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ABSTRACT
Inlined Reference Monitor (IRM) is an established enforce-
ment mechanism for history-based access control policies.
IRM enforcement injects monitoring code into the binary of
an untrusted program in order to track its execution his-
tory. The injected code denies access when execution devi-
ates from the policy. The viability of IRM enforcement is
predicated on the ability of the binary rewriting element to
optimize away redundant monitoring code without compro-
mising security.

This work proposes a novel optimization framework for
IRM enforcement. The scheme is based on a constrained
representation of history-based access control policies, which,
despite its constrained expressiveness, can express such poli-
cies as separation of duty, generalized Chinese Wall policies,
and hierarchical one-out-of-k authorization. An IRM opti-
mization procedure has been designed to exploit the struc-
ture of this policy representation. The optimization scheme
is then extended into a distributed optimization protocol, in
which an untrusted code producer attempts to help boost
the optimization effectiveness of an IRM enforcement mech-
anism administered by a distrusting code consumer. It is
shown that the optimization procedure provably preserves
security even in the midst of distributed optimization. A
prototype of the optimization procedure has been imple-
mented for Java bytecode, and its effectiveness has been
empirically profiled.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General—protection mech-
anisms; D.3.4 [Programming Languages]: Processors—
code generation, optimization; D.4.6 [Operating Systems]:
Security and Protection—Access controls

General Terms
Security, Languages, Verification, Performance
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1. INTRODUCTION
This paper presents novel implementation techniques for

the protection mechanism of extensible systems, that is, soft-
ware systems composed of a trusted application core collab-
orating with a number of untrusted software components,
all running within the same address space. To support the
late binding of features to an application, the latter could
be made extensible by adopting a plug-in architecture or
offering scripting support. This paper focuses on language-
based extensible systems [30] such as those developed on the
safe language environments Java and .Net. In these systems,
untrusted components collaborate with the application core
through a well-defined Application Programming Interface
(API). To protect the integrity of the resources encapsulated
by the API, it is in the interest of the application core to
ensure that access requests made by the untrusted compo-
nents through the API honor certain security policies. A
notable such family of security policies are history-based ac-
cess control policies, also known as safety properties in the
literature [29]. To enforce these policies, authorization deci-
sions are made solely on the basis of the execution history
of the target program as observed by the enforcement mech-
anism at run time. Examples of such policies include the
Chinese Wall policy [10], Biba’s low water mark policy [8],
one-out-of-k authorization [14], assured pipelines [9], as well
as Stack Inspection [38] and its variants [1].

Execution monitoring [14, 15, 40] is the standard enforce-
ment mechanism for history-based access control policies.
The classical implementation strategy is to interpose a ref-
erence monitor at the entry points of the API, so that the
monitor may track the API calls previously made, argu-
ments passed, or even the run-time state of the untrusted
component to ensure policy compliance. This is the im-
plementation strategy adopted by the Java platform in its
Stack Inspection mechanism [18]. A modern implementa-
tion strategy for execution monitoring is Inlined Reference
Monitor (IRM) [36], in which monitoring code is injected
into an untrusted component through binary rewriting. The
advantage of IRM over interpositioning is that IRM fully
decouples the enforcement mechanism from the application
core, thereby allowing the security model to evolve sepa-
rately from the application code base. An important chal-
lenge faced by IRM enforcement mechanisms is the run-time



overhead induced by the injected code [38, 29]. Viability of
the IRM approach is predicated on the ability of the binary
rewriting element to optimize away unnecessary monitoring
code [12].

In this work, we explore the interplay between security
concerns and optimization procedures for IRM enforcement
of history-based access control policies. Our contribution is
twofold:

1. Optimization-friendly policy representation:
Since [29, 35, 36], the Security Automaton has become
the standard representation for security policies to be
enforced by execution monitoring. A research concern
[5, 17, 22, 33, 34] of the language-based security com-
munity has been the following: Can we trade off the
expressiveness of policy representation (i.e., by adopt-
ing a less powerful version of the Security Automaton)
for improved resource consumption (e.g., time, space,
information) of the execution monitor? In this work,
we address a related but novel research question: Can
we trade off the expressiveness of policy representation
for improved effectiveness of the optimization element
in the IRM binary rewriter? By adopting a declara-
tive state representation and imposing structures on
state transitions, we have shown that one can employ
standard compiler optimization techniques to optimize
away state transition code that would otherwise be in-
jected into the target program, and do so without com-
promising security. We also demonstrate that the re-
sulting policy representation is still expressive enough
to encode a wide range of history-based access control
policies.

2. Distributed optimization protocol: To further en-
hance the effectiveness of IRM optimization, we pro-
pose a distributed optimization protocol that has been
inspired by Proof-Carrying Code [24]. Specifically, an
untrusted code producer sends a software component
to a distrusting code consumer for execution. To pro-
mote usage of the component, the code producer ships
a version of the component that has been annotated
with optimization directives, which are hints on how
the code consumer can aggressively optimize the mon-
itor code to be injected into the component for IRM
enforcement. As the code producer could very well
be malicious, blindly following the optimization di-
rectives could lead to the omission of key monitoring
logic, thus compromising security. To counter this,
the code consumer injects into the component specially
designed run-time checks that will be completely op-
timized away if the code producer is honest about the
optimization directives, but will detect the dishonesty
at run time if the code producer attempts to mislead
the code consumer.

The rest of this paper outlines the proposed policy repre-
sentation (Sect. 3), the optimization procedure that takes
advantage of this policy representation (Sect. 4), a corre-
sponding distributed optimization protocol (Sect. 5), as well
as an implementation (Sect. 6) and its empirical evaluation
(Sect. 7).

2. RELATED WORK

What we call history-based access control policies are also
known in the literature as safety properties1. Schneider
characterized the security policies enforceable by execution
monitoring to be safety properties [29], and proposed Secu-
rity Automata (SA) as the standard representation of ex-
ecution monitors. (A recent sharpening of this result can
be found in [19].) Inlined Reference Monitoring was first
proposed in [36] as a framework to unify previous work [14,
15] that employs binary rewriting to enforce history-based
access control policies. Fong proposed an information-based
characterization of security policies enforceable by execu-
tion monitors consuming only a limited portion of history
information [17]. The goal was to understand the trade-off
between the differentiating power of an execution monitor
and the resource to which it is made available, a goal first
articulated by Ligatti et al [5, 22]. The work has been re-
fined by Talhi et al to obtain a characterization of execution
monitors operating under memory constraints [33, 34]. Our
work poses a related but novel question: can the expressive-
ness of policy representation be restricted to facilitate IRM
optimization? Our policy representation is formally akin to
STRIPS planning operators [16].

A first principled design of optimization procedures for
IRM enforcement mechanisms is [12], which assumes each
transition has a constant cost. Our optimization procedure
is designed for unbounded state space, and thus we adopted
a different performance metric (see Sect. 4). As IRM en-
forcement could be seen as a special-case of Aspect-Oriented
Programming (AOP) [21], previous work on optimization
techniques for AOP languages (e.g., [4]) is also relevant. Our
work is unique in that we facilitate optimization by trading
off policy expressiveness and by adopting a distributed op-
timization protocol.

Proof-Carrying Code (PCC) [24] pioneered the idea of self-
certifying code. Specifically, a proof of safety is shipped
along with an untrusted program, allowing the code con-
sumer to verify safety in a tractable manner. Rose and Rose
proposed a lightweight Java bytecode verification framework
[27], in which type states are shipped along with Java class-
files, so that bytecode verification can be performed more
efficiently. In model-carrying code [31], the code producer
ships an untrusted program together with its behavior model.
The model is checked by the code consumer against a preset
policy for compliance. The verified model is then employed
to monitor the execution of the untrusted program. In [2], a
PCC-style safety proof is attached to an untrusted program
to certify that an execution monitor has been properly in-
lined. Compared to the work above, ours is unique in that
it is the first to propose annotations for facilitating IRM
optimization rather than verification.

CMV [32] is a model checker for verifying complete medi-
ation [28] in the Stack Inspection enforcement mechanism of
a Java Virtual Machine (JVM) implementation. Our work
could be seen as a generalization of the static analysis per-
formed by CMV to (1) support a more general class of safety
properties and (2) inject dynamic checks when a target prop-
erty cannot be statically verified. Both systems employ a
notion of method interfaces (called method summaries in

1We adopt the nomenclature of [14], and use the term
“history-based access control” to refer to execution moni-
toring in general. Recently, some authors (e.g., [39]) use the
term to refer to a variant of Stack Inspection [38] proposed
by Abadi and Fournet [1]. We deviate from the latter usage.



manager();

if (...) {
accountant();

}
if (...) {

critical();

manager();

}

accountant();

critical();

Figure 1: Program before monitor inlining.

Program Point Event

after manager() m
after accountant() a
before critical() c

Figure 2: Mapping program points to access events.

[32]) to modularize analysis. While method summaries are
computed by a special-purpose algorithm, method interfaces
are generated by a work-list-based whole-program analysis
[41, Appendix A].

3. AN OPTIMIZATION-FRIENDLY
POLICY REPRESENTATION

3.1 Inlined Reference Monitor
Consider the enforcement of Separation of Duty [11] in

an example program shown in Fig. 1 (adapted from [12], in
turn inspired by [20, 6]). Our goal is to ensure that the crit-

ical() operation is performed only under the endorsement
of both the manager() and accountant() operations. To pre-
cisely articulate this policy, we interpret the run-time traver-
sal of certain program points to be security-relevant events
(Fig. 2): events m, a and c correspond respectively to the
three operations. Program execution therefore generates an
event sequence. For example, if both of the “then” branches
are executed, then the event sequence macmac will be gen-
erated. Our policy can then be phrased as a safety property
regarding the generated event sequences [29]. One way to
enforce such a policy is through Inlined Reference Monitors
(IRMs) [36]. Specifically, monitoring code is injected into
the program points of interest, tracking the history of exe-
cution, and aborting execution whenever a policy violation
is detected. In Fig. 3, monitoring code has been injected
into the original programs identified in Fig. 1, tracking the
occurrences of events m and a, and ensuring that every oc-
currence of event c is properly guarded by both m and a.

Since [29, 35, 36], history-based access control policies are
represented by Security Automata. A Security Automa-
ton (SA) is a quadruple M = 〈Σ, Q, q0, {δa}a∈Σ〉, where (i)
Σ is a countable set of access events, (ii) Q is a countable
set of monitor states, (iii) q0 ∈ Q is a distinguished start
state, and (iv) {δa}a∈Σ is a family of transition functions,
indexed by access events, such that each transition function
δa : Q ⇀ Q is a partial function mapping the current moni-
tor state to an optional next state. Given an event sequence
w ∈ Σ∗, we write δw for the partial function defined induc-
tively as follows: δ(ǫ) = ιQ, the total identity function for
Q, and δa·w = δw ◦ δa (i.e., function composition). Note

bool pm = false;

bool pa = false;

manager();

pm = true;

if (...) {

accountant();

pa = true;

}
if (...) {

if (pm ∧ pa) { pm = false; pa = false; }

else throw new IRMException();

critical();

manager();

pm = true;

}

accountant();

pa = true;

if (pm ∧ pa) { pm = false; pa = false; }

else throw new IRMException();

critical();

Figure 3: Program after monitor inlining.

that, since δw is partial, δw(q) may not be defined for every
state q. An event sequence w ∈ Σ∗ is considered policy
compliant iff δw(q0) is defined.

At the program points corresponding to event a, IRM in-
jects a code fragment that simulates δa. A competitive IRM
implementation will subject this code fragment to aggressive
optimization.

3.2 A Constrained Policy Representation
Any practical policy representation must place constraints

on the Q and δ components [35, 36, 3]. We consider repre-
sentation constraints that facilitate IRM optimization. Our
proposed policy representation is based on two design choices
that balance efficiency considerations against policy expres-
siveness.

Design choice 1: Unbounded state space, finitary tran-
sitions.

Unlike [12], which assumes Q to be finite, we anticipate
the state space to be unbounded for practical IRM. Specifi-
cally, we envision the employment of IRM rewriting at load
time, such that the state space may have to be expanded
when new code units are dynamically loaded. It is therefore
assumed that each application domain is associated with
a countable set Π of propositional variables2, called state
variables. A Π-state, or simply a state, is an assignment of
truth values to propositional variables from Π, such that the
assignment differs from one of the following three truth as-
signments for only finitely many propositional variables: (i)
all propositions are undefined, (ii) all propositions are false,
and (iii) all propositions are true. Such a truth assignment
can be represented using only a finite amount of memory.
Henceforth, we identify a state by the set of literals that are
satisfied by the state. If neither of the literals for a proposi-
tion appears in the set, then the proposition is undefined in
the state. Thus the empty set denotes the state in which all

2Although we focus on boolean state variables here, our
scheme can be readily generalized to handle variables of fi-
nite domains.



propositions are undefined. Unless specified otherwise, it is
assumed3 that q0 = ∅.

To render execution monitoring tractable, every transi-
tion function must be finitary , meaning that (1) only a
finite number of state variables determine if the transition
is defined at a given state, and (2) the resulting state can be
obtained by altering only a finite number of state variables,
so that the new value of each variable is a function of only
a finite number of state variables in the original state. A
finitary transition function is called an operator .

Design choice 2: Conjunctive preconditions, constant
effects (CPCE).

An operator can be represented by two elements: (1) a
precondition expression (a boolean expression in terms of
a finite number of state variables) indicating if the transition
is defined at a given state, and (2) for each state variable
that can potentially be altered by the transition function,
an effect expression (a boolean expression in terms of a fi-
nite number of state variables) that computes the new value
for the variable. While this arrangement is fully general,
we impose further syntactic restrictions to arrive at a repre-
sentation that is optimization-friendly: (1) the precondition
expression must be a conjunction of literals; (2) every effect
expression must be a constant truth value. Operators satis-
fying these restrictions are called CPCE operators. For-
mally, we represent a CPCE operator by a pair 〈pre, eff 〉,
where:

pre: a finite set of preconditions, each of which is a literal
(i.e., p or ¬p), such that, for each proposition p, at
most one of p or ¬p belongs to the set

eff : a finite set of effects, each of which is a generalized
literal (i.e., p, ¬p, or ?p), such that, for each propo-
sition p, at most one of p, ¬p or ?p appears in the
set

The state obtained by applying the CPCE operator 〈pre, eff 〉
to a state S (i.e., a set of literals) is:

〈pre, eff 〉(S)
def
=

(

S ⊕ eff if pre ⊆ S

undefined otherwise

where, given a set P of propositions, a set S of literals and
a set L of generalized literals,

S ⊕ L
def
= (S \ lits(vars(L))) ∪ (L ∩ lits(vars(L)))

vars(L)
def
= {p ∈ Π | p ∈ L ∨ ¬p ∈ L ∨ ?p ∈ L}

lits(P )
def
= {p,¬p | p ∈ P}

Intuitively, the operator is defined at state S if the con-
junction pre is satisfied by the truth assignment S. In the
resulting state, a propositional variable p is set to true if
p ∈ eff , false if ¬p ∈ eff , undefined if ?p ∈ eff , or otherwise
its original value. As a special case, the empty operator
〈∅, ∅〉 represents the total identity function ιQ for monitor
states. Also notice that the preconditions of an operator
cannot be used for detecting if a proposition is undefined in
a given state, but effects could set propositions to undefined.
This intentional asymmetry serves an important function to
be discussed in the sequel (in the proof of Thm. 4).

3The proposed optimization scheme can be easily adopted
to the case when this assumption does not hold.

3.3 Evaluation of Expressiveness
We evaluate the expressiveness of the proposed policy rep-

resentation by a number of case studies.

Simple Integrity Policies.
Complete Mediation [32, 28] requires every sensitive op-

eration to be performed only after a monitoring operation
has been invoked. The policy prescribes an event set Σ =
{sen,mon}. To enforce the policy, a monitor is constructed
with state variable set Π = {pm}, and transition functions
δsen = 〈{pm}, {¬pm}〉 and δmon = 〈∅, {pm}〉. The transition
function δmon asserts pm, thus enabling sen, which in turn
negates pm.

Separation of Duty (Sect. 3.1) prescribes an access event
set Σ = {a, m, c}. The policy is enforced by a monitor for
which Π = {pa, pm}, where pa and pm indicate, respectively,
that events a and m have occurred. The transition functions
are defined as follows: δa = 〈∅, {pa}〉, δm = 〈∅, {pm}〉, δc =
〈{pa, pm}, {¬pa,¬pm}〉. The monitor ensures that c only
occurs after both a and m have occurred, without imposing
an ordering of a and m.

Generalized Chinese Wall Policy.
The Chinese Wall Policy [10] prevents conflicts of interest

that may arise from allowing access to data sets that be-
long to competing parties. Lin proposed a generalization, in
which conflict relationships need not form an equivalence re-
lation [23]. In extensible systems, Lin’s Generalized Chinese
Wall Policy can be employed to ensure that conflicting oper-
ations are not executed by an untrusted component, thereby
protecting the integrity of the core. Formally, a General-
ized Chinese Wall Policy is characterized by a conflict graph
〈Σ, E〉, where Σ is a countable set of operations, and each
undirected edge in E connects a pair of operations in conflict
with one another. Execution of an operation a ∈ Σ renders
all neighbors of a forbidden in the future. Under the mild as-
sumption that vertices of the conflict graph has bounded de-
grees, the Generalized Chinese Wall Policy can be expressed
as CPCE operators as follows. Define Π = {pa | a ∈ Σ},
q0 = {¬pa | a ∈ Σ}, and δa = 〈{¬pb | ab ∈ E}, {pa}〉. The
construction ensures that the set of executed operations is
always an independent set in the conflict graph.

Hierarchical One-Out-Of-k Authorization.
One-out-of-k authorization [14] classifies applications into

equivalence classes based on the access rights required for
successful execution. For example, a browser needs the
right to open network connections but never accesses user
files, and an editor needs the right to access user files but
never connects to the network. The protection goal is to
ensure that untrusted code only exercises the access rights
of a known application class: e.g., an application that both
reads a user file and connects to the network is neither a
browser nor editor, and thus must be rejected. Formally, an
One-Out-Of-k Policy is characterized by a family {Ci}1≤i≤k

of application classes such that Ci ⊆ Σ. The policy requires
that, every time a program is executed, there is a Ci such
that every access right exercised during that execution be-
longs to Ci. One-out-of-k authorization, in its full gener-
ality, is not necessarily expressible as CPCE operators [41,
Thm. 1]. Fortunately, there is an important special case
that the CPCE representation can capture.



Definition 1. An One-Out-Of-k Policy {Ci}1≤i≤k is said
to be hierarchical iff both of the following hold:

∀i, j . Ci ∩ Cj 6= ∅ ⇒ ∃m . Cm = Ci ∩ Cj (1)

∀i, j, m . (Ci ⊆ Cm ∧ Cj ⊆ Cm) ⇒ (Ci ⊆ Cj ∨ Cj ⊆ Ci) (2)

Condition (1) asserts that the family of application classes is
closed under non-empty intersection. Condition (2) asserts
that the subclasses of any given class are totally ordered.
The Hasse diagram [13] of classes satisfying conditions (1)
and (2) is a forest (hence “hierarchical”).

Theorem 2. Every hierarchical One-Out-Of-k Policy is
enforceable by CPCE operators.

See Appendix A for a proof. For balanced hierarchies, there
is a policy encoding in which the size of each precondi-
tion and effect set is log k [41, Thm. 4]. Most naturally-
occurring One-Out-Of-k Policies are either hierarchical, or
can be made hierarchical without affecting safety [41, Thm.
6] (e.g., the policy in [17]).

4. THE BASIC OPTIMIZATION
PROCEDURE

Given a program represented as control flow graphs
(CFGs) [20, 6], an IRM enforcement mechanism proceeds
in three phases:

Phase 1: By consulting a security policy, construct an as-
sociative array op[·], assigning to every program point
n some (possibly empty) operator op[n].

Phase 2: Optimize the operator assignment by updating
the entries in op[·], in some semantic-preserving man-
ner, with the objective that the resulting execution
time is improved.

Phase 3: Instrument the target program by injecting, (a)
at the program entry point, a code fragment that ini-
tializes a globally accessible monitor state, and, (b)
at each program point n, a code fragment simulating
op[n]. The latter code fragment will behave as follows
at run time:

• The preconditions in op[n].pre are checked against
the current monitor state. If any of the precon-
ditions is not satisfied, the a security exception is
raised4.

• The effects are asserted into the monitor state.

The focus of this work is Phase 2 — the design of optimiza-
tion procedures.

Given op[·], a control flow path is feasible iff all operator
preconditions are satisfied along the path. Unlike [12], which
assumes all transitions to have the same cost, we adopt the
following performance metric: the overhead of a feasible
path is the total number of preconditions checked and ef-
fects asserted along the path. More precisely, an operator
〈pre, eff 〉 incurs an overhead of |pre| + |eff | every time it is
executed. The fewer preconditions and effects are involved
in an operator, the less overhead it incurs on the target pro-
gram. For example, the empty operator does not impose

4It is assumed that the target program cannot catch such
an exception.

an overhead of zero. This performance metric is adopted
because the number of propositions appearing in a Π-state
can in principle be unbounded, and thus no constant-time
implementation of transitions is available.

An execution trace is a control flow path that starts at
the entry point of the program. An optimization procedure
is safe iff infeasible execution traces remain infeasible, and
unobtrusive iff feasible execution traces remain feasible5.
Given a history-based access control policy, an unsafe opti-
mization procedure may cause an execution trace rejected
by the policy to materialize at run time, thereby failing to
enforce the policy. Ensuring safety is thus central to the
security enterprise. A safe optimization procedure is effec-
tive iff, (a) the overhead of a feasible execution trace is never
increased by the procedure, and (b) there is at least one pro-
gram and a feasible execution trace for that program such
that the overhead is strictly reduced by the procedure.

We focus on two kinds of optimization: precondition and
effect elimination. That is, the optimization procedure elim-
inates redundant members of op[n].pre6 and op[n].eff . As
the overhead of a feasible path is never increased by an opti-
mization procedure that is based on precondition and effect
elimination, such a procedure is always effective so long as it
is safe. The remaining challenge is to conduct precondition
and effect elimination without sacrificing safety or incurring
obtrusiveness.

4.1 Simple Programs
We describe how precondition and effect elimination can

be performed for a single CFG. Let nentry , nexit and Ninstr

be, respectively, the entry node, the exit node and the set
of the rest of the nodes in the CFG. Henceforth, we assume
that op[n] = 〈∅, ∅〉 initially for n 6∈ Ninstr . Optimization
proceeds in four steps.

Step 1 - Compute a conservative approximation of the
guaranteed set for each program point.

A literal l belongs to the guaranteed set of a program
point n iff l is established by every feasible path from nentry

to n. This forward analysis is a form of constant propagation
[25]:

GUAout [n] = (GUAin [n] ⊕ op[n].pre) ⊕ op[n].eff

for n ∈ Ninstr (3)

GUAout [n] = ∅

for n ∈ {nentry} (4)

GUAin [n] = ∩m∈pred[n]GUAout [m]

for n ∈ Ninstr ∪ {nexit} (5)

Note the form of (3). By checking the preconditions, an op-
erator has essentially ruled out the infeasible paths. Those
that remain must have the preconditions established as a re-
sult. Consequently, preconditions could be seen as implicit
assertions, while effects are explicit assertions. Notice
also that the order of assertion is significant: explicit asser-
tions override implicit assertions.

5In other words, an execution monitor that is produced by a
safe optimization procedure will never generate a false neg-
ative, and an unobtrusive optimization procedure produces
execution monitors that never generate a false positive.
6Given a record r with schema 〈f1, . . . , fk〉, we refer to the
fi component of r by the notation r.fi. Thus, if op[n] =
〈pre, eff 〉, then op[n].pre refers to pre.



Step 2 - Eliminate redundant preconditions.
A precondition l is considered redundant at program point

n if l is guaranteed to be established at n. Precondition
elimination is achieved by the following update:

op[n].pre := op[n].pre \GUAin [n] for n ∈ Ninstr (6)

Step 3 - Compute a conservative approximation of the
live set at each program point.

A proposition p is live at program point n iff there is a
path from n to another program point n′ such that (1) p is
checked at n′, and (2) there is no (implicit or explicit) effect
assertion involving p along any path from n to n′ [25]. This
backward analysis is defined as follows:

LIVin [n] = (LIVout [n] \ killLIV[n]) ∪ gen
LIV

[n]

for n ∈ Ninstr (7)

LIVin [n] = ∅

for n ∈ {nexit} (8)

LIVout [n] = ∪m∈succ[n]LIVin [m]

for n ∈ Ninstr ∪ {nentry} (9)

where, for n ∈ Ninstr ,

killLIV[n]
def
= vars(op[n].eff )

gen
LIV

[n]
def
= vars(op[n].pre)

Step 4 - Eliminate redundant effects.
A proposition is dead at program point n iff it is not

live at n. An effect is considered redundant if the effect
proposition is dead at the program point where the effect
is asserted. Effect elimination is achieved by the following
update:

op[n].eff := op[n].eff ∩ gen-lits(LIVout [n])

for n ∈ Ninstr (10)

where, given a set P of propositions,

gen-lits(P )
def
= {p,¬p, ?p | p ∈ P}

Theorem 3. The four-step optimization procedure is safe,
unobtrusive and effective.

Proof. Since only guaranteed preconditions and dead ef-
fects are eliminated, the feasibility of a path is not altered
by the optimization procedure. Safety and unobtrusive-
ness thus follow. Effectiveness follows from the fact that
the procedure performs only precondition and effect elimi-
nation.

Discussion.
By adopting conjunctive preconditions and constant ef-

fects, rather than unconstrained precondition and effect ex-
pressions, we have obtained an elegant and informed opti-
mization procedure. First, a function of the form fL(S) =
S ⊕ L for a fixed set L of generalized literals is a monotone
function [25]. Our representation is thus readily amenable
to guaranteed set analysis. Second, the syntactic restric-
tion allows the analyses to deduce more information about
guaranteed sets (see (3)) and live sets (see (7)) than an un-
constrained representation.

4.2 Procedure Calls
To accommodate programs made up of multiple proce-

dures, we extend our program representation, so that a pro-
gram is a collection of CFGs. Besides the usual node types
nentry , nexit and Ninstr , every CFG also comes with (a) a
set Ncall of call nodes, (b) a set Nret of return nodes, (c) a
bijection Einv : Ncall → Nret , and (d) a function callee map-
ping call nodes to CFGs. We envision a modular optimiza-
tion scheme, in which the four-step optimization procedure
is applied to CFGs one at a time, and the order in which
CFGs are processed is not material. To this end, we adjust
data flow equations (4), (5), (8) and (9) as follows:

GUAout [n] = ∅

for n ∈ Nret ∪ {nentry} (11)

GUAin [n] = ∩m∈pred[n]GUAout [m]

for n ∈ Ninstr ∪ Ncall ∪ {nexit} (12)

LIVin [n] = Π

for n ∈ Ncall ∪ {nexit} (13)

LIVout [n] = ∪m∈succ[n]LIVin [m]

for n ∈ Ninstr ∪ Nret ∪ {nentry} (14)

While (12) and (14) are cosmetic changes, (11) and (13) pose
significant challenges:

Challenge #1 On entry to a procedure, no knowledge
about the caller’s state at the call node is available.
We are forced to assume the guaranteed set at the
procedure entry node is empty (i.e., (11)), thereby re-
ducing the opportunities for precondition elimination
within the procedure body.

Challenge #2 On exit from a procedure, no knowledge
about the caller’s live set at the return node is avail-
able. We are forced to assume that all propositions are
live (i.e., (13)), thereby reducing the opportunities for
effect elimination within the procedure body.

Challenge #3 By (13), effects asserted prior to a call node
cannot be readily eliminated.

Challenge #4 By (11), precondition checks following a re-
turn node cannot be readily eliminated.

In the next section, we discuss a distributed optimization
protocol that would allow an untrusted code producer to
assist a distrusting code consumer in addressing the above
challenges.

5. A DISTRIBUTED OPTIMIZATION
PROTOCOL

5.1 Cooperative Optimization without
Assuming Trust

Consider a program distribution scenario inspired by [24],
in which an untrusted code producer P distributes a pro-
gram P to a code consumer C for execution. Suppose C
employs IRM to enforce a history-based access control pol-
icy, while P, eager to promote the usage of P, offers to help
boost the optimization effectiveness of C. How can C securely
accept the contribution of P? We propose the following dis-
tributed optimization protocol .



Stage 1: C publishes, over an untrusted media, a security
policy π = 〈Π, {δa}, α〉, where Π is a set of state vari-
ables, {δa} a family of operators for Π-states, and α a
procedure that computes, for a program P, an associa-
tive array op[·] mapping every program point in P to
an operator from {δa}.

Stage 2: P submits π and an untrusted program P to an
untrusted oracle, which generates a set D of opti-
mization directives. D contains annotations designed
to inform C of how aggressive optimization can be
achieved.

Stage 3: P ships the package 〈P, D〉 to C via an untrusted
channel.

Stage 4: C performs the steps below before executing P:

Phase 1: Use procedure α to construct operator as-
signment op[·] for P.

Phase 2: Update op[·] as follows: (a) D is exploited
to optimize op[·] aggressively. (b) As D cannot
be fully trusted, blindly following the optimiza-
tion directives may destroy the safety of the opti-
mization procedure. Additional “guards” are in-
jected into op[·], so that fraudulent annotations
are detected when P is executed.

Phase 3: Inject op[·] into P.

The protocol is particularly appropriate for a C that is com-
putationally constrained (e.g., IRM via load-time binary
rewriting), and a P having access to a computationally pow-
erful oracle (e.g., offline certification service). In the sequel,
we specialize the protocol for addressing the four optimiza-
tion challenges outlined in Sect. 4.2.

5.2 Procedure Interfaces
We postulate that the code producer attaches a proce-

dure interface to every procedure it ships. Each procedure
interface is a quadruple 〈pre, post , dead in , deadout〉, where:

pre: a set of literals guaranteed by the caller to be estab-
lished at the call node.

post: a set of literals guaranteed by the procedure to be
established at the exit node.

dead in : a set of propositions guaranteed by the procedure
to be dead at the entry node.

deadout : a set of propositions guaranteed by the caller to be
dead at the return node.

The main procedure must have an interface of 〈∅, ∅, Π, Π〉.
Interfaces of other procedures can be generated by the code
producer using an appropriate whole-program analysis (see
[41, Appendix A] for a complete algorithm).

5.3 Using Procedure Interfaces as Optimiza-
tion Directives

The code consumer treats the procedure interfaces as op-
timization directives. Specifically, C uses the interfaces to
perform more accurate analyses in Step 1 and Step 3 of
the four-step optimization procedure. To see this, assume
there is a symbol table function symtbl that maps every call
node to the procedure interface of the callee.

Step 1 - Guaranteed set analysis.
We replace data flow equation (11) by the following:

GUAout [n] = pre for n ∈ {nentry} (15)

GUAout [n] = symtbl(E−1
inv (n)).post for n ∈ Nret (16)

(The expression symtbl(E−1
inv (n)) refers to the callee’s proce-

dure interface for n ∈ Nret .) Rather than indiscriminately
taking guaranteed sets to be ∅ at the entry node and the
return nodes, the interface components pre and post now
inform guaranteed set analysis, thereby creating more op-
portunities for precondition elimination, and thus address-
ing Challenges 1 & 4. This works so long as pre and post
are trustworthy annotations.

Step 3 - Liveness analysis.
We replace data flow equation (13) by the following:

LIVin [n] = (Π \ deadout) ∪ vars(op[n].pre)

for n ∈ {nexit} (17)

LIVin [n] = (Π \ symtbl(n).dead in) ∪ vars(op[n].pre)

for n ∈ Ncall (18)

(The subexpression vars(op[n].pre) does not concern us for
now, because, by setting op[n] initially to 〈∅, ∅〉 for n 6∈
Ninstr , the subexpression is essentially ∅. It becomes indis-
pensable when op[n] is not empty, as is the case once (19),
(20) and (21) have been introduced.) If the interface compo-
nents dead in and deadout are trustworthy, then they inform
liveness analysis at the exit node and the call nodes, thereby
addressing Challenges 2 & 3.

5.4 Guarding Against Fraudulent Procedure
Interfaces

But the procedure interfaces are not to be trusted! They
could cause essential monitoring logic to be optimized away.
To prevent this, Steps 2 and 4 of the four-step optimization
procedure are adapted as follows.

Step 2 - Precondition elimination.
This step now involves two subtasks. First, associate an

auxiliary operator to the exit node and each call node:

op[n] := opguard(symtbl(n).pre) for n ∈ Ncall (19)

op[n] := opguard(post) for n ∈ {nexit} (20)

where, given a set S of literals, opguard(S) is the effect-less
operator 〈S, ∅〉. The injected operators guarantee that the
assumptions made in data flow equations (15) and (16) are
verified at run time.

The second subtask is precondition elimination, which is
performed also on the newly introduced operators:

op[n].pre := op[n].pre \GUAin [n]

for n ∈ Ninstr ∪ Ncall ∪ {nexit} (21)

Step 4 - Effect elimination.
Again, this step is now divided into two subtasks. First,

an auxiliary operator is assigned to every entry and return



node.

op[n] := opassert(GUAout [n], dead in)

for n ∈ {nentry} (22)

op[n] := opassert(GUAout [n], symtbl(E−1
inv (n)).deadout)

for n ∈ Nret (23)

where, given a set S of literals and a set P of proposi-
tions, opassert(S, P ) is the precondition-less operator 〈∅, (S∩
lits(P )) ∪ {?p | p ∈ P\vars(S)}〉. The operator assigns a
value to each of the propositions in P . For each proposition
in P that also appear in a literal in S, the assigned value
is specified by the literal. For each proposition in P that
does not appear in a literal in S, the assigned value is unde-
fined. Essentially, the operator forces all propositions in P
to become dead at run time, and serves as a “guard” for the
assumptions made in (17) and (18).

The second subtask is effect elimination, which is also per-
formed on the newly introduced auxiliary operators.

op[n].eff := op[n].eff ∩ gen-lits(LIVout [n])

for n ∈ Ninstr ∪ Nret ∪ {nentry} (24)

Theorem 4. The revised optimization procedure is safe.

Proof. Suppose the value of op[n] has been updated
from 〈∅, ∅〉 to opguard(S) for some set S of literals. As the
operator is effect-less, every infeasible path containing n re-
mains infeasible. The introduction of opguard(S) in updates
(19) and (20) thus preserves safety.

Now, suppose the value of op[n] has been updated from
〈∅, ∅〉 to opassert(GUAout [n], P ), for some set P of proposi-
tions. Consider an effect asserted by the auxiliary operator.
If the effect is of the form ?p, then it only causes future pre-
condition checks to fail, but never establishes any precondi-
tion (recall that a precondition cannot be used to check if
a proposition is undefined). If the effect is a literal, and it
establishes a precondition, then the precondition is already
guaranteed prior to the assertion of the literal. In either
case, infeasible paths remain infeasible. Updates (22) and
(23) thus preserve safety.

In other words, if the code producer attempts to mislead
the code consumer by sending fraudulent procedure inter-
faces, the fraud will be detected by the IRM at run time.
Thm. 4 therefore guarantees the security of the distributed
optimization protocol.

The interface 〈pre, post , dead in , deadout〉 of a procedure
proc is said to be conservative iff all the following hold:
(a) pre ⊆ GUAin [n] for every call node n for which proc is
the callee, (b) post ⊆ GUAin [n] for the exit node n of proc,
(c) dead in ⊆ Π \ LIVout [n] for the entry node n of proc, and
(d) deadout ⊆ Π \ LIVout [n] for every return node n for which
proc is the callee.

Theorem 5. With conservative interfaces, the revised op-
timization procedure is unobtrusive and effective.

Proof. If all procedure interfaces are conservative, then
the updates (21) and (24) will completely remove the pre-
conditions and effects of the auxiliary operators introduced
in (19), (20), (22) and (23).

In other words, if the code producer is honest about the
optimization directives, then the run-time checks for fraud

detection will be optimized away. Conservative procedure
interfaces can be generated by the interface generation algo-
rithm described in [41, Appendix A].

5.5 Accommodating Java-Style Language
Constructs

Exception handling.
In [41, Sect. 6.1] we provide details on how our optimiza-

tion procedure can be extended to accommodate Java-style
exception handling constructs. As a highlight, procedure
interfaces must now assume the form 〈pre, post , esc, dead in ,
deadout , dead fail〉, where the new components have the fol-
lowing roles:

esc: a set of literals guaranteed by the procedure to be es-
tablished when an exception escapes the procedure

dead fail : a set of propositions guaranteed to be dead by han-
dlers of exceptions escaping from the procedure

Method overriding.
In the presence of dynamic method dispatching, the code

consumer must verify that method overriding honors certain
constraints among method interfaces. Given method inter-
faces I = 〈pre, post , esc, dead in , deadout , dead fail〉 and I′ =
〈pre ′, post ′, esc′, dead ′

in , dead ′
out , dead

′
fail〉, we write I′ ⊑ I

iff all of the following hold:

pre ⊇ pre ′ post ⊆ post ′ esc ⊆ esc′

dead in ⊆ dead ′
in deadout ⊇ dead ′

out dead fail ⊇ dead ′
fail

The constraints follow the usual contravariant pattern of
function subtyping [26]. To preserve safety, the code con-
sumer must verify that I′ ⊑ I whenever a method with
interface I′ overrides a method with interface I. Since ⊑ is
transitive, only direct method overrides need to be verified.
The interface generation algorithm in [41, Appendix A] can
be used by the code producer to generate method interfaces
guaranteed to satisfy the above. Details on the treatment of
method overriding can be found in [41, Sect. 6.2].

6. IMPLEMENTATION EXPERIENCE
We developed a Java prototype for the revised optimiza-

tion procedure (Sect. 5), with Java bytecode as the target
language. Our prototype handles the entire Java bytecode
language. The prototype was developed in Soot [37], a
framework for Java bytecode manipulation and optimiza-
tion. Soot provides facilities for converting Java bytecode
into more manageable internal representations, performing
control flow analysis to construct control flow graphs, as well
as providing infrastructure code for iterative, intraprocedu-
ral data flow analyses. Specifically, our prototype consists
of three components: (1) a modular optimization procedure,
which applies the revised four-step optimization procedure
to a CFG and an operator assignment, (2) an instrumenta-
tion module that converts a CFG and an operator assign-
ment to Java bytecode, and (3) a method interface genera-
tor, which is a whole-program analysis built on top of the
modular optimization procedure [41, Appendix A].

Soot’s built-in control flow analyzer has been adopted to
construct control flow graphs in the presence of exceptions.



Name/Version Description #classes #methods
BCEL/5.2 framework for manip-

ulating Java bytecode
384 3184

BcVer/1.0 prints classfile version 11 120
JavaCC/4.0 parser generator 137 2091
JavaTar/2.5 tar-style archiving tool 15 176
ProGuard/4.2 classfile shrinker, op-

timizer, obfuscater &
pre-verifier

447 4211

SableCC/3.2 parser generator 285 2366

Figure 4: Benchmarking suite.

Although Soot provides “hooks” for programmers to cus-
tomize the control flow analyzer so that more accurate ex-
ception flows can be obtained, we refrain from following that
trail, as precise exception escape analysis is outside of the
scope of this work. We however modified the code base of
the Soot data flow analysis framework to accommodate the
complex data flow equations caused by exception handling
(see [41, Sect. 6.1] for details).

7. EMPIRICAL EVALUATION
We employed our prototype to empirically assess the de-

gree to which an IRM enforcement mechanism can bene-
fit from the four-step optimization procedure (Sect. 4), as
well as the further improvements brought about by adopt-
ing method interfaces as optimization directives in a dis-
tributed optimization protocol (Sect. 5). To benchmark
our optimization schemes against production-quality con-
trol flow graphs, we selected a suite of open source Java
applications for our experiments (see Fig. 4). We inten-
tionally consider only batch-processing applications, so that
we can fully automate the benchmarking process. For each
program, we also select a naturally-occurring input to ac-
company the program.

To profile the performance of our optimization procedure
against history-based access control policies of various struc-
tural characteristics, we designed a stochastic procedure for
generating benchmarking policies. Given a program P and
an input I, an instance of the experimental configuration
EC[pnode , peff , ppre ] (where pnode , peff and ppre are proba-
bilities) is an operator assignment op[·] stochastically con-
structed as follows:

1. Select a set N of program points from P as targets
of operator injection. Each program point is selected
with probability pnode . Operator assignment op[n] will
remain 〈∅, ∅〉 for n 6∈ N .

2. Fix a set Π of ten propositions (i.e., boolean variables).
For each n ∈ N , set op[n] to 〈∅, eff n〉, where each eff n

is constructed independently as follows: Select a subset
P of Π, such that each p ∈ Π is selected independently
with probability peff . Then, construct eff n such that,
for each p ∈ P , with equal probability either p or ¬p
appears in eff n.

3. Instrument P with op[·] and then execute P on input
I. Record the traversed control flow path.

4. For each program point n ∈ N that appears on the
recorded path, compute the set GUAin [n] of literals
guaranteed to be satisfied at n whenever n is visited
during the above execution.
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Figure 7: Optimization effectiveness with and with-
out method interfaces.

5. For each n ∈ N , select a subset pren of literals from
GUAin [n], such that each member of GUAin [n] is se-
lected with probability ppre .

6. Set op[n] to 〈pren, eff n〉 for each n ∈ N . This is the
operator assignment we seek to construct.

The construction procedure guarantees that, on input I, pro-
gram P honors the policy represented by op[·], and thus
benchmarking will not be interrupted by security exceptions.
The probability pnode measures operator density , while the
probabilities peff and ppre measure effect density and pre-
condition density respectively.

Given a program P, an input I, and an operator assign-
ment op[·], the effectiveness of an optimization procedure
is measured as follows. First, P is instrumented with op[·],
and the instrumented program is executed with input I. The
overhead of execution (as defined in Sect. 4) is recorded. To
better assess the relative effectiveness of precondition and
effect elimination, we record the number of preconditions
checked as Oorg

pre , and the number of effects checked as Oorg

eff .
Second, the process is repeated with an optimized operator
assignment obtained by applying Ω to op[·]. The overhead of
execution as incurred by precondition checks and effect as-
sertions are recorded as Oopt

pre and Oopt

eff . Optimization effec-

tiveness is then expressed as the ratios Rpre = 1−Oopt
pre /Oorg

pre

and Reff = 1 − Oopt

eff /Oorg

eff . More effective optimization pro-
cedures have larger Rpre and Reff .

Our experiments were conducted on an IntelCore 2 Duo
2.33GHz iMac with 2GB of RAM, running Mac OS X 10.4.9,
JDK 1.6.0 Update 3, Soot 2.2.5 and Jasmin 2.2.5.

7.1 Experiment 1: Optimization With and
Without Optimization Directives

In a first experiment, two instantiations of the revised op-
timization procedure (Sect. 5) were considered. In the first
instantiation, all method interfaces are set to 〈∅, ∅, ∅, ∅, ∅, Π〉.
Adopting an (almost) empty method interface reduces the
revised optimization procedure to the basic version reported
in Sect. 4, except that by setting dead fail to Π we avoid
confusing the optimization algorithm with the overly con-
servative control flow analysis built into Soot for analyzing
exception flow. In the second instantiation, we employed the
method interface generation algorithm [41, Appendix A] to
generate conservative method interfaces for all methods, and
then set dead fail uniformly to Π for the same reason. This



 0

 20

 40

 60

 80

 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
nt

ag
e 

of
 o

ve
rh

ea
d 

re
m

ov
ed

 b
y 

op
tim

iz
at

io
n 

(%
)

BCEL
BcVer

JavaCC
JavaTar

ProGuard
SableCC

 0

 20

 40

 60

 80

 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BCEL
BcVer

JavaCC
JavaTar

ProGuard
SableCC

 0

 20

 40

 60

 80

 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BCEL
BcVer

JavaCC
JavaTar

ProGuard
SableCC

(a) (b) (c)

Figure 5: Rpre with different (a) peff (b) ppre (c) pnode .
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Figure 6: Reff with different (a) peff (b) ppre (c) pnode .

second instantiation allows us to measure the effectiveness
of the revised optimization procedure (Sect. 5) when the dis-
tributed optimization protocol is employed. Note that the
second instantiation never underperforms the first because
the method interfaces used were conservative.

We generated ten instances of EC[0.5, 0.5, 0.5] for each
program in Fig. 4, and then measured the optimization ef-
fectiveness ratios Rpre and Reff for each instantiation of the
optimization procedure. The measurements for the ten in-
stances were averaged and shown in Fig. 7. The bars labeled
pre (empty) and eff (empty) show the average Rpre and
Reff for the optimization procedure with empty method in-
terfaces, while pre (inferred) and eff (inferred) corre-
spond to average Rpre and Reff for the optimization proce-
dure with inferred method interfaces.

Three observations can be made from Fig. 7. (1) Both
precondition and effect elimination deliver significant reduc-
tion in performance overhead, even when method interfaces
are not present. (2) Precondition elimination has a much
higher effectiveness than effect elimination. (3) The added
effectiveness of method interfaces is noticeable but not dra-
matic.

7.2 Experiment 2: Varying Policy Character-
istics

To characterize optimization effectiveness under various
policy structures, we subject the revised optimization pro-
cedure (with inferred method interfaces) to different exper-
imental configurations. Specifically, we varied each of pnode ,
peff and ppre from 0 to 1, by increments of 0.1, while keeping
the other two parameters fixed at 0.5. Again, ten instances
of each experimental configuration were generated, and the
average effectiveness ratios Rpre and Reff for each configu-

ration are depicted respectively in Fig. 5 and 6.
From Fig. 6 (a) and (b), we notice that Reff increases with

an increasing effect density (peff ), but decreases with an in-
creasing precondition density (ppre). We argue that this can
be readily explained by data flow equation (7). A higher peff

increases the size of killLIV[·], creating larger dead sets, and
thus promotes effect elimination. A higher ppre , however, in-
creases the size of gen

LIV
[·], creating smaller dead sets, and

thus discourages effect elimination. Similarly, from Fig. 5
(a) and (b), we notice that Rpre increases with either an
increasing effect density (peff ) or an increasing precondition
density (ppre). This can be explained readily by data flow
equation (3), in which larger effect and precondition sets
produce larger guaranteed sets, which in turn promote pre-
condition elimination. Notice also that implicit assertion is
overridden by explicit assertion, thus explaining why Fig. 5
(b) shows a less dramatic increase than Fig. 5 (a). The above
observations imply that:

If two different encodings of the same security
policy incur similar overhead, then we should pre-
fer the encoding with more effects and less pre-
conditions, for such a policy is more amenable to
optimization.

Fig. 5 (c) and 6 (c) show that higher operator density (pnode)
produces higher optimization effectiveness.

IRM benefits more from precondition and effect
elimination when more program points are inter-
preted as access events.



8. CONCLUDING REMARKS
We proposed a constrained policy representation for facil-

itating IRM optimization. Our policy representation is ex-
pressive enough to represent simple integrity policies, Gener-
alized Chinese Wall Policies, and Hierarchical One-Out-Of-k
Policies. Our core optimization procedure is safe, unobtru-
sive and effective. The optimization procedure has been
extended to accommodate a distributed optimization pro-
tocol, in which an untrusted code producer may formulate
method interfaces to boost the optimization effectiveness of
a distrusting code consumer. A prototype of the procedure
has been implemented, and demonstrated to exhibit positive
performance characteristics.

We are exploring alternative optimization directives that
could lead to more effective optimization than our current
design of method interfaces. While our current policy repre-
sentation and distributed optimization protocol are designed
for supporting control flow-based policies, we are also ex-
ploring how they can be extended to enforce data flow con-
straints [7].
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APPENDIX

A. PROOF OF THEOREM 2

Proof. Consider a Hierarchical One-Out-Of-k Policy
{Ci}1≤i≤k. Without loss of generality, assume that every
a ∈ Σ belongs to at least one Ci. Define the home class
H(a) of access a ∈ Σ to be

T

{ C ∈ {Ci}1≤i≤k | a ∈ C }, that
is, the smallest class containing a. (The existence of such
a class is guaranteed by condition (1).) A pair of accesses,
say a and b, is said to be consistent iff they belong to
the same application class: i.e., ∃i . {a, b} ⊆ Ci. Otherwise,
they are in conflict . Notice that a and b are consistent iff
H(a) ⊆ H(b) ∨H(b) ⊆ H(a). (The “if” direction is immedi-
ate. The “only if” direction follows from {a, b} ⊆ Ci by an
application of condition (2).)

To obtain the required CPCE representation of {Ci}1≤i≤k,
construct Π = {pC | C ∈ {Ci}1≤i≤k}, q0 = {¬pC | C ∈
{Ci}1≤i≤k}, and δa = 〈prea, eff a〉, where:

prea = {¬pC | H(a) 6⊆ C ∧ C 6⊆ H(a)}

eff a = {pH(a)}

It is easy to see that, with the CPCE operators above, at
run time, the set H of accesses that have occurred so far
are pair-wise consistent. What we want is that there is a Ci

such that H ⊆ Ci. We prove this by induction.
The base cases for |H| ≤ 2 can be handled trivially. Sup-

pose, for some k > 2, all event set H with |H| = k is such
that H ⊆ Ci for some i whenever H contains pairwise-
consistent events. Consider a set H ′ = H ∪ {a} where
|H| = k, a 6∈ H, and events in H ′ are pairwise consistent.
By way of contradiction, assume the following holds:

There is no Ci such that H ′ ⊆ Ci. (25)

Because H contains pairwise-consistent events, the induc-
tion hypothesis implies that there is a class C⋆ such that
H ⊆ C⋆. Also, a is consistent with every member of H.
Thus, for each b ∈ H, let Cb be a class containing both a
and b. By (1), C◦ =

T

b∈H
Cb is a class. By assumption

(25), there is an event b⋆ ∈ H such that b⋆ 6∈ C◦. By (1),
C• = C⋆ ∩ Cb⋆ is a class. Now, a ∈ C◦, but a 6∈ C•; b⋆ ∈ C•,
but b⋆ 6∈ C◦. So C◦ and C• are distinct, incomparable subsets
of Cb⋆ , contradicting (2).


