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Abstract—Outbreaks of forest pests cause large-scale damages,
which lead to significant impact on the ecosystem as well as the
forestry industry. Current methods of monitoring pest outbreaks
involve field, aerial and remote sensing surveys. These methods only
provide partial spatial coverage and can detect outbreaks only after
they have substantially progressed across wide geographic areas.
This paper presents an IoT system for real-time insect infesta-
tion detection using bioacoustic recognition via machine learning
techniques. Specifically, we focus on detecting the Mountain Pine
Beetle (MPB), which is the most destructive insect of mature pines
in western North American forests. We present the design of the
system and describe its various hardware and software components.
Experimental results collected from a prototype implementation of
the system are presented, which show that the system can detect
MPB with 82% accuracy. We also demonstrate the applicability of
our system in other noise monitoring applications, and report our
experimental results on urban noise detection and classification.

I. INTRODUCTION
A. Background and Motivation

Insect pest outbreaks (such as Dendroctonus Erichson,
Coleoptera, and Curculionidae), through mortality and growth
loss of trees, cause a large-scale damage to western North
American forests [1]. Such outbreaks lead to impacts on valuable
services provided by the ecosystem, e.g., supply of timber, water
purification, and storage of carbon. Thus, for forest pest man-
agement planning and modeling purposes, information regarding
the areal extent, location and severity of the insect damage is
of vital importance. While there are nine major insect pests
in Canada, the Dendroctonus ponderosae, a.k.a. Mountain Pine
Beetle (MPB), is the most destructive insect of mature pines
in western North American forests [2]. Specifically, the current
MPB outbreak in Canada started in the province of British
Columbia in 1990s. Since then, the insect has killed an estimated
58% of the total volume of merchantable pine in the province,
and is quickly spreading eastward to other provinces [3].

Currently, pest damage assessment is based on the information
collected using field, aerial [4] and remote sensing surveys [5].
The aerial surveys track disturbance in the forest landscape
over space and time using maps. The aerial maps are sub-
jective, relatively coarse and require more precise surveys for
pest management. Remote sensing is an extension of aerial
survey, with aircrafts or satellites being equipped with sensors
to allow for quantitative analysis of frequency and extent of the
disturbances [6]. Remote sensing has found only limited use in
the field of forest health monitoring due to cost and logistics of
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acquiring the data [7]. One of the main shortcomings of current
forest health monitoring approaches is that they are built around
ex post facto detection and mitigation strategy, where the attack
has already taken place in a wide geographic area.

In this work, we investigate the feasibility of using Internet
of Things (IoT) for real-time and low-cost monitoring of forest
health. Our goal is to design and build a Low-Power Long-Range
(LPWAN) system to detect MPB infestation in early stages.
While, we focus on MPB detection, the system can be used for
general forest health monitoring as well as other applications
in Smart City environments such as noise pollution monitoring.
LPWAN technologies offer long-range connectivity for low
power and low rate devices, not provided by legacy technologies
(e.g., cellular and short range technologies). In this work, we use
LoRa [8], one of the leading LPWAN technologies that operates
in the unlicensed ISM band, to provide long-range connectivity
for our field IoT devices. LoRa networks are designed to provide
connectivity for a massive number of IoT devices scattered
over a wide geographic area, with devices communicating over
distances exceeding 10 Km [9], [10]. Such characteristics make
LoRa an ideal solution for remote monitoring applications such
as the MPB detection considered in this work.

B. Related Work

In the following, we briefly review the works on MPB
detection that are most relevant to our work.

Aerial Imaging. Currently, detection of mountain pine beetle
infestation is primarily accomplished through aerial imaging
techniques [11]. An aerial view, whether via satellite imaging
or aerial photography, provides a means to assess and estimate
threat levels of trees by examining the color of the foliage.
Although extremely efficient at red-attack and gray-attack stage
detection, aerial imaging is limited when applied to green-attack
stage detection'. Reliable methods to detect green-attack stage
can be accomplished by physical observations of the trees inner
bark. This would involve going to the trees in question to
sample and test their infestation status. However, the amount
of resources and time required to perform physical observations
at a large scale would be impractical.

Acoustic Sensing. Having the ability to remotely detect trees
undergoing green-attack phase would vastly improve forestry and
environmental agencies capability to react, control, and minimize
MPB infestations [12]. An overview of recent developments in
the field of acoustic tools, techniques and applications for cryptic

!Generally, the foliage fades from green to red to gray following an attack.



insect detection and distribution mapping is presented in [13].
In [14], it is discussed how to use such techniques for farm
pest detection, where the system presented builds upon farm
pest bioacoustic characteristics to develop an ultrasonic sensor
to detect the presence of farm pests.

MPB Bioacoustics. Characterization of MPB bioacoustics is
presented in [15]. The authors observed MPB acoustics during
stress, male-male and male-female interactions, with sounds
attaining significant energy in the ultrasound (peaks at 20, 40
and 60 kHz), but low amplitude of 55 and 47 dB sound pressure
levels. They also observed that signal patterns vary among
contexts primarily in the proportions of chirp types, where chirps
were either simple or interrupted. This work is extended in [16],
where the idea that beetles use acoustic emissions from their host
tree for host selection is tested. A bark beetle species classifier is
introduced in [17], which determines the identity of the signaller
based on the input acoustic signal.

These works on characterizing the bioacoustics of MPB form
the basis of our work, where we use these acoustic characteri-
zations to build and test an IoT system for MPB detection.

C. Our Work

In this work, we describe the design and implementation of
an IoT system based on LoRa LPWAN technology for MPB
biacoutsic sensing and classification. We also report measure-
ment results characterizing the performance of our system.
Specifically, we make the following contributions:

o We design and build an IoT system to address the need
for proactive forest health monitoring. Such a solution is
viable due to recent development of LPWAN technolo-
gies that allow for low-power communication over long
distances, e.g., over 10 km with LoRa. We built a small-
scale LoRa network consisting of an end device equipped
with an ultrasonic microphone, a gateway that receives
compressed sound samples from the end device, and a
backend server that collects and analyzes the samples. The
server uses different classification algorithms to decide if
the received sound samples are generated by a beetle. Our
lab experiments a high degree of accuracy (82% accuracy
over validation samples) can be achieved using a Support
Vector Machine (SVM) classifier.

e We show that the system can be applied not only for
MPB detection, but also for detection and classification
of urban environment noises. Specifically, we modify the
system classifier using an artificial neural network (ANN),
which is trained with various types of urban noises, e.g.,
traffic at busy intersection, quiet office environment, music
at the background . We show that, in the lab experiments,
the system can accurately detect and classify different
types of urban noise with over 90% accuracy for highly
distinguishable samples and over 79% accuracy for more
cryptic sound samples.

One of the key features of our design is the local filtering imple-
mented on the IoT device itself. Specifically, once a noise signal
is detected by the device, it is passed through a simple filter to
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(a) Interrupted and simple beetle chirps.
Fig. 1: Measured MPB bioacoustics [15].

(b) Power spectrum of beetle chirps.

decide if the captured signal is worth further processing on the
backend server. The local filtering helps substantially reduce the
amount of energy consumed for long-range communication.

D. Paper Organization

An overview of MPB bioacoustic characteristics is presented
in II, followed by a short review of LoRa technology in Sec-
tion III. Our system design is presented in Section IV. Exper-
imental results and their analysis are presented in Section V.
Section VI concludes the paper.

II. MOUNTAIN PINE BEETLE

Mountain Pine Beetle (MPB) is the most destructive insect
of mature pines in western North American forests. Start of the
MPB infestation season ranges, depending on the overall weather
conditions of the year, with warmer years seeing infestation start
as early as the beginning of the spring [18]. MPBs emerge
from their host tree in the search of another suitable tree to
settle in. Female species of MPB burrow into the bark of the
tree to burrow galleries within the bark of the tree, creating an
egg storage place. Meantime male MPBs roam in the search
of potential mate, lured by the pheromones emitted by female
beetles [19]. Eventually, when the mate is found and successfully
courted, female beetle lays the eggs in the created gallery. During
this cycle, MPBs spread species of fungus within the tree,
causing tree to lose its nutrients to the beetles and fungus [20].
Unless tree is able to somehow defend itself from the MPB and
the fungus infestation, it inevitably dies from malnourishment.

A. Infestation Stages

There are three main stages used to categorize pine trees
undergoing MPB infestation: Green-attack, red-attack, and gray-
attack [21]. Green-attack stage is defined as the period where a
tree may still be alive and actively combating beetle infestation
as its leaves are still green in color. If the tree loses against
its attackers, then leaves will remain green for a period of time
until the tree falls into the red-attack stage. In this stage, the tree
has lost against its invaders and the leaves turn red as nutrients
steadily deplete leading into gray-attack phase. The last stage
leaves the tree barren as its leaves have fallen due to the extent
of deterioration already experienced.

B. Acoustic Characteristics

MPB bioacoustics are characterized using spectral, temporal
and amplitude properties. In the measurement study presented
in [15], it is reported that male MPB emitted chirps measured
to be 55.4 and 47.1 dB sound pressure levels for 2 cm and
4 cm sound levels, respectively. In addition, the frequency of the



chirps were measured to be in the range of 6.5-75 kHz. A similar
measurement study was conducted in [16] to characterize the
bioacoustics of the same species, but recorded slightly different
frequencies in ranges of 2.3-56.6 kHz. Based on the differences
between the two results, there may be some potential variation
even among the same species of beetles. According to these
studies, beetles emit bioacoustics from audible to ultrasonic
range. There are also two distinct patterns of chirps: simple
and interrupted chirps, as shown in Fig. 1(a). These chirps are
uniquely distinguishable by the pattern in chirp production, as
shown in Fig. 1(b), which is visualized in the frequency domain
by the relative power plot of the sound samples, as measured
and presented in [15].

ITI. LORA TECHNOLOGY

LoRa (Long Range) is an LPWAN technology developed by
Semtech Corporation [22]. The LoRa design efficiently trades
data rate for communication range, enabling it to be a compelling
technology for large scale deployment of IoT devices over
wast geographic areas. LoRa networks have three components,
namely the physical (PHY) layer, link layer, and the network ar-
chitecture [23]. A brief overview of each component is provided
below.

A. PHY Layer

At the physical layer, LoRa implements Chirp Spread Spec-
trum (CSS) with integrated Forward Error Correction (FEC) [8].
LoRa networks operate in unlicensed ISM frequency band,
which for North America is the frequency band 902 — 928 MHz
with center frequency of 915 MHz. For this band, the LoRa
specifications define 64 non-overlapping uplink and 8 downlink
channels. LoRa supports multiple spreading factors (SFs) and
coding rates (CRs) for end devices. LoRa’s spreading factors
are orthogonal, which allow multiple devices to transmit si-
multaneously with different spreading factors over the same
channel. The LoRa specifications for North America define four
SF values, namely {7,8,9, 10}. Different SFs result in different
transmission rates (see Table I), thus affecting transmission time
of the message. LoRa also implements a form of FEC, which
permits the recovery of the information in case of corruption of
messages due to interference. Applying FEC requires additional
coding data to be included in each transmitted packet, where
the amount of coding data is determined by the coding rate.
Depending on which CR is selected, one may attain an additional
robustness in the presence of interference, with the available
options being {4/5,4/6,4/7,4/8}.

TABLE I: LoRa achievable data rates.
[ Data Rate | SF | bit/s |

0 10 980
1 9 1760
2 8 3125
3 7 5470

B. Link Layer

LoRa MAC layer distinguishes between three end-device
classes, namely class A, B, and C, where B and C class devices
are required to be compatible with class A devices. Class A
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Fig. 2: MPB detection system architecture.

devices are optimized for power consumption, where a device
receives downlink messages only immediately after an uplink
transmission, by opening two short receive windows. In addition
to the two receive windows defined for class A devices, class
B devices open extra downlink receive windows at scheduled
times, where time is synchronized with beacons transmitted by
the gateway. Class C devices, on the other hand, continuously
keep the receive window open, only closing the window when
transmitting.

C. Network Architecture

LoRa relies on a star topology, in which end devices directly
communicate with a few gateways in a single-hop manner. The
gateways are in turn connected to a network server and use
TCP/IP protocols to communicate with the server. Each end-
device may adjust its data rate manually or using adaptive data
rate (ADR) [23]. Since end devices broadcast their messages, the
same message may be received by multiple gateways who will
forward the message to the network server, where the redundant
messages are filtered. Within this network architecture, the
network server is also responsible for security, diagnostics and,
if so desired, acknowledgements [23].

IV. SYSTEM DESIGN

The conceptual architecture of the system for MPB detection
is presented in Fig. 2. In the following, we will describe the
hardware and software components of the system, and describe
how the actual detection is implemented.

A. Hardware Specifications

The system consists of an [oT end device and a LoRa gateway,
as depicted in Fig. 3. The end device consists of a micro-
controller that drives a LoRa transceiver module for network
communication and an ultrasonic microphone to capture sound
samples.

Lora Gateway. The gateway is a custom-built LoRa gateway
operating in the 915 MHz ISM band. It is powered by Rasp-
berry Pi 3 Model B that runs Raspbian operating system and
is connected to a certified 8 channel concentrator board (see
Fig. 3(a)). We use the free crowd sourced network server hosted
by The Things Network (TTN) [24] and then use the MQTT
feeds to retrieve the device data from the server.

IoT Device. The end device consists of three components,
namely:

e NUCLEO-STM32L476G micro-controller,

e SX1276MBI1LAS LoRa shield,

o SPHO64LU4H-1 ultrasonic microphone.
Beetles communicate via ultrasound frequencies, i.e., above
20 kHz. Thus, special hardware is required to capture their com-
munications. The off-the-shelf microphones are predominantly



(a) Raspberry Pi LoRa gateway.

(b) IoT device with LoRa shield.
Fig. 3: Hardware components of the system.

built to support sound waves of only up to 20 kHz frequency.
The SPHO64LU4H-1 microphone is capable of capturing sound
waves from 100 Hz to 80 kHz [25], which is more than enough to
cover the frequency spectrum of high pitched beetle chirps. The
SX1276MBI1LAS shield is fitted with the SX1276 transceiver,
which includes the LoRa long range modem. The application
running on the NUCLEO-STM32L476G micro-controller en-
ables us to collect sound samples from the microphone, and
then filter and compress them before transmission to the backend
server for further analysis and classification.

B. Software Specifications

Various software modules used to build the monitoring and
detection applications, running on the IoT device and backend
server, are described next.

Monitoring Application. Our main goal for the end device
was to develop a working low-power node to capture ultrasound
signals, which could be installed in a remote forest location for
real-time monitoring. To this end, we used the STM library [26]
to develop a monitoring application on the end device. The appli-
cation acquires the pulse density modulation of the microphone
signal using a digital filter for Sigma-Delta modulators interface
function of the microphone itself, and outputs its frequency
characteristics using FFT. It then runs a simple filtering on the
acquired output based on a threshold to decide if the microphone
output should be transmitted to the backend server for further
analysis, or discarded. In total the microphone collects 1022
data points, to cover the frequencies from 6.5 to 75 kHz. The
data points are converted from the original 32 bit floats to 8 bit
integers to reduce the size of samples. Then, they are passed
through a compression algorithm, which on average compressed
every data sample to 80% of its original size.

Communication Module. In order to send the samples to
the backend server, the device uses the LoRaWAN library for
STM32 device series found in [27]. The large amount of data
points meant that, due to the LoRaWAN maximum packet
size restriction of 242 bytes [23], we divided the samples
into 4 packets which were sent back-to-back. Because of long
transmission times, the application is implemented as a multi-
threaded application that is able to sample the environment and
send packets simultaneously. Specifically, one thread is used for
data sampling and compression, with abnormal data (i.e., data
that passed the basic threshold filter for further processing) after
compression being added to a circular queue. As soon as the
queue is full, sampled data will be discarded. Another thread

(a) Arduino audio player. (b) Audio player circuit schematics.

Fig. 4: Audio player with Kemo LO010 speaker.

is used to continuously check if there is any data available for
transmission, fetch it from the queue and transmit it.

Classification Algorithm. After the sound samples are received
by the TTN server, we use MQTT protocol to retrieve and save
the samples in a database. The samples are then fed into our
classifier to detect the type of the sound signal. Since in MPB
detection, only one specific type of sound needs to be detected,
we used the one-class support vector machine (SVM) in the
Scikit-learn machine learning library [28]. The detection results
are then visualized in a web portal created using the Django
framework [29].

V. MEASUREMENTS AND EXPERIMENTS

In this section, we present a summary of our experiments with
the proof-of-concept prototype system. The experiments were
conducted in a lab environment, where it was possible to control
the amount of background noise affecting the system. Two sets
of experiments were conducted: (i) MPB detection experiments,
and (ii) urban noise detection and classification experiments.

A. MPB Detection

In order to reproduce MPB chirps, we designed a custom audio
player platform for generating and playing sound samples in the
ultrasound frequency range. The sound samples are generated
in accordance with the MPB acoustic characteristics identified
in [15]. The reason for designing a custom player platform is
that typical off-the-shelf speakers (e.g., those in home audio
systems) cut out at frequencies lower than what is needed
to reproduce beetle communication sounds. There are some
ultrasound speaker options, but such speakers and audio cards
are usually custom-built and come at a steep price. Not only our
Do-It-Yourself (DIY) audio player system is low cost, it can also
be operated on batteries as it is built on an Arduino platform.
This means that, in the future experiments, we can take the player
and the IoT device to the wild for testing and measuring in a
more realistic environment.

Audio Player. The playback system is based on an Arduino
DUE, equipped with an external SD card reader, which is
attached to a Kemo LO10 speaker (a low-cost piezo speaker)
able to generate ultrasound frequencies of up to 60 kH. Since
Arduino DUE can only output signals at 5 V, the system includes
a metal-oxide-semiconductor field-effect transistor (MOSFET) to
control the speakers with higher voltage than that viable from
the Arduino pins, through an external 120 VAC/16 VDC power
source. The resistor is a pull-down resistor used to lower the
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Fig. 5: Examples of random ultrasonic noise and beetle sound.

voltage to ground the line if Arduino is not driving it up. The
schematics of the speaker control circuit are shown in Fig. 4(b).

Sound Generation. To create artificial beetle chirps, we used
the Python’s wave library [30] to create audio files containing
MPB-like sounds. We replicated the sound signatures by adding
together multiple sine waves with different frequencies. The
generated audio files needed to have frequencies of up to 60 kHz,
thus the sampling rate of the audio was set to 196 kHz. Clipping
technique was used to further increase the sound intensity of the
audio. After the necessary sound files were generated, they were
uploaded to the micro-SD card and played on the Arduino using
the circuit shown in 4(a). On the Arduino micro-controller, the
libraries Audio [31] and SD [32] were used to read and play the
wave files stored on the SD card.

Beetle Detection. For beetle sound detection and classification,
700 sound samples of beetle noise were played through the
Arduino player and were then captured by the IoT end device.
Also, around 100 samples of non-beetle ultrasound noise were
generated and collected as well. The latter were used for val-
idation purpose. The SVM model was defined using degree 3
polynomial kernel and parameter v = 0.01 for lower bound of
the fraction of support vectors. The SVM was tuned using the
first 100 beetle sound samples as the training data. The remaining
samples were then used as test data. With these parameters, we
reached an accuracy of 82% for correctly detecting beetle sound
samples out of the mix. Fig. 5 shows an example sound sample
for beetle noise as well as non-beetle ultrasound noise.

Baseline Classifier. To create a base line for comparison of
our results, on the same sound samples we used a non-machine
learning classification approach. In this approach, we average the
data points at the same frequency in all training samples and then
use the average as the reference classification value. Specifically,
for classification, we calculate the absolute difference between an
unclassified sample sound level and the average reference value.
If the difference is smaller than a pre-specified threshold (in our
experiments, we chose the threshold to be 0.1), the sample is
classified as beetle sound. This approach achieved an accuracy
of 70% for the same sample set. As shown in Table II, SVM
approach achieves higher accuracy for detecting and classifying
MPB sound samples.

TABLE II: MPB sound classification accuracy results.

Classifier
SVM
Baseline Classifier

Accuracy(%)
82%
70%
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Fig. 6: ANN classification results for urban noise.

B. Urban Noise Classification

Our system, while initially designed for beetle detection,
can be used in other sound monitoring applications such as
urban noise pollution monitoring. Urban noise can be defined
as unwanted loud or annoying sound from various sources. It
has harmful effects on the health and well-being of urban citi-
zens. Individuals exposed to urban noise sometimes experience
sleep disturbance and performance impairment [33]. Long time
exposure to severe noise pollution causes progressive hearing
loss, mental disorder, high heart rate and blood pressure which
can potentially lead to cardiovascular diseases [34]. A system for
real-time data collection and analysis over wide geographic area
helps the city planners gain insights into the severity of urban
noise pollution at different times and locations.

TABLE III: Sound distribution among different noise classes.

Sound Class # of sound samples (%)
Office/Library 253
Traffic/Siren 24.5
Park/Rural 18.4
Music/Video 18
Keyboard/Mouse 13.9

Experiment Setup. For urban noise classification, there was no
need to collect data in the frequencies above 20 kHz, since that is
the limit of human hearing. As such, we collected only 240 data
points per sample in the range from 100 to 17.5 kHz, transmitting
them to the network server only if a certain threshold of sound
intensity was surpassed. For classification, an Artificial Neural
Network (ANN) was built using Tensorflow, an open source
machine learning framework [35]. The constructed ANN was
a multilayer perceptron with 2 hidden layers, where each layer
had a Sigmoid activation function. Input layer had 240 nodes,
corresponding to the number of data points per sample. Each
hidden layer had the same number of nodes and output size
of 5, where sound samples were classified into one of 5 urban
sound categories. The categories/sound environments used in
this experiment are: Traffic/Siren, Park/Rural area, Music/Video,
Keyboard/Mouse, Office/Library. A total of 1219 sound samples
were collected and used for ANN training. Table III shows the
noise sample distribution among different classes. The variability
in the training data samples came not only from playing different
sound samples, but by varying the distance between the speaker
and the microphone.

Noise Classification. The initial results for noise classification



had below 50% accuracy, i.e., worse than random guessing,
with misclassification of samples happening on a deterministic
basis. We identified two reasons for such a low classification
accuracy. The first reason was the similarity of sound acoustic
signatures. The input to the ANN includes sound intensity levels
at different frequencies of the sound sample. Thus, there are
cases when two distinct and unique sources generate a sound
sample with the same intensity at similar frequencies. As such,
it would be impossible to distinguish between the two sources.
For this reason, we assumed that such similar noises would
be categorized into the same category. The second reason was
the present of samples, in which multiple noises were present
simultaneously. When used for training, these samples result
in low classification accuracy, and when used for validation,
they result in misclassifications. As such, in this experiment,
we manually dealt with such sound samples. After we modified
our system to account for the above sample types, the average
accuracy for the validation set reached 92%. Fig. 6 shows the
classification accuracy for each of the noise categories. Fig. 7
shows a snippet of the user interface for the Django application
that visualizes the collected and classified data results.

@8 Keyboard/Mouse
M Music/Video
@ Office/Library
= Traffic/Siren
=) Park/Rural

Fig. 7: Data visualization and classification portal.

VI. CONCLUSION

In this paper, we presented the design and evaluation of an IoT
bioacoustic monitoring system for MPB detection. Experiments
conducted in a lab environment confirmed the potential of such
a system for both MPB detection and urban noise pollution
monitoring. Specifically, we observed that the current system
is very effective in detecting a specific noise signature with a
unique acoustic signature (achieved accuracy of 82%) which
makes it a promising solution for MPB detection. In the future,
we plan to conduct further experiments, first in the lab with live
beetles, and subsequently in the wild.
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