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Abstract—Edge computing provides computational resources
in the vicinity of end-users to reduce delay compared to tradi-
tional remote clouds. However, the capacity of edge resources
usually is not sufficient for the required computational demands.
Therefore, it is necessary to design methods for employing
these resources in an efficient manner. On the other hand,
network function virtualization (NFV) is a promising solution
to use the network resources in a more flexible way than
traditional schemes. Although more focus has been on realization
of NFV systems via virtual machines so far, recent studies show
that container-based solutions can improve efficiency thanks to
lightweight implementation and layered structure of containers.
Nonetheless, to the best of our knowledge, there is no compre-
hensive study on the problem of orchestrating services composed
of a chain of containerized network functions in edge networks.
In this paper, we consider this scenario when service requests
are submitted to the system and address important aspects of
this problem such as downloading and sharing container layers
and steering traffic among network functions. We present the
formulation of the problem as an integer linear program (ILP)
and prove its NP-hardness. Then, to handle this problem, we
propose RCCO, a polynomial-time algorithm based on ideas from
deterministic and randomized rounding framework. Our results
from extensive evaluations show that the bandwidth consumption
of the proposed algorithm compared to the optimal algorithm is
higher by only about 4% while it can outperform baselines from
literature by more than 37%.

Index Terms—Containerized Network Function, Edge Com-
puting, Layer Sharing, Popularity-aware Orchestration, Service
Function Chaining, Virtualization

I. INTRODUCTION

Emerging data-intensive applications such as the Internet of
Things (IoT), virtual/augmented reality (VR/AR), 6G, smart
city, healthcare, and autonomous vehicles usually require con-
siderable computation to work in the right way. However, the
devices running these applications are not capable of handling
all the required computations and thus it is necessary to offload
them to other entities with sufficient computational resources.
Traditionally, cloud infrastructure has been the only option
for delivering this category of services. However, the stringent
delay requirement of modern applications has challenged this
deployment strategy in recent years. Edge-computing that
takes computation facilities to the vicinity of the end-users is
an architecture for enabling delay-sensitive and delay-critical
applications and hence is an attractive solution to the above
challenge [1]. According to its interesting features, the topic
of edge computing recently has been the subject of many
academic and industrial projects [2]. Nonetheless, due to the
limited amount of available edge resources, increasing the
efficiency of their usage is of a paramount importance.

Network Function Virtualization (NFV) is a prominent
paradigm for efficient allocation of computing and network
resources, and thus it is a viable approach for edge networks.
NFV virtualizes the physical resources to share them among
various virtual network functions (VNFs) and increases re-
source utilization. Specifically, each VNF is a special-purpose
application that is isolated inside a virtual environment and
can run on general-purpose hardware. Traffic is sent through
a set of VNFs in a specific order to provide a customized
service. The mapping of VNFs to physical resources and
steering traffic among them, which is referred to as service
function chaining (SFC), is a crucial procedure that determines
achievable benefits of NFV. In this regard, service orchestra-
tion is defined as the process of allocating sufficient resources
to VNFs, steering traffic between them, and managing all the
system aspects required for providing an intended service in
its lifecycle duration to the users of the network. The entity
in the charge of this process is called the orchestrator.

An important factor that has a vital role in NFV is the
virtualization technique. Emulating the hardware with virtual
machines (VM) has been the traditional technique for virtual-
ization of network functions in NFV. However, this technique
requires the installation of an operating system along with all
software dependencies that leads to a significant overhead [3]
which is more concerning as each VNF provides a single
application. On the other hand, container technology [4] is
an attractive alternative virtualization paradigm that does not
require a complete operating system installation and signifi-
cantly lowers the storage overhead [5], [6]. Moreover, layering
is a property of container technology that allows different
containers to share and reuse executables, object files, libraries,
source codes, and scripts, which further lowers the storage
and bandwidth requirements of containerazed applications [7].
According to a recent study on the Docker Hub registry [8],
storage space utilization can be reduced by 50% through
sharing the common layers between different containers built
for similar applications. Due to these advantages, the adoption
rate of the container technology by organizations is witnessing
a significant growth [9].

The containerized resource allocation and container layer
sharing problems have been explored in the literature recently
[7], [10], [11]. However, to the best of our knowledge,
none of them take the chaining of functions into account.
Consequently, these works that mainly focus on single ser-
vice orchestration can not provide the efficiency and agility
through incorporating unique features of containerization in
VNF chaining. To fill this gap, we address the problem of
orchestrating chains of containerized VNFs by considering
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important aspects such as layered structure of VNFs, the
necessity of downloading these layers for instantiating the
VNFs, and the possibility of sharing layers among VNFs. Fur-
thermore, we focus on edge-enabled networks and thoroughly
capture the essential parameters to carefully model a scenario
in which service requests arrive at the system over time and the
network orchestrator is responsible to appropriately schedule
downloading of layers from repositories and determining the
right nodes to place the layers considering various network
resources including link bandwidths, nodes’ storage, and CPU
and RAM capacities while preserving the target end-to-end
delays. Our results show that sharing and reusing the container
layers can significantly improve the resource efficiency. For a
container image with a fixed volume, increasing the number
of its layers results in higher performance gain and better
resource utilization in the network. It is worth noting that our
proposed scheme can be realized in practice as a module in
container management systems such as Kubernetes [12]. To
summarize, our main contributions are as follows:
• In this paper, we consider the problem of container layer

placement and management for service function chaining
in edge networks. To the best of our knowledge, this is
the first work that addresses this problem.

• We carefully formulate a realistic scenario for the prob-
lem in which service requests arrive at the system over
time and an orchestrator is responsible to appropriately
schedule the download and placement of the layers con-
sidering various network resources including link band-
widths, node storage, CPU, and RAM capacities.

• We assume that each service function in the chain is
implemented as a container. In this regard, the network
orchestrator smartly employs layer sharing between con-
tainer images.

• We formulate the problem as a mixed-integer linear
program and prove its NP-hardness. For the resulted
problem which is not tractable, we design an efficient
and iterative algorithm. Moreover, our algorithm takes
into account the limited capacity of edge servers and the
popularity of layers to maximize the reuse of downloaded
container layers and lower the network overhead.

• Through extensive simulation experiments, we evaluate
the performance of the proposed scheme in terms of
different important metrics such and bandwidth consump-
tion and accept rate.

The paper is organized as follows. In section II, we review
the related work and background. Section III introduces the
system model. We present the problem formulation in Section
IV. Proposed algorithms are explained in Section V followed
by performance evaluation in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORK

In this section, we present a review of major related works
in three categories. In Subsection II-A, we discuss works that
do not consider container layering into account and mainly
demonstrate the benefits of the lightweight virtualization of
containers compared to virtual machine-based techniques. In

TABLE I: Selected Related Work

Reference Edge Container Chain Layering
[21]–[27] 7 7 3 7
[19] 7 3 7 7
[15]–[18] 3 3 7 7
[20], [28] 7 3 3 7
[29]–[31] 3 7 3 7
[7], [10], [11], [32] 3 3 7 3
This Paper 3 3 3 3

Subsection II-B, we explore the works that go into details
of layer management and sharing in their resource allocation
schemes. However, different from our work, none of them
address the joint problem of placement and chaining of
containerized services. Finally, in Subsection II-C, we present
a discussion about recent works on chaining the network
services. However, none of these works consider the effect
of downloading the required container layers or sharing the
common layers for deploying containerized services on the
bandwidth of the network. Different from all the reviewed
works, we address the problem of container layer download,
placement, and chaining taking into account sharing the com-
mon ones. Table I summarizes key differences of our work in
comparison with reviewed works and shows the position of
our work in the literature.

A. Containerized Layer-Agnostic Works

Various researches on containerized systems have a sig-
nificant focus on implementing testbeds and experimental
evaluations to show the benefits of using containers [13], [14].
In [15], FLEDGE is presented as a Kubernetes-compatible [12]
container orchestrator based on Virtual Kubelets, aimed pri-
marily at container orchestration on low-resource edge devices.
Authors in [16] formulate containerized edge computing in
blockchain-based Internet of vehicles (IoV) using models from
queuing theory. In [17], the authors first develop a dynamic
M/D/1 queuing model to analyze the end-to-end delay of the
data packets of a container service flow, and then propose
a delay-sensitive algorithm to solve their considered Edge
container resource allocation problem. On the other hand, the
work in [18] considers task scheduling in edge computing
nodes with multiple processors taking into account inter-
container communications. Authors in [19] considers Zipf-
like distribution for the network traffic between containers.
Their method employs two algorithms to divide containers of
applications into blocks, and place these blocks across VMs,
which is shown to reduce network traffic and latency. Also, the
work in [20] considers container-based clouds and proposes a
new workflow allocation approach, named GMTA, to optimize
large-scale scientific workflow execution.

B. Layer-Aware Chaining-Agnostic Works

The work in [10] studies the placement of services on
the storage edge nodes to maximize the satisfied demands
with specified storage and delay requirements considering
common container layers between different services. Authors
in [11] propose protocols for live migration of edge services
for mobile users by exploiting two benefits of containers
including the possibility of lightweight migration compared
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to VMs and their layered structured by not migrating the
common layers. The work in [7] formulates a layer-aware
microservice placement and request scheduling at the edge
and proposes an iterative greedy algorithm to solve it. A layer
sharing microservice deployment and image pulling strategy
which explores the advantage of layer sharing to speedup
microservice startup and lower image storage consumption is
proposed in [32]. They then introduce a distributed algorithm
to solve the resulting problem. Authors in [8] analyze over 167
TB of uncompressed Docker Hub images, characterize them
using multiple metrics and evaluate the potential of file-level
deduplication considering common layers between images. For
example, they conclude that only 3% of the files in images are
unique while others are redundant file copies, which means
file-level deduplication has a great potential to save storage
space.

C. Container-Agnostic SFC Works

Authors in [22] formulate the online virtual function map-
ping and scheduling problem, and proposes a set of algo-
rithms for solving it. Particularly, they propose three greedy
algorithms and a tabu search-based heuristic. Authors in [26]
focus on the service rate control problem in the scheduling
of SFC requests. The work in [27] presents methods to solve
the routing and placement problems for SFC in an adaptive
manner while preserving service deadlines. In [31], efficient
algorithms for placement and chaining of VNFs in a system
that enables the deployment of IoT services across multiple
edges and clouds are presented. The work in [21] introduces
a primary and backup VNF placement model to avoid service
interruptions due to unavailability of nodes by using backup
functions. Authors in [29] considers a multi-objective SFC
placement problem taking into account various quality of
service requirements, and avoiding edge resource congestion.
To realize gradual transition to SDN in practice, authors in [24]
consider a hybrid SDN to implement SFC provisioning. They
formulate the problem for jointly optimizing SDN deployment
and VNF placement as an integer linear program (ILP) and
solve it by employing different optimization techniques. The
work in [30] proposes an algorithm based on deep reinforce-
ment learning to optimize bandwidth allocations as well as to
adjust the network usage to minimize migration overhead of
slice represented as an SFC. Also, authors in [28] study and
report the benefits of employing container over VM in service
function chaining.

III. SYSTEM MODEL

The high-level architecture of the considered system is
illustrated in Fig. 1. In this system, an orchestrator configures
resources at the cloud and network edge to provide the
requested service for incoming traffic that enters the system
through base stations. In the following, we explain the mod-
elling of different aspects of the edge network, cloud, and
service demands. In Section V, we will present the algorithm
used by the orchestrator. We adopt a time slotted model where
time is discretized into successive slots. Without the loss of
generality, we assume that inputs are normalized such that the

Edge Network

Orchestrator

: Base Station, : Edge Server, : User, : Cloud.

Remote Cloud

Fig. 1: Example of an edge-enabled network architecture.

length of a time slot is one. We use T to show the set of
all time slots and accordingly variables and parameters are
indexed by the time slot. Important notations are listed in
Table II.
Network Model. We consider a network consisting of three
types of entities, namely edge servers, base stations, and a
remote cloud denoted by, respectively, E, B, and Θ. We use L
to show the set of links connecting the pairs of network entities
in the set E∪B∪{Θ}. The bandwidth of link ℓ ∈ L is denoted
by 1ℓ while 3ℓ expresses its propagation delay. We assume that
the set of paths between two network entities =, < ∈ E ∪ B ∪
{Θ} is represented by P<= and the set of links along the path
? are shown by L? . We use P to refer to the set of all paths
between all pairs of network entities. In this network, base
stations do not provide computational capacity. The cloud and
edge servers provide service processing capabilities and we
use N = E ∪ {Θ} to collectively show them. Each edge node
4 ∈ E has �4 processing cores, �4 units of random-access
memory (RAM), and �4 units of disk storage. The cloud is
supposed to have unlimited processing, memory, and storage
capacity [7].
Containerized VNF Model. We consider an NFV-based
system in which service functions are realized via VNFs.
We assume that VNFs, e.g., access control, authentication,
firewall, and image compressor, are implemented with the
container technology [33]. Thus, to instantiate a VNF, we need
several container layers that each layer is corresponding to a
modification of the file system such as installing an application
or adding a file [34]. We assume that all container layers are
stored in the cloud and can be downloaded to edge servers on-
demand for deploying a VNF. The downloaded layers can be
deleted after service tear down to release the allocated storage
space. We use R to show the set of all possible container layers
and assume that to download layer A ∈ R we need to allocate
XA units of storage.
Service Request Model. The service requests are submitted
by users to the system over time. To deliver a service, a chain
of ordered VNFs should be executed, and thus each service
request is equivalent to a chain of VNFs. We use U to show
the set of all chains that arrive to the system. For each chain
D ∈ U, $D ∈ B shows the entry point, i.e., the base station,
from which traffic of chain D is received by the network and to
which the response should be delivered in order to be passed
to user. _D shows the expected input traffic rate of chain D.
Also, gD shows the arrival time slot, and ǧD and ĝD mark the
start and finish time slots of the chain operation, respectively.
For simplicity, we define the following two sets for each chain
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TABLE II: Summary of Notations

Notation Description

U Set of all service chain requests
E Set of all edge servers
Θ Remote cloud
B Set of all base stations
N Set of all edge nodes and the cloud
L Set of all links of the network
P=< Set of all paths between network entities < and =
L? Set of all links in path ?
�4 Processing capacity of edge node 4
�4 Memory capacity of edge node 4
�4 Storage capacity of edge node 4
1ℓ Bandwidth of link ℓ
3ℓ Propagation delay of link ℓ
R Set of All container layers
R8D Container layers of VNF 8 in chain D
Q8D,4 Missing layers for placing VNF 8 of chain D on the edge

server 4 at the moment of its arrival
(D Number of VNFs in the chain of request D
$D Entry point of chain D
[=] Set of natural numbers from 1 to =
|. | Total number of elements in a set, i.e., its cardinality
gD , ǧD , ĝD arrival time, the start and finish times of chain D
V8D Ratio of output/input traffic rate for 8-th VNF of chain D
_D Expected traffic rate of chain D
_8D Input traffic rate to the 8-th VNF in chain D

D to show the time slots before and after their service start:

ŤD = {gD , . . . , ǧD − 1}, (1)

T̂D = {ǧD , . . . , ĝD}. (2)

Notation (D denotes the number of VNFs in service chain
D that should process the traffic in a sequential manner. Also,
the set of required container layers for instantiation of the
8-th VNF in chain D is denoted by R8D ⊆ R. Since the
operation of some VNFs such as image compression affect
the traffic rate, for each chain D V8D ≥ 0 represents the ratio
of the output traffic rate to the input traffic rate in the 8-th
VNF [35]. The amount of processing power (e.g., measured
in GHz) and random-access memory required to process the
incoming traffic at the 8-th VNF are represented by c8D and U8D ,
respectively. We assume that each chain receives its expected
processing and bandwidth resources completely. Thus, the
delay from these components is deterministic and known to
the service requester. The only unknown delay component is
the end-to-end propagation delay. Thus, each chain specifies
a threshold for the total propagation delay. We denote the
maximum tolerable propagation delay of chain D ∈ U by ΦD .
However, we discuss in Subsection IV-D that we can take into
account other types of delay (such processing).

IV. PROBLEM FORMULATION

In this section, we present the formulation of the Con-
tainerized Chain Orchestration (CCO) problem. We formulate
different parts of the problem in the following subsections.
We determine the assignment of VNFs to the network entities
in Subsection IV-A. Then, we formulate the download path
and placement of container layers in Subsection IV-B. Then,
we consider the chaining of VNFs in the process of routing
the traffic in the network in Subsection IV-C and enforce the
end-to-end propagation delay requirements in subsection IV-D.

TABLE III: Notable formulation notations

Symbol Description

E8D,= If the 8-th VNF of chain D is in the node =
HC4,A Availability of layer A in edge node 4 at time C
FD?,A Usage of path ? to download layer A by chain D
@8D,? If the traffic toward the 8-th VNF of chain D uses path ?

Finally, we formulate the objective in subsection IV-E. Also,
notable formulation variables are indicated in Table III.

A. Placement of VNFs

Each VNF of a chain should be placed in a network entity
with sufficient computing, memory, and storage resources. We
define binary decision variable E8D,= to show whether or not
8-th VNF of chain D is placed in the network entity = ∈ N .
The following constraint ensures that each VNF in a chain is
placed in exactly one network entity:∑

=∈N
E8D,= = 1, D ∈ U, 8 ∈ [(D] . (3)

The following constraints ensure that the CPU and memory
capacity of edge servers are respected in every time slot:∑

D∈U

∑
8∈[(D ]:C ∈T̂D

E8D,4c
8
D ≤ �4, C ∈ T , 4 ∈ E (4)∑

D∈U

∑
8∈[(D ]:C ∈T̂D

E8D,4U
8
D ≤ �4, C ∈ T , 4 ∈ E (5)

We will present the storage constraints in the next subsection.
Also, notice that we do not impose storage, CPU and memory
capacity constraints for the remote cloud, as we assume that
its available capacity is unlimited, compared to the limited
capacity of edge servers.

B. Placement of Layers

We define the binary decision variable H
A ,C
4 ∈ {0, 1} to

indicate whether or not layer A is available in time slot C in
edge server 4. We assume that the storage of all edge servers
4 ∈ E are empty in time slot C = 0, i.e.,

HA ,04 = 0. 4 ∈ E, A ∈ R (6)

We can place a VNF in an edge server only after all of
its required container layers are available in that server. We
write the following constraint to ensure that this requirement
is respected for placement of VNFs:

E8D,4 ≤ HC4,A , 4 ∈ E, D ∈ U, 8 ∈ [(D], A ∈ R8D , C ∈ “TD (7)

Our model allows VNFs to share layers. Thus, VNFs of a
chain can reuse a layer available in the server that has been
previously downloaded by another chain. However, an edge
server can not cache downloaded layers indefinitely due to
storage limitation, and thus some unused layers might be
deleted. Once a layer in a server is deleted, it should be
downloaded again if in the future another VNF of a chain
requires the layer in that edge server. We define binary decision
variable FD?,A that is equal to one if download of layer A over
path ? is started due to the demand of chain D. Specifically,
FD?,A = 1 implies that the download of layer A starts in gD
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𝑦𝑒,𝑟
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5 = 1 𝑦𝑒,𝑟
0 = 0 

𝑡 = 0 

𝑦𝑒,𝑟
6 = 1 

𝑡 = 6 

Fig. 2: Illustration of layer download formulation.

and continues with a constant rate until ǧD − 1. The constant
rate, denoted by dDA , is computed as follows to ensure that the
layer A becomes fully downloaded and available in time slot
ǧD when chain D starts its operation:

dDA =
XA

|ŤD |
. (8)

Consequently, FD?,A = 1 ensures that layer A is available for
the usage of chain D (and possibly other chains) during time
slots from ǧD to ĝD . After time slot ĝD , the layer remains in
edge server 4 if another chain is scheduled to use it or freeing
storage is not necessary. Later, for computing the bandwidth
consumption and enforcing the bandwidth constraints, we
consider a traffic with rate dDA on all links in path ? during
time slots from ǧD to ĝD . To ensure that a path is selected
for downloading a required but missing layer, we use the
following constraint:

HC4,A ≤ HC−1
4,A +

∑
D∈U:C ∈T̂D

∑
?∈PΘ4

FD?,A , A ∈ R, 4 ∈ E, C ∈ T (9)

This constraint states that if layer A is not available in time
slot C − 1, but the layer is required by one or more chains in
time slot C (i.e., C ∈ T̂D), one of those chains should initiate
the download by setting FD?,A to one.
Example. Please consider Fig. 2 which illustrates the interac-
tion of decision variables that control the availability of a layer
in an edge server. In time slot zero, layer A is not available
in edge server 4. Note that the layer is also unavailable in
time slots 1, 2, and 3. In time slot 1, a request for service
chain D arrives to the network. This chain starts its operation
in time slot 4 and terminates in time slot 5. If D requires layer
A in edge server 4, a path ? from 4 to the cloud should be
established to download the required layer (i.e., set FD?,A to one
for an appropriate path ?). This will allocate dDA =

XA
3 units of

bandwidth on path ? from time slot 1 to 3 for downloading
layer A. Since the sum

∑
D∈U:C ∈T̂D

∑
?∈PΘ4 F

D
?,A is equal to one

for C = 4 and C = 5 (as 4, 5 ∈ T̂D), the values of H4
4,A and H5

4,A are
set to one, which indicates the availability of layer A in server
4 in those time slots. Note that the layer can remain available
in time slot 6 if it is not necessary to delete it and download
another layer. We should emphasize that the availability of the
layer in time slot 6 is due to its availability in the previous
time slot 5. �

We also enforce each layer to be downloaded over at most
one path: ∑

?∈PΘ4

FD?,A ≤ 1, D ∈ U, 4 ∈ E, A ∈ R, (10)

and to respect the storage capacity of edge servers, we write
the following constraint:∑

A ∈R
HC4,A XA ≤ �4, 4 ∈ E, C ∈ T . (11)

C. Traffic Routing

We should route incoming traffic of each chain through all
of its VNFs in the specified order. To this end, the traffic from
the entry point $D first should reach where the first VNF is
being placed. Then, the output traffic of VNF 8 should enter
VNF (8 + 1). Finally, the output traffic of the last VNF should
go back to entry point $D . Thus, we define binary decision
variable @8D, ? to show whether or not the traffic towards the
8-th VNF of chain D uses path ? ∈ P. Also, we let @(D+1D,?

show whether or not the traffic from the last VNF uses path
? ∈ P to go back to entry point $D . This definition unifies
the notation of routing toward VNFs and the entry point. The
following constraints ensure that traffic routing satisfies the
described requirements.∑

?∈P=<

@1
D,? = E

1
D,=, < = $D , D ∈ U, = ∈ N (12)∑

?∈P<=

@(D+1D,? = E(DD,=, < = $D , D ∈ U, = ∈ N (13)

E8D,= + E8+1D,< − 1 ≤
∑
?∈P<=

@8+1D,? ,

D ∈ U, 8 ∈ [(D − 1], = ≠ < ∈ N
(14)

Specifically, constraint (12) ensures that a path exists from the
entry point to the location of the first VNF. Constraint (13)
ensures the existence of a path from the location of the last
VNF to the entry point $D . Constraint (14) ensures that there
is a path between consecutive VNFs if they are not co-located.

To guarantee the bandwidth constraints, first we compute
the rate of traffic that enters each VNF as follows:

_8D = _D

∏
9∈[8−1]

V
9
D , (15)

Then, we can use the following constraint to ensure that in
each time slot the capacity of each link in the network is
respected:∑

D∈U:C ∈ŤD

∑
A ∈R

∑
?∈P:ℓ∈L?

FD?,A d
D
A

+
∑

D∈U:C ∈T̂D

∑
?∈P:ℓ∈L?

∑
8∈[(D ]

@8D, ?_
8
D ≤ 1ℓ ,

ℓ ∈ L, C ∈ T (16)

Notice that for each time slot C the first term in the left-
hand side of (16) only considers downloading the required
layers for those chains that have arrived to the network but
have not started their operation yet (i.e., C ∈ ŤD). Thus, this
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6

term computes the bandwidth consumption due to download
of layers in time slot C. On the other hand, the second term
only considers those chains that are operational in the time
slot (i.e., C ∈ T̂D). Thus, this term computes the bandwidth
consumption due to traffic that passes between subsequent
VNFs of operational chains in time slot C. The sum of these
two terms on each link should be less than the capacity of that
link in all time slots.

D. Delay

To guarantee the end-to-end propagation delay, we should
sum the propagation delay of all links in the paths selected
for chaining the VNFs as follows:∑

8∈[(D ]

∑
?∈P

@8D, ?

∑
ℓ∈L?

3ℓ ≤ ΦD , C ∈ T , D ∈ U (17)

Note that it is straightforward to use the modified Amdahl’s
law, similar to [36], and extend the delay equation to include
the transmission and processing delays. However, they do not
change the complexity of the problem and for simplicity we
omit them here.

E. Objective

Since each chain specifies its CPU and memory require-
ment, the total computational and memory consumption are
fixed and independent of VNF placement. Therefore, we
consider the total bandwidth consumption as the objective and
minimize it as follows:

(CCO): Min.
∑
?,8

@8D, ? |L? |_8D (18)

Theorem 1. CCO is NP-hard.

Proof. We proof the NP-hardness by a reduction from the
well-known Usplittable Flow Problem (UFP) [37]. UFP con-
siders a network of nodes and links and a set of pair of nodes
where each pair has a demand and each link has a capacity.
We can consider each pair to be a chain. Source node of the
pair is represented by the entry point $D and demand of the
pair is represented by the chain input traffic _D . Each chain
has only one VNF with V8D = 0, so there is no returning
traffic from the VNF to the entry point. The destination of
each pair is modelled by an edge server. To ensure that the
VNF of each chain is placed on the corresponding edge server,
we assign distinct positive integer identifiers to chains and let
CPU requirement of each chain’s VNF be equal to the assigned
identifier. Equip each edge server that is the destination node
of a pair with a CPU capacity equal to chain’s identifier. Thus,
each VNF is forced to be placed on the destination node. If
we could solve CCO in polynomial time, UFP is solvable in
polynomial time, which is a contradiction. �

V. PROPOSED ALGORITHM

We mathematically formulated the containerized chain or-
chestration problem in the previous section and proved its NP-
hardness in Theorem 1. Thus, we know that it not possible to
find its exact solution in reasonable time for arbitrary inputs.

Therefore, we present a time-efficient and low-complexity
solution in this section to solve CCO. To this end, we take
into account that in most real-world systems chains arrive to
the network sequentially and information about future chains
is not available a priori. Motivated by this fact, we design
a solution that processes one chain at a time. Also, we use
the framework of linear programming (LP) relaxation and
rounding [38] to design an efficient solution method.

In the following, we first make an overview of the proposed
algorithm in Subsection V-A. Then, we explain three important
aspects of this algorithm, i.e., Round Subroutine, Scaling Link
Capacities, and Layer Eviction in more detail in Subsections
V-B to V-D.

A. Algorithm Overview
General Sketch. The high-level steps of our proposed al-
gorithm is outlined in Algorithm 1. The general sketch of
the algorithm is as follows. First we construct the integer
program formulation for the chain (line 1) in hand but discard
the integrality constraints and allow decision variables to
take fractional values between zero and one (line 2). Then,
we solve the obtained linear program with an off-the-shelf
optimization solver, which is an efficient procedure. Note
that linear programs are solvable in polynomial time. Then,
we perform a rounding procedure to round the values of
decision variables to either zero or one through an iterative
low-complexity procedure while ensuring the feasibility of
problem constraints.
Sequential VNF Placement. In each iteration of our rounding
procedure, we focus on one VNF along the chain and attempt
to fix the location of the VNF, select appropriate paths to
download the required container layers, and select a path from
the previous VNF in the chain, or the entry point in the case
that the VNF is the first one in the chain. Variable 8 defined
in line 3 of Algorithm 1 shows the considered VNF in each
iteration. We start from the first VNF and proceed one by
one along the chain. Subroutine round that is invoked in
line 6 handles the placement, layer download, and routing for
the considered VNF in each iteration. The procedure gets as
the input a value Y < 1 that is used to control the failure
probability of the round subroutine. The detailed description
of this subroutine is given in the subsection V-B.
Backtracking Procedure. Subroutine round returns a status
to show whether or not it was able to perform all the required
allocations necessary for successful placement of the specified
VNF. If the status indicates a successful operation, we proceed
to the next iteration to handle the next VNF. However, if
round fails, we perform a limited backtrack by reverting the
decisions made in the most recent Γ iterations. Γ should be
fine tuned in practice. Our experiment in the Section VI shows
that Γ = 1 or 2 is effective and beneficial. After performing a
backtrack, we do not allow another backtrack before complet-
ing Γ + 1 iterations to ensure efficiency. Therefore, if round
fails and a backtrack is not allowed, our algorithm fails. This
means that we should reject the chain request. In this case, the
chain can either reduce its resource demands and make a new
request immediately or try in a later time when the network
is less busy.
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Algorithm 1: RCCO: Rounding-based Containerized
Chain Orchestration
Input : N ,L,P,u, Y, Γ
Output: Status of allocation of D ∈ U

1 M ← ilp_model(D) /* Defined in Section IV */
2 relax(M)
3 8 ← 1
4 6 ← Γ

5 while 8 ≤ (D do
6 status ← round(D, 8, M, Y)
7 if status = FEASIBLE then
8 8 ← 8 + 1
9 6 ← min{6 + 1, Γ}

10 end
11 else if 8 > 1 and 6 = Γ then
12 6 ← max{ −1, 6 − 8 − 1}
13 9 ← max{8 − Γ, 1}
14 Unfix all variables for VNFs 9 to 8
15 Disallow the placement of VNF 9 on its

currently chosen location
16 8 ← 9

17 end
18 else
19 return FAIL
20 end
21 end
22 Allocate resources to D based on M
23 return SUCCESS

B. Round Subroutine

Our proposed scheme named RCCO, presented in Algorithm
1, manages VNFs in a chain one by one beginning from the
first VNF. In this subsection, we explain the round subroutine
in more detail. Note that RCCO passes the linear program
model M to round in a way that modifications done by
round (e.g., fixing a decision variable) also affect the model
in RCCO. round is responsible for placing the considered
VNF in the 8Cℎ iteration of the algorithm, connecting it to the
previous VNF in the chain, and selecting download paths for
missing layers of the VNF. In round, we fix the location of
the 8-th VNF in the chain and the required download paths
to acquire missing layers. Then, we connect VNF 8 to VNF
(8 − 1) that was assigned to a node in the previous iteration.
The first and last VNFs are connected to the entry point $D .
At start, round re-solves the LP model to re-adjust the value
of remaining unfixed decision variables. Since the changes of
the linear program are small, the required time to re-compute
the value of unfixed decision variables is negligible compared
to the time required for solving the linear program for the
first time. Then, round selects appropriate decision variables
based on their fractional values and fixes them to ensure the
placement of the VNFs. In this subsection, we present the
fractional value of decision variables by putting a tilde on
top of them. For example Ẽ8D,= shows the fractional value
of decision variable E8D,= obtained from solving the linear
program.

The fractional value of decision variables are indicators of

Algorithm 2: round: Rounding Procedure
Input : Chain D, VNF Id 8, LP model M, Y
Output: Status of rounding M for placing VNF 8

1 Eliminate all infeasible edge servers
2 Eliminate all infeasible chaining paths
3 W ← based on Y and (33)
4 Scale the capacity of all links during ŤD by (1 − W)
5 {Ẽ8D,=, F̃D?,A , @̃8D, ?} ← solve-lp(M)
6 if M is INFEASIBLE then
7 return S-Failure
8 end
9 =8 ← argmax=′ ∈N{Ẽ8D,=′ }

10 ?8 ← argmax?′ ∈P=8=8−1
{@̃8
D, ?

′ }
11 for A ∈ Q8D,=8 do
12 Fix FD?,A = 1, with probability F̃D?,A
13 if Constraint (16) is violated then
14 Revert all changes
15 return R-Failure
16 end
17 end
18 Fix E8D,=8 to 1
19 Fix @8D, ?8 to 1
20 return FEASIBLE

suitability of network entities and paths. Thus, it is reasonable
to use the decision variables with the maximum value to handle
the placement of VNF 8. However, this choice can lead to
the violation of capacity constraints. To avoid the constraint
violation, at the beginning of the 8-th iteration, we eliminate
the infeasible options related to the placement of 8-th VNF
before solving the linear program.
Edge Servers. To eliminate the infeasible edge servers, let %̌4,
�̌4, and �̌4 show the available CPU, RAM, and disk capacity
of edge server 4 during time slots in T̂D . Also, let Q8D,4 show the
missing layers that are required for placing 8-th VNF of chain D
on edge server 4. Then, we eliminate the possibility of placing
VNF 8 on edge server 4 by enforcing the constraint E4

D,8
= 0

for servers that their CPU is not sufficient, i.e., c8D > %̌4,
their RAM is not sufficient, i.e., U8D > �̌4, or their disk is not
sufficient, i.e.,

∑
A ∈Q8D,4 XA > �̌4.

Chain Paths. We eliminate the possibility of selecting a path
for connecting VNFs, if its capacity is not sufficient. To this
aim, let 1̌ℓ and 1̂ℓ be the available capacity of link ℓ during
time slots in ŤD and T̂D , respectively. Then, for path ?, we set
@8D, ? = 0 if it has a link ℓ for which 1̂ℓ < _8D .
Download Paths. Improving the probability of successful
rounding of download variables, FD?,A , is more complicated
because missing layers can be downloaded over multiple paths
and a path can be used to download multiple layers. We can
eliminate download paths that can not be used to download
even the smallest missing layers, however, it is not helpful.
Thus, we adopt another strategy. We scale the capacity of all
links during time-slots in ŤD by a multiplier (1 − W) ≤ 1 that
its computation is presented in Subsection V-C. Scaling link
capacities before solving the linear program helps to obtain
fractional values that respect link capacities after rounding
them to one.
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8

After eliminating infeasible edge servers and chain paths,
and scaling links in the download paths, we solve the linear
program model. At this stage we get fractional solutions that
have higher chance of being rounded without violating a
constraint. If the model becomes infeasible at this step, even
a fractional solution is not possible and thus we terminate
the routine and return the flag S-Failure to show a Solve
failure, which triggers a backtrack in 1. However, if the model
is feasible, we get fractional values of decision variables.
Based on them, we select the candidate placement location,
and chaining path as follows:

=8 ← argmax
=
′ ∈N
{Ẽ8
D,=
′ }. (19)

?8 ← argmax
?
′ ∈P=8=8−1

{@̃8
D, ?

′ }. (20)

Then, we use the fractional values of FD?,A as probabilities and
select paths based on these probabilities.

FD?,A = 1, with probability F̃D?,A (21)

After selecting the paths, we examine bandwidth con-
straints (16) with original values of bandwidth before scaling
them down. If constrains are not satisfied, we revert changes
applied to fix the download paths and return the R-Failure
flag to indicate a failure of Rounding, which triggers a back-
track in Algorithm 1. If constraints are satisfied, we fix the
location for the 8-th VNF, i.e., =8 , by adding the corresponding
constraint:

E
=8
D,8
= 1. (22)

Then, we fix the chaining path with:

@
?8
D,8
= 1. (23)

C. Scaling Link Capacities

Consider that Q8D,=8 is the set of missing container layers
needed for placing 8-th VNF of chain D on edge server =8 .
As the constraint (9) in our linear program selects fractional
paths for all missing layers (if it is feasible) and considering
the constraint (10), we may write the following equation for
each missing layer:∑

?∈PΘ=8

F̃D?,A = 1, A ∈ Q8D,=8 . (24)

The fractional values of F̃D?,A can be considered as a dis-
crete random variable and thus the probability of selecting
a download path for a missing layer may be calculated from
its probability mass function. Then, we define random variable
/A
ℓ

as follows to specify the load of downloading missing layer
A on link ℓ in the network:

/Aℓ =


dDA , F.?.

∑
?∈PΘ=8 :ℓ∈L?

F̃D?,A∑
?∈PΘ=8

F̃D?,A

0, >.F.

(25)

Notice that /A
ℓ
= dDA indicates that missing layer A is down-

loaded with rate dDA over a path that contains link ℓ and
otherwise /A

ℓ
is equal to 0. Downloading the missing layers

based on the probabilistic strategy of RCCO, burdens a load on

each link that is equal to the sum of variables /A
ℓ

for each link
(i.e.,

∑
A ∈Q8D,=8

/A
ℓ

). Before solving the linear program, we scale
down the link capacities by multiplying them with (1−W) and
thus we need to modify the link capacity constraint presented
in (16) as below:∑

A ∈Q8D,=8

∑
?∈PΘ=8 :ℓ∈L?

F̃D?,A d
D
?,A ≤ (1 − W)1̌ℓ . ℓ ∈ L (26)

From (24) and (26) we can write the following relation about
the expectation of the sum of random variables /A

ℓ
for each

link ℓ:

E
[ ∑
A ∈Q8D,=8

/Aℓ

]
≤ (1 − W)1̌ℓ . (27)

The probability of exceeding the capacity is greater when
the expectation is bigger. Thus, we focus on equality case:
E
[ ∑

A ∈Q8D,=8
/A
ℓ

]
= (1 − W)1̌ℓ . We employ the Hoeffding’s

inequality [39] to characterize the probability of exceeding
the capacity of link ℓ. To this end, we define the following
values for each link:

=ℓ = |Q8D,=8 |, (28)

dℓ = max{dD?,A |A ∈ Q8D,4, ? ∈ PΘ4 , ℓ ∈ L?}, (29)

1 + X = 1
(1 − W) , (30)

where, =ℓ is the number of missing layers, dℓ is the maximum
rate of download on link ℓ due to any missing layer, and 1+ X
is a multiplier that reverses the effect of scaling down the
link capacity employed to obtain the probability of exceeding
the actual link capacity. Then, we can write the Hoeffding’s
inequality for the sum of variables /A

ℓ
for link ℓ as follows:

Pr
{ ∑
A ∈Q8D,=8

/Aℓ ≥ 1̌ℓ
}
< exp{−

2W21̌2
ℓ

=ℓd
2
ℓ

}. (31)

To obtain W for a given Y we write:

exp{−
2W21̌2

ℓ

=ℓd
2
ℓ

} ≤ Y, (32)

which gives:

W ≥

√√
−
=ℓd

2
ℓ ln Y

21̌2
ℓ

. (33)

D. Layer Eviction

Once the service of a chain terminates, it will release
the allocated resources. However, its downloaded container
layers will remain on the edge server. RCCO keeps the down-
loaded layers to avoid downloading them again in the future.
However, if other chains arrive to the network and require
different layers, RCCO may need to delete existing layers to
free space and download those layers. Instead of deleting
layers at random, RCCO employs a lightweight mechanism to
compute a popularity for layers that have been downloaded
to edge servers so far. RCCO keeps this information in each
edge server individually and in a distributed manner. RCCO
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i-3   i-2    i-1     i     i+1   i+2  i+3   i+4   i+5 

Fig. 3: Limited backtrack with Γ = 3 causes the placement of
8-th VNF to be repeated at most 5 times (Γ + 2).

creates a table in each edge server and each time a new layer
is downloaded, RCCO writes an ID that uniquely identifies
the layer in the table. Associated with layer ID RCCO keeps
a popularity metric of that layer which is initialized to zero.
Then, each time that a layer is used to instantiate a VNF on
the edge server, RCCO increments the popularity metric in the
table by:

Popularity ← n × Popularity + 1,

where, "Popularity" is the current value and n is a coefficient
less than one. We note that this equation is inspired by the
cumulative discounted reward that is employed in the theory
of reinforcement learning. When a chain arrives and we solve
the optimization model, the location of each VNF and required
layers become specified. For each edge server, if it can host
specified VNFs without deleting a layer, we keep all unused
layers. However, if it becomes necessary to delete some layers
to download new layers, we start by the least popular layer
and delete more layers in that order until the required space
becomes available.

Theorem 2. RCCO runs in $ ((DΓ); ?), where ); ? is the time
complexity of solving relaxed CCO.

Proof. We have to place (D VNFs to handle chain D. Fig. 3
shows that the placement of each VNF can at most repeat
Γ+2 times due to limited backtrack mechanism. To place each
VNF, we call round where it eliminates infeasible servers
(at most $ ( |N |)), infeasible chaining paths from previous
location (at most |P |) and scales link capacities (i.e., $ ( |L|)).
Then, round solves the linear program. After that, for each
missing layer a path is selected (there are at most maxD,8{|R8D |}
missing layers). After selecting a path for a missing layer,
we should check the link capacities along that path to detect
capacity violation. There are at most $ ( |L|) links in any path.
The time complexity of solving a linear program with interior-
point methods is $ (=3.5), where = is the number of decision
variables. Since the complexity of solving the linear program
is higher than any of pre-processing and post-processing steps,
the complexity of RCCO is $ ((DΓ); ?). �

VI. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
RCCO which was introduced in Section V. We implemented
all algorithms in Python 3.7 and used Gurobi 9.0 [40] as the
solver of ILPs and LPs. All the instructions and codes required
for reproducing the presented results are available in [41].
Computations are carried out on a computer with an Intel(R)

TABLE IV: Important Parameters

Parameter Value Parameter Value
No. VNFs 50 1ℓ [0.1, 1] Gbps
VNF RAM [0.25, 0.5] GB ǧD gD + [5, 8]
No. Layer/VNF [5, 12] ĝD gD + [8, 21]
No. Layers 200 Layer Size [50, 350] Mb
SFC length [2, 7] ΦD [500, 2000] ms
V8D [0.8, 1.05] _D [1, 5] Mbps
VNF CPU [0.25, 0.5] GHz Server CPU [16, 32] GHz
Server RAM [4, 32] GB Server Disk [20, 30] Gb
Inter-arrival exp (1)

Xeon(R) CPU E5-2690 0 @ 2.90 GHz, 16 GB of RAM, and
64-bit Windows Server 2016 operating system.

A. Evaluation Setup

We observed that container layers are different in terms
of applicability and usage. For example, operating system
layers such as CentOS are more commonly used in the real-
world container images. To show this diversity, we employ a
popularity-based approach to construct the VNFs from layers.
To this end, we randomly assign a natural number =A ∈ N to
each layer and then let the probability of using layer =A in
a VNF be proportional to 1/=A . This is the famous Zipf’s
law [42] which is widely used for modeling popularity in
physical and social sciences. We assume that the number of
service request arrivals in time follows a Poisson random
process. Thus, we use exponential distribution to generate
requests’ inter-arrival times and thus gD’s to achieve the
designated arrival rate. Important parameters are presented in
Table IV.

B. Implemented Schemes

We compare RCCO with the following algorithms to demon-
strate its effectiveness:
• Offline: This algorithm assumes that the information about

all chains are available a priori and solves the optimization
problem described in Section IV with the solver.

• Online: This algorithm solves the optimization problem
described in Section IV with the solver for each chain
upon arrival and then fixes all the corresponding decision
variables. This algorithm is the natural extension of the
above Offline algorithm to online setting.

• VNF Packer (VP): This algorithm packs subsequent VNFs
of a Chain in the same edge server if possible. Otherwise, it
selects the next edge server that has sufficient capacity for
placing the remaining VNFs.

• Iterative Greedy Algorithm (IGA): This algorithm places
VNFs on edge servers based on the greedy metric described
in [7].

• NoShare: This algorithm follows the same procedure as
RCCO, but does not allow layer sharing among VNFs.

C. Metrics

We consider the following metrics in our comparisons. We
report averages and 95% confidence intervals of these metrics
obtained from experiments.
• Accept rate: The ratio between the number of chains that

are accepted to all chains that arrive to the network.
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Fig. 4: Performance comparison of RCCO and Offline algo-
rithm. Note that the y-axis of 4(c) displays a logarithmic scale.

• Chain bandwidth: The amount of bandwidth used to satisfy
the bandwidth demand of chains. In some cases that two
consecutive VNFs are placed inside the same server, no
bandwidth is consumed. However, in some cases the two
VNFs are connected via a path that has more than one link.
This metric is minimized in the objective function of the
problem in equation (18).

• Download volume: Total amount of container layer data
downloaded from cloud to edge servers to instantiate VNFs.

• Runtime: Total time spent for processing all chains.

D. Performance Accuracy

In this subsection, we compare RCCO with offline and online
algorithms derived from solving an integer linear program
exactly. Since these algorithms solve the problem optimally,
they serve as credible benchmarks to demonstrate the accuracy
of RCCO. As exact solvers are not scalable, we have to restrict
the comparisons to small scale problem instances.
Offline. In this part, we compare RCCO with Offline that
is based on the solver and assumes the knowledge of all
chains a priori. Since Offline is not scalable, we test with
6 to 14 number of chains. Also, as the main objective is
minimizing the chain bandwidth, we first give all chains to
RCCO and determine the chains that it accepts. Then, we give
the accepted chains to Offline. This step ensures that RCCO and
Offline accept the same set of chains and allows us to compare
their ability of efficiently placing VNFs and minimizing the
chain bandwidth. Fig. 4 shows the result of comparisons.
Fig. 4(a) indicates that for the same number of chains, Offline
at most reduces chain bandwidth by about 23% and at least
by 15% compared to RCCO. The average bandwidth reduction
by Offline compared to RCCO is about 20%. We emphasize
that the Offline approach is not realistic as chains arrive
sequentially and knowledge about future chains is not available
in practice. Fig. 4(b) shows that the layer download volume is
similar for both approaches. Finally, we can see in Fig. 4(c)
that the runtime of Offline increases significantly with the
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Fig. 5: Performance comparison of RCCO and Online algo-
rithm in the first setting with bandwidths of links large enough
to allow both RCCO and Online accept all incoming chains.

number of chains. As the number of chains increases by
2.3x, the runtime of RCCO also increases by 2.5x, which
shows a preferable linear behavior. However, the runtime
of Offline increases by 23x. The runtime of RCCO is 35%
smaller than the runtime of Offline for handling 6 chains
while the difference becomes 92% for 14 chains. Furthermore,
we observe that although the average runtime of Offline for
handling 14 chains is about 1600 seconds, its 95% confidence
interval includes 5000 seconds. This observation shows that for
some instances Offline’s runtime is significantly long. Despite
the 20% bandwidth reduction of Offline compared to RCCO,
the significant better runtime performance of RCCO and non-
realistic knowledge about future chains employed in Offline
demonstrate the effectiveness and scalability of RCCO.
Online. We compare RCCO and Online in two different
settings. In the first one, we set the bandwidths of links large
enough to allow both RCCO and Online accept all incoming
chains. This setting allows us to compare RCCO and Online in
terms of their ability to efficiently allocate physical resources.
In the second setting, we use values for the bandwidths of
links from the interval [0.1, 1] Gbps as indicated in Table IV,
and consequently due to insufficient resource, some chains will
be rejected. Since Online uses the solver to directly solve the
optimization program for each chain, it will uses resources
more efficiently and accepts more chains. The second setting
allows us to compare RCCO with the best obtainable result in
a situation closer to real-world.

Fig. 5 shows the result of comparisons in the first setting.
Fig. 5(a) indicates that for the same number of chains, RCCO
uses slightly more bandwidth which in the worst-case is about
4% and on average is about 2%. Same result is observable in
Fig. 5(b) that compares the download volumes. The result of
these figures shows that RCCO is very close to the optimal
solution of the problem in the online setting. Fig. 5(c) com-
pares the runtime of RCCO and Online in the first setting. We
observe that the runtime of RCCO exhibits a linear increase and
increases by 2.6x as the number of chains increases by 2.3x.
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Fig. 6: Performance comparison of RCCO and Online algo-
rithm in the second setting with limited bandwidths for links
generated from the interval [0.1, 1] Gbps. Note that the y-axis
of 6(d) displays a logarithmic scale.

However, the runtime of Online increases by 4.9x. Online’s
runtime on average is 327% higher than RCCO in this setting.

Fig. 6 shows the results of comparison with Online in the
second setting. We see in Fig. 6(a) that Online algorithm
accepts on average about 12% more chains. As the result of
higher accept rate, Online consumes 37% more bandwidth to
chain the VNFs and downloads 11% more layer data which
are demonstrated in Figs. 6(b) and 6(c). Fig. 6(d) shows the
runtime comparison of RCCO and Online in the second setting.
Since the bandwidths of links are limited, finding a solution is
more challening compared with the first setting. We observe
that the runtime of Online for handling 14 chains is close
to 20000 seconds and the 95% confidence interval includes
70000 seconds.

E. Performance Comparison

In this subsection, we compare RCCO with three heuristic
algorithms introduced in Subsection VI-B that are scalable
and run in polynomial time. Thus, these algorithms have no
scalability concern and are applicable in practice.
Effect of the Number of Layers Per VNF. In this experiment,
we fix the size of VNFs to 420 Mb and split a VNF into 2,
6, 10 and 14 layers. We expect to observe a reduction in the
download volume as number of layers per VNF increases and
thus the opportunity of reusing layers and sharing them among
VNFs increases. First we evaluate the accept rate and chain
bandwidth consumption. Fig. 7(a) shows that RCCO and VP
achieve higher accept rate compared to IGA and NoShare.
Fig. 7(b) shows that RCCO and NoShare reduce the chain
bandwidth significantly compared to VP and IGA as they
consider the chain bandwidth consumption in their algorithms.
Figs. 7(c) and 7(d) show that RCCO downloads less than half of
other algorithms in general and per-chain. Also, these figures
show that as the number of layers increases, the download
volume for RCCO is reduced, while other algorithms can not
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Fig. 7: Effect of splitting VNFs to more layers. As VNFs
are split into more layers, the reuse and sharing opportunity
increases, which leads to total and per-VNF layer download.
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Fig. 8: Effect of increasing the total number of layers com-
pared with the total number of VNFs.

exploit the layering benefits properly. We can observe that
RCCO visibly outperforms other algorithms when we consider
different aspects of accept rate, chain bandwidth and download
volume.
Effect of Total Number of Layers. In this experiment, we
examine the effect of increasing total number of layers. We
fix the total possible number of VNFs that form service chains
to 10 and consider scenarios with 50, 100, 150 and 200 total
number of possible container layers in the whole network. As
the number of layers increases, the sharing between VNFs
decreases and we expect to observe a gradual increase in the
download volume. Notice that we build the VNFs from the
pool of available layers according to the Zipf’s law. Therefore,
when the total number of layers increases the number of
unique layers in VNFs also increases which reduces the
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opportunity of layer sharing. Fig. 8(a) shows that as the total
number of layers increases the accept rate experiences a slight
decrease. Nevertheless, RCCO outperforms other algorithms by
at least about 17% on average. Interestingly, despite higher
accept rate, RCCO also consumes significantly less bandwidth
to route traffic between VNFs and download the required
layers. Fig. 8(b) shows that the bandwidth consumption for
chaining VNFs increases by about 24% as the number of layers
quadruples. On the other hand, the bandwidth consumption of
other algorithms slightly decreases which is due to their lower
accept rate. Nonetheless, RCCO consumes about 60% less
bandwidth in comparison while providing better accept rate. A
similar trend is observable in Fig. 8(c). As the total number of
layers increases compared with the number of VNFs, the layer
sharing becomes more difficult and we can see an increase in
the amount of container layer data. Specifically, we observe
that the download volumes increases by about 89%, as the
total number of layers increases from 50 to 200. The download
volume of other algorithms do not change significantly which
implies that they do not appropriately exploit the container
layer sharing especially as we see that they download at least
4.3x more container data compared with RCCO.

F. Evaluation of RCCO components

In what follows, we investigate the effect of several im-
portant components of RCCO introduced in Section V on its
performance.
Backtrack Limit. In this experiment, we explore the effective-
ness of limited backtrack strategy (refer to Subsection V-A)
employed in RCCO. To this end, we run RCCO with different
backtrack limit values (i.e. different values of Γ). When Γ is
zero, RCCO can not perform a backtrack. As we increase Γ,
RCCO undoes more decisions but has to go further forward to
be allowed to do another backtrack. Consequently, we expect
to observe a turning point where too many backtracks becomes
ineffective. To further explore the effect of backtracking, we
define two different failures in RCCO as in Section V. S-Failure
happens when RCCO can not solve the linear program after
eliminating the infeasible options. R-Failure happens when
RCCO can not round variables after solving the linear program.
From Fig. 9(a) we can see that without backtracking, about
66% of chains are accepted successfully but remaining 34%
failed due to R-Failure. As we allow backtracking, the accept
rate increases by more than 20% compared to the algorithm
that does not employ backtracking. We also observe about 3%
S-Failures happen which means that even the linear program
solver was not able to find a feasible solution and probably
there was not sufficient amount of resources to accept the
3% of chains. In total, we can argue that backtracking has
alleviated about 24% of R-Failures.
Link Scale Factor. In this experiment, we investigate the
effect of the link capacity scale factor introduced in Subsection
V-C and employed in RCCO to increase the success probability
of the download path variable rounding. We set the backtrack
limit to zero. Similar to our discussion of backtrack experi-
ment, we record the frequency of S-Failure and R-Failure as
link scale values increase. In Fig. 9(b), we observe that without
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Fig. 9: Effect of backtrack and scaling link capacities on the
success of RCCO.
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Fig. 10: Random vs. popularity-based eviction strategy.

link scaling about 66% of chains are accepted successfully,
while the remaining ones experience an R-Failure. However,
after scaling the link capacities by 0.8, more than 78% of
chains are accepted and 1.3% of them are rejected due to an S-
Failure. Consequently, we can argue that link capacity scaling
alleviated about 14% of R-Failures. These results confirm the
effectiveness of the scaling strategy.
Layer Eviction Strategy. In this experiment, we examine the
effect of the popularity-based layer eviction strategy that we
introduced in Subsection V-D. In this regard, we record the
accept rate and download volume during an interval that 1000
chains are handled. We report the results by averaging the
metrics after handling every 40 chains. As the baseline, we
re-use RCCO but instead of deleting the least popular layer we
delete a layer at random. From Fig. 10(a) we can observe
that both approaches admit relatively the same number of
chains and attain the same accept rate. This is an expected
result as deletion of unused layers has a limited influence on
which chains can be accepted. Specifically, only when a chain
arrives to the network and requires a container layer that is too
large to be downloaded before the start of the chain’s service
and the layer is not available locally, the effect of deletion
becomes evident on the accept rate. Nonetheless, RCCO based
on popularity deletion consistently achieves a higher accept
rate. However, eviction has a bigger effect on the amount of
layer data that is downloaded from the cloud. Fig. 10(b) shows
that RCCO can avoid downloading about 20% of layer data by
keeping more popular layers instead of deleting unused layers
at random.

VII. CONCLUSION

In this work, we considered the problem of orchestration of
containerized VNFs in an edge-enabled network. We presented
a novel ILP formulation to model the download and placement
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of container layers that are required to instantiate virtualized
network functions. Then, we designed an algorithm based on
the linear program relaxation and rounding framework. To
increase the efficiency of the method we equipped it with
a limited backtrack capability and capacity scaling strategy.
Then, we characterized several theoretical aspects related to
performance of the proposed solution. We evaluated the pro-
posed solution through simulating a typical real-world setting
and demonstrated the ability of our solution to obtain con-
siderable performance gains through container layer sharing
and reuse. In our work, we also used a lightweight popularity
strategy to delete unused layers that was a reasonable decision
due to resource limitation at the edge. However, investigation
of more sophisticated layer management strategies based on
machine learning without putting too much stress on edge
servers is an interesting future direction of our work.

REFERENCES

[1] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, “Toward edge
intelligence: multiaccess edge computing for 5G and internet of things,”
IEEE Internet of Things Journal, vol. 7, no. 8, pp. 6722–6747, 2020.

[2] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou, “A survey on
edge computing systems and tools,” Proceedings of the IEEE, vol. 107,
no. 8, pp. 1537–1562, 2019.

[3] J. E. Smith and R. Nair, “The architecture of virtual machines,”
Computer, vol. 38, no. 5, pp. 32–38, 2005.

[4] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peter-
son, “Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” in Proc. ACM SIGOPS/EuroSys,
2007, pp. 275–287.

[5] Z. Tao, Q. Xia, Z. Hao, C. Li, L. Ma, S. Yi, and Q. Li, “A survey of
virtual machine management in edge computing,” Proceedings of the
IEEE, vol. 107, no. 8, pp. 1482–1499, 2019.

[6] D. Mauro et al., “Comparative performability assessment of SFCs: The
case of containerized ip multimedia subsystem,” IEEE Transactions on
Network and Service Management, vol. 18, no. 1, pp. 258–272, 2021.

[7] L. Gu, D. Zengy, J. Hu, B. Liz, and H. Jin, “Layer aware microservice
placement and request scheduling at the edge,” in Proc. IEEE INFO-
COM. IEEE, 2021, pp. 1–9.

[8] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D. Skourtis,
A. K. Paul, K. Chen, and A. R. Butt, “Large-scale analysis of docker
images and performance implications for container storage systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 4,
pp. 918–930, 2021.

[9] A. Kohgadai. (2020) 6 container adoption trends of
2020. [Online]. Available: https://www.stackrox.com/post/2020/03/
6-container-adoption-trends-of-2020/

[10] P. Smet, B. Dhoedt, and P. Simoens, “Docker layer placement for on-
demand provisioning of services on edge clouds,” IEEE Transactions
on Network and Service Management, vol. 15, no. 3, pp. 1161–1174,
2018.

[11] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge
services leveraging container layered storage,” IEEE Transactions on
Mobile Computing, vol. 18, no. 9, pp. 2020–2033, 2019.

[12] Kubernetes. [Online]. Available: https://kubernetes.io/
[13] Y.-Y. Shih, H.-P. Lin, A.-C. Pang, C.-C. Chuang, and C.-T. Chou, “An

NFV-based service framework for IoT applications in edge computing
environments,” IEEE Transactions on Network and Service Manage-
ment, vol. 16, no. 4, pp. 1419–1434, 2019.

[14] R. Kawashima, “Software physical/virtual Rx queue mapping toward
high-performance containerized networking,” IEEE Transactions on
Network and Service Management, vol. 18, no. 1, pp. 687–700, 2021.

[15] T. Goethals, F. DeTurck, and B. Volckaert, “Extending kubernetes
clusters to low-resource edge devices using virtual kubelets,” IEEE
Transactions on Cloud Computing, 2020.

[16] L. Cui, Z. Chen, S. Yang, Z. Ming, Q. Li, Y. Zhou, S. Chen, and
Q. Lu, “A blockchain-based containerized edge computing platform for
the internet of vehicles,” IEEE Internet of Things Journal, vol. 8, no. 4,
pp. 2395–2408, 2021.

[17] S. Guo, K. Zhang, B. Gong, W. He, and X. Qiu, “A delay-sensitive
resource allocation algorithm for container cluster in edge computing
environment,” Computer Communications, vol. 170, pp. 144–150, 2021.

[18] J. Zhang, X. Zhou, T. Ge, X. Wang, and T. Hwang, “Joint task scheduling
and containerizing for efficient edge computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 8, pp. 2086–2100, 2021.

[19] Z. Wu et al., “Blender: A container placement strategy by leveraging
zipf-like distribution within containerized data centers,” IEEE Transac-
tions on Network and Service Management, pp. 1–1, 2021.

[20] M. Niu et al., “Gmta: A geo-aware multi-agent task allocation approach
for scientific workflows in container-based cloud,” IEEE Transactions
on Network and Service Management, vol. 17, no. 3, pp. 1568–1581,
2020.

[21] R. Kang et al., “Virtual network function allocation in service function
chains using backups with availability schedule,” IEEE Transactions on
Network and Service Management, vol. 18, no. 4, pp. 4294–4310, 2021.

[22] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, “Design and evaluation of algorithms for mapping and schedul-
ing of virtual network functions,” in Proc. IEEE NetSoft. IEEE, 2015,
pp. 1–9.

[23] Y. Zhang et al., “Service chain provisioning with sub-chain-enabled
coordinated protection to satisfy availability requirements,” IEEE Trans-
actions on Network and Service Management, pp. 1–1, 2021.

[24] C. Ren et al., “On efficient service function chaining in hybrid software
defined networks,” IEEE Transactions on Network and Service Manage-
ment, pp. 1–1, 2021.

[25] M. S. Castanho, C. K. Dominicini, M. Martinello, and M. A. M.
Vieira, “Chaining-box: A transparent service function chaining archi-
tecture leveraging bpf,” IEEE Transactions on Network and Service
Management, vol. 19, no. 1, pp. 497–509, 2022.

[26] J. Zu, G. Hu, D. Peng, S. Xie, and W. Gao, “Fair scheduling and rate
control for service function chain in nfv enabled data center,” IEEE
Transactions on Network and Service Management, vol. 18, no. 3, pp.
2975–2986, 2021.

[27] Y. Wang, C.-K. Huang, S.-H. Shen, and G.-M. Chiu, “Adaptive place-
ment and routing for service function chains with service deadlines,”
IEEE Transactions on Network and Service Management, vol. 18, no. 3,
pp. 3021–3036, 2021.

[28] N. Siasi, M. Jasim, J. Crichigno, and N. Ghani, “Container-based service
function chain mapping,” in 2019 SoutheastCon. IEEE, 2019, pp. 1–6.

[29] Y. Bi et al., “Multi-objective deep reinforcement learning assisted service
function chains placement,” IEEE Transactions on Network and Service
Management, vol. 18, no. 4, pp. 4134–4150, 2021.

[30] R. A. Addad, D. L. C. Dutra, T. Taleb, and H. Flinck, “Ai-based network-
aware service function chain migration in 5g and beyond networks,”
IEEE Transactions on Network and Service Management, vol. 19, no. 1,
pp. 472–484, 2022.

[31] D. T. Nguyen et al., “Placement and chaining for run-time IoT service
deployment in edge-cloud,” IEEE Transactions on Network and Service
Management, vol. 17, no. 1, pp. 459–472, 2020.

[32] L. Gu, D. Zeng, J. Hu, H. Jin, S. Guo, and A. Y. Zomaya, “Exploring
layered container structure for cost efficient microservice deployment,”
in Proc. IEEE INFOCOM. IEEE, 2021, pp. 1–9.

[33] S. Natarajan, A. Ghanwani, D. Krishnaswamy, R. Krishnan, P. Willis,
and A. Chaudhary, “An analysis of container-based platforms for NFV,”
IETF draft, Apr, 2016.

[34] Docker, “About storage drivers,” accessed Mar. 26, 2022. [Online].
Available: https://docs.docker.com/storage/storagedriver/

[35] X. Wang, C. Wu, F. Le, A. Liu, Z. Li, and F. Lau, “Online VNF scaling
in datacenters,” in Proc. IEEE CLOUD, 2016, pp. 140–147.

[36] L. Wang, M. Dolati, and M. Ghaderi, “Change: Delay-aware service
function chain orchestration at the edge,” in Proc. IEEE ICFEC. IEEE,
2021, pp. 19–28.

[37] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar, “Approximation
algorithms for the unsplittable flow problem,” Algorithmica, vol. 47,
no. 1, pp. 53–78, 2007.

[38] D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms. Cambridge University Press, 2011.

[39] W. Hoeffding, Probability Inequalities for sums of Bounded Random
Variables, 1994, pp. 409–426.

[40] Gurobi Optimization LLC., “Gurobi Solver,” accessed Jan. 2, 2022.
[Online]. Available: https://www.gurobi.com

[41] (2022) containerized-sfc. https://github.com/mahdidolati/
containerized-sfc. Accessed Mar. 27, 2022.

[42] G. K. Zipf, Human behavior and the principle of least effort: An
introduction to human ecology. Boston, MA, USA: Addison-Wesley,
1949.

Page 13 of 13 IEEE Transactions on Network and Service Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://www.stackrox.com/post/2020/03/6-container-adoption-trends-of-2020/
https://www.stackrox.com/post/2020/03/6-container-adoption-trends-of-2020/
https://kubernetes.io/
https://docs.docker.com/storage/storagedriver/
https://www.gurobi.com
https://github.com/mahdidolati/containerized-sfc
https://github.com/mahdidolati/containerized-sfc



