · ⊎ O′

k′+1 ⊎ O∗〉
if o ∈ O′i

f ∧ ι′i(o) = 〈ψ,Oadd,Odel〉

〈true, S′i+1
0 ⊎ {o∗i+1}, (O

′
i+1\S

′i+1
0) ⊎ {o∗i }〉

if o ∈ O∗ ∧ o = o∗i ∧ 1 ≤ i ≤ k′

〈true, S′1
0 ⊎ {o∗1}, (O

′
1\S

′1
0) ⊎ {o∗k′+1}〉

if o ∈ O∗ ∧ o = o∗k′+1

The trigger rule o∗i ∈ O∗ is always fired. It terminates the
old copy of M′

j where j = (i mod (k′ +1))+ 1, and starts a
new M′

j .
Presented here are but three cases of the compilation al-

gorithm. Consult the companion technical report for the full
algorithm [40].

5.3 Compilation Correctness and Type Sound-
ness

Compilation correctness is guaranteed by the next theo-
rem.

Theorem 12 (Correctness). Given any well-typed obli-
gation policy φ, suppose compile(φ) = 〈T ,B,M,Of〉. Then
both of the following hold:

1. if φ : k-enf, then

(a) T = enf, B = k, and φ = Lacc(M);

(b) if k ∈ N, then Lacc(M) is a k-bounded safety
property.

2. if φ : k-mon, then

(a) T = mon, B = k, φ = Lrec(M), and M is a pure
OM with final trigger rules Of;

(b) if k ∈ N, then Lrec(M) is a k-bounded guarantee
property.

A proof of this theorem can be found in the companion tech-
nical report [40]. The proof proceeds by structural induction
on the derivation tree of the type system. Recall from Sec.
5.1 that Lacc(M) is a safety property, and Lrec(M) is a guar-
antee property. So Theorem 12 also ensures the soundness
of our type system as well.

Summary.
We identified the interface of a compilation algorithm that

takes well-typed policy φ as input and generates an enforcer
or monitor for φ in the form of an OM. We illustrated how
compilation works via three example cases. We stated the
correctness theorem for the compilation algorithm. The
complete compilation algorithm and the correctness proof
are given in the companion technical report [40].

6. IMPLEMENTATION
The type checker and the compilation algorithm have been

fully implemented in 1347 lines of Java code (excluding com-
ments), in approximately 80 man-hours. The compiler takes
the abstract syntax tree of a formula as input and returns
an OM for enforcing or monitoring the formula. The type
checker, which realizes the typing rules in Sect. 4, is inte-
grated into the compiler.

7. RELATED WORK
This section examines some related works with respect to

the three stages of the workflow shown in Fig. 1.

Specification.
A number of policy languages have been designed for spec-

ifying obligation policies. Some of them [5, 19, 11] provide
only syntactic elements for expressing obligations, leaving
the semantics open to interpretation. Hilty et al. [20] pro-
posed the policy language OSL for expressing obligation
policies. They carefully defined both the syntax and se-
mantics for the language, which is based on LTL. Policy
enforcement [21] is achieved by compiling OSL to ODRL
[22], and directly adopting the enforcement mechanisms of
digital rights management (DRM). Compared to OSL, our
language not only captures the idiomatic components of obli-
gation policies in the framework of temporal logic, but also
employs a type system to articulate composition patterns
that preserve implementability.
Kagal et al. [24] proposed the language Rei based on

deontic logic [29]. We describe in the companion technical
report [40] that the simple conditions and trigger rules of
OM are sufficient for capturing the four deontic elements in
Rei.
Other protection models that model obligations or the

triggering of permission changes include TRBAC [7],
UCONABC [32] and P-RBAC [31], among which UCONABC

has been formalized via Lamport’s temporal logic of actions.

Implementability check.
Schneider pioneered the study of the enforceability of se-

curity properties [37]. The discussion was based on the stan-
dard safety-liveness classification of properties [2]. He shows
that reference monitors can only enforce safety properties.
More recently, Ligatti et al. [27, 26, 25] showed that it is
possible to enforce at runtime more than safety properties,
using edit automata. Yet, the insertion and suppression op-
erations of the edit automata model is sometimes beyond
practicality when actually implemented.
A syntactical classification for LTL formulae based on the

safety-liveness hierarchy has been presented by Sistla [38].
In comparison, our type system provides incremental feed-
back to policy developers, helping them to identify policy
components that require refinement.

The conflicts between obligations and permissions were
studied in [24, 31]. Irwin et al. [23] suggested an approach to
detect the accountability of obligation policies (i.e. whether
a user has sufficient resources or privileges to perform an
obligation). Later, Pontual et al. [34] studied techniques
that can be deployed in a reference monitor to restore ac-
countability. Our work could be seen as a static policy anal-
ysis for ensuring that the policy in question can indeed be
enforced by a reference monitor.

Implementation.
Dougherty et al. [12] defined a rich model of obligations.

They also identified that obligation policies contain both
safety and guarantee properties. The approach they pro-
posed to enforce non-safety obligations is to use S-safety
closure [12] to approximate obligations. In contrast, our
focus in this paper are policies that are enforceable.

Falcone et al. [14, 15, 16] presented a unified view of
runtime verification and enforcement of properties in the
safety-progress classification. They proposed a systematic
approach to produce an enforcement monitor based on the
Streett automaton [39]. Their monitor model however relies
on the store and dump operations [14], which faces the same
dilemma as the edit automata.

Ribeiro et al. [35] suggested enforcing obligation-based
security policies using transactional rollback [9, 36]. Gama
and Ferreira [17] designed a platform called Heimdall for
enforcing obligation-based policies. As these approaches re-
quire program actions to be remediable, they are only ap-
plicable to certain domains.

8. CONCLUSION AND FUTURE WORK

Conclusion.
In this paper, we argue that humans have long recognized

the unenforceability of naively formulated obligation poli-
cies, and have devised standard policy idioms for express-
ing enforceable obligation policies. The contribution of this
work is the provision of tool support for helping the policy
developer to take advantage of these idioms. First, we de-
signed a policy language, in the form of a temporal logic,
for composing obligation policies out of idiomatic policy el-
ements. Second, we formulated a type system for capturing
the patterns of policy composition that preserve enforceabil-
ity. Such a type system can be used by the policy developer
to obtain feedback regarding the enforceability of the policy
she is working on, and to identify the policy component that
is causing the policy not to be enforceable. Third, a compi-
lation algorithm is developed to translate well-typed policies
(i.e., enforceable policies) into their corresponding enforce-
ment mechanisms. The compilation algorithm is therefore a
justification of soundness for the type system.

Future Work.
This work can be extended in a number of ways. First,

we plan to explore the enforcement of obligation policies in
a smartphone platform. Our plan is to develop a frame-
work for injecting obligation monitors into Android appli-
cations. Second, we plan to explore the automatic opti-
mization of obligation monitors, designing algorithms that
will reduce the complexity of an OM generated from our
compiler. Third, we are also interested in studying the

theoretical properties of our policy language, especially its
relative expressiveness compared to other specification lan-
guages such as LTL [28], TPTL [3], MFOTL [6], or the policy
language of [18]. Lastly, while we have shown that the type
system is sound, whether it is complete remains an open
problem. Specifically, it is not known whether there is a for-
mula φ for which (a) φ specifies a non-empty safety property
(resp. non-universal guarantee property), but (b) φ can not
be typed as k-enf (resp. k-mon).

Acknowledgment
This work is supported in part by an NSERC Discovery
Grant and by ISSNet — an NSERC Strategic Research Net-
work. We also benefit from discussions with Ida Siahaan.

9. REFERENCES
[1] Irem Aktug and Katsiaryna Nalluka. ConSpec - a

formal language for policy specification. In Proceedings
of the 1st International Workshop on Run Time
Enforcement for Mobile and Distributed Systems
(REM’07), volume 197 of Electronic Notes in
Theoretical Computer Science, pages 45–58, Dresden,
Germany, February 2007.

[2] Bowen Alpern and Fred B. Schneider. Defining
liveness. Information Processing Letters,
21(4):181–185, 1985.

[3] Rajeev Alur and Thomas A. Henzinger. A really
temporal logic. Journal of the ACM, 41(1):181–204,
January 1994.

[4] James P. Anderson. Computer security technology
planning study. Technical Report ESD-TR-73-51, U.S.
Air Force Electronic Systems Division, Deputy for
Command and Management Systems, HQ Electronic
Systems Divisions (AFSC), October 1972.

[5] Paul Ashley, Satoshi Hada, Günter Karjoth
ad Calvin Powers, and Matthias Schunter. Enterprise
privacy authorization language (EPAL 1.2).
http://www.zurich.ibm.com/security/

enterprise-privacy/epal, 2003.

[6] David Basin, Felix Klaedtke, and Samuel Müller.
Monitoring security policies with metric first-order
temporal logic. In Proceedings of the 15th ACM
Symposium on Access Control Models and
Technologies (SACMAT’10), pages 23–34, Pittsburgh,
PA, USA, June 2010.

[7] Elisa Bertino, Piero Andrea Bonatti, and Elena
Ferrari. TRBAC: A temporal role-based access control
model. ACM Transactions on Information and System
Security, 4(3):191–223, 2001.

[8] Claudio Bettini, Sushil Jajodia, X. Sean Wang, and
Duminada. Provisions and obligations in policy
management and security applications. In Proceedings
of the 28th International Conference on Very Large
Data Bases (VLDB’02), Hong Kong, China, August
2002.

[9] Arnar Birgisson, Mohan Dhawan, Úlfar Erlingsson,
Vinod Ganapathy, and Liviu Lftode. Enforcing
authorization policies using transactional memory
introspection. In Proceedings of the 15th ACM
Conference on Computer and Communication Security
(CCS’08), pages 223–234, Alexandria, Virginia, USA,
October 2008.

[10] Edward Chang, Zohar Manna, and Amir Pnueli. The
safety-progress classification. In F. L. Bauer,
W. Brauer, and H. Schwichtenberg, editors, Logic and
Algebra of Specifications, NATO Advanced Science
Institutes Series, pages 143–202. Springer, 1991.

[11] Nicodemos Damianou, Daranker Dulay, Emil Lupu,
and Morris Sloman. The Ponder policy specification
language. In Proceedings of the 2001 IEEE
International Workshop on Policies for Distributed
Systems and Networks (POLICY’01), pages 18–38,
London, UK, January 2001.

[12] Daniel J. Dougherty, Kathi Fisler, and Shriram
Krishnamurthi. Obligations and their interaction with
programs. In Proceedings of the 12th European
Symposium on Research in Computer Security
(ESORICS’07), volume 4734 of Lecture Notes in
Computer Science, pages 375–389, Dresden, Germany,
September 2007. Springer.

[13] Úlfar Erlingsson and Fred B. Schneider. IRM
enforcement of Java stack inspection. In Proceedings of
the 2000 IEEE Symposium on Security and Privacy
(S&P’00), pages 246–255, Berkeley, California, USA,
May 2000.

[14] Yliès Falcone, Jean-Claude Fernandez, and Laurent
Mounier. Synthesizing enforcement monitors wrt. the
safety-progress classification of properties. In
Proceedings of the 4th International Conference on
Information Systems Security (ICISS’08), volume
5352 of Lecture Notes in Computer Science, pages
41–55, Hyderabad, India, December 2008. Springer.

[15] Yliès Falcone, Jean-Claude Fernandez, and Laurent
Mounier. Enforcement monitoring wrt. the
safety-progress classification of properties. In
Proceedings of the 2009 ACM Symposium on Applied
Computing (SAC’09), pages 593–600, Honolulu,
Hawaii, USA, March 2009.

[16] Yliès Falcone, Jean-Claude Fernandez, and Laurent
Mounier. Runtime verification of safety-progress
properties. In Proceedings of the 9th International
Workshop on Runtime Verification (RV’2009), volume
5779 of Lecture Notes in Computer Science, pages
40–59, Grenoble, France, June 2009. Springer.

[17] Pedro Gama and Paulo Ferreira. Obligation policies:
an enforcement platform. In Proceedings of the 2005
IEEE Internation Workshop on Policies for
Distributed Systems and Networks (POLICY’05),
pages 203–212, Stockholm, Sweden, June 2005.

[18] Deepak Garg, Limin Jia, and Anupam Datta. Policy
auditing over incomplete logs: Theory, implementation
and applications. In Proceedings of the 18th ACM
Conference on Computer and Communications
Security (CCS’11), Chicago, Illinois, USA, October
2011.

[19] Simon Godik and Tim Moses. eXtensible access
control makeup language (XACML). Technical report,
OASIS, May 2002.

[20] Manuel Hilty, Alexander Pretschner, David Basin,
Christian Schaefer, and Thomas Walter. A policy
language for distributed usage control. In Proceedings
of the 12th European Symposium on Research in
Computer Security (ESORICS’07), volume 4734 of
Lecture Notes in Computer Science, pages 531–546,

Dresden, Germany, September 2007. Springer.

[21] Manuel Hilty, Alexander Pretschner, Thomas Walter,
and Christian Schaefer. Enforcement for usage control
- an overview of control mechanisms. Technical report,
DoCoMo Euro-labo, October 2006.

[22] Renato Iannella. Open digital rights language (ODRL)
version 1.1. http://odrl.net/1.1/ODRL-11.pdf,
August 2002.

[23] Keith Irwin, Ting Yu, and William H. Winsborough.
On the modeling and analysis of obligation. In
Proceedings of the 13th ACM Conference on Computer
and Communication Security (CCS’06), pages
134–143, Alexandria, Virginia, USA, October 2006.

[24] Lalana Kagal, Tim Finin, and Anupam Joshi. A
policy language for a pervasive computing
environment. In Proceedings of the 4th IEEE
International Workshop on Policies for Distributed
Systems and Networks (POLICY’03), pages 63–74,
Lake Como, Italy, June 2003.

[25] Jay Ligatti, Lujo Bauer, and David Walker. Edit
automata: enforcement mechanisms for run-time
secuirty policies. International Journal of Information
Security, 4(1-2):2–16, 2005.

[26] Jay Ligatti, Lujo Bauer, and David Walker. Enforcing
non-safety security properties with program monitors.
In Proceedings of the 10th European Symposium on
Research in Computer Security (ESORICS’05),
volume 3679 of Lecture Notes in Computer Science,
pages 355–373, Milan, Italy, September 2005. Springer.

[27] Jay Ligatti, Lujo Bauer, and David Walker. Run-time
enforcement of non-safety policies. ACM Transactions
on Information and Systems Security, 12(3), 2009.

[28] Zohar Manna and Amir Pnueli. The Temporal Logic of
Reactive and Concurrent Systems: Specification.
Springer, 1992.

[29] John-Jules Ch. Meyer and Roel Wieringa. Deontic
logic: a concise overview. In Deontic Logic In
Computer Science, pages 3–16. Wiley, 1993.

[30] Naftaly H. Minsky and Abe D. Lockman. Ensuring
integrity by adding obligations to privilege. In
Proceedings of the 8th International Conference on
Software Engineering (ICSE’85), pages 92–102,
London, England, 1985.

[31] Qun Ni, Elisa Bertino, and Jorge Lobo. An obligation
model bridging access control policies and privacy
policies. In Proceedings of the 13th ACM Symposium
on Access Control and Technologies (SACMAT’08),
pages 133–142, Estes Park, Colorado, USA, June 2008.

[32] Jaehong Park and Ravi Sandhu. The UCONABC usage
control model. ACM Transactions on Information and
System Security, 7(1):128–174, 2004.

[33] Amir Pnueli. The temporal logic of programs. In
Proceedings of the 18th Annual Symposium on
Foundations of Computer Science (FOCS’77), pages
46–57, New York, USA, September 1977.

[34] Murillo Pontual, Omar Chowdhury, William H.
Winsborough, Ting Yu, and Keith Irwin. On the
management of user obligations. In Proceedings of the
16th ACM Symposium on Access Control Models and
Technologies (SACMAT’11), pages 175–184,
Innsbruck, Austria, June 2011.

[35] Carlos Ribeiro, Andre Zuquete, and Paulo Ferreira.

Enforcing obligation with security monitors. In Third
Internatonal Conference on Information and
Communications Security (ICICS’01), pages 172–176,
Xi’an, China, January 2001.

[36] Algis Rudys and Dan S. Wallach. Transactional
rollback for language-based systems. In Proceedings of
the 2002 International Conference on Dependable
Systems and Networks (DSN’02), pages 439–448,
Washington, DC, USA, June 2002.

[37] Fred B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security,
3(1):30–50, 2000.

[38] A. Prasad Sistla. Safety, liveness and fairness in
temporal logic. Formal Aspects of Computing,
6(5):495–511, 1993.

[39] Robert S. Streett. Propositional dynamic logic of
looping and converse is elementarily decidable.
Information and Control, 54(1-2):121–141, 1982.

[40] Cheng Xu and Philip W. L. Fong. The specification
and compilation of obligation policies for program
monitoring. Technical Report 2011-996-08,
Department of Computer Science, University of
Calgary, Alberta, Canada, March 2012.

[41] Fei Yan and Philip W. L. Fong. Efficient IRM
enforcement of history-based access control policies. In
Proceedings of the 4th ACM Symposium on
Information, Computer and Communications Security
(ASIACCS’09), pages 35–46, Sydney, Australia,
March 2009.

