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Abstract—Efficient and consistent update of the network
routing rules is a challenging task that significantly affects
the performance, correctness, and security of Software-Defined
Networks (SDN). In this work, we consider the problem of
minimizing the makespan of updating the routing rules in SDNs,
while guaranteeing three crucial consistency requirements: (1)
WayPoint Enforcement, (2) Loop Freedom, and (3) Conflict
Freedom. This problem is known to be NP-hard, and thus
we focus on designing approximate algorithms that run in
polynomial time without incurring TCAM storage overhead.
To compute consistent rule-update schedules, we propose two
algorithms, called TimeX and RMS. TimeX employs the solution of
a linear program (LP) to address the makespan minimization
goal systematically. RMS is an LP-independent heuristic that
provides higher scalability. We demonstrate and utilize a property
of rule-updates, called reversibility, to reduce the makespan in
RMS. Extensive simulations show that our algorithms reduce the
makespan by 2% to 18% and attain a 4.9x speedup compared to
previous studies. Moreover, Mininet experiments reveal that the
proposed algorithms can mitigate the transient congestion caused
by conflicting flows.

Index Terms—SDN, Consistent Rule-Update, WayPoint-
Enforcement, Loop-Freedom, Conflict-Freedom

I. INTRODUCTION

A. Background and Motivation

SOFTWARE-Defined Networking decouples the network
control logic from the underlying switches that forward

traffic. Then, a logically centralized controller implements the
control plane by installing and updating forwarding rules on
network switches to instruct them on how to forward traffic in
the network. The SDN controller can increase resource utiliza-
tion and network efficiency by reacting to dynamic changes
in the network by quickly updating the forwarding rules [1]–
[4]. Furthermore, achieving goals such as failure recovery
in a timely manner requires a fast update of the forwarding
rules [4]–[6]. Thus, efficient mechanisms for quickly updating
the forwarding rules are crucial for the operation of future
networks [7].

Updating forwarding rules in SDNs, however, is a chal-
lenging task. The main challenge is that the delay of sending
new rules to switches and the required time to install the
rules in the switch memories are non-deterministic. Therefore,
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even if the controller sends out the new rules simultane-
ously, some switches may update their forwarding behavior
considerably sooner than others [8]. Studies show that the
gap between sending the update messages and when the data
plane is updated can be several milliseconds [9], which is a
significant delay in high-capacity networks. This asynchronous
behavior, which causes partial execution of rule-update mes-
sages, may lead to network state inconsistencies [10]. This
inconsistency is observable in terms of sending packets in
transient loops [11], overloading link capacities [3], or by-
passing important waypoints such as a flow classifier [12].
Network properties that should endure throughout the rule-
update process are called the network consistency properties.

Some works store the new forwarding rules in the switch
TCAM before removing the old forwarding rules and use
tagging to implement an update procedure that guarantees
the consistency properties [11]. This extra TCAM usage can
restrict network operations, such as fine-grained flow man-
agement [13] that extensively rely on TCAM. Also, when a
large-scale rule update becomes necessary due to a security
breach or a device outage [10], the TCAM overhead can
be prohibitive. Performing the rule update in a sequence of
smaller steps can alleviate the TCAM consumption problem.
This approach, however, results in longer latencies until the
network converges to its new state and can not address
situations when some switches have already exhausted their
TCAM capacity. Furthermore, these approaches typically store
the tags in the VLAN field that may conflict with other
applications that use it [14].

Later studies showed that it is possible to preserve the
consistency properties by coordinating rule updates across the
switches to address the TCAM usage issue [15]. This method
partitions the rule updates into multiple time slots, where the
order of updates in a single time slot does not violate the
consistency properties. The number of required time slots for
delivering all the rule updates is called the update makespan.
Update makespan determines the time a network spends in
a sub-optimal configuration [8], which considerably affects
the network performance. Since minimizing the makespan is
a known NP-hard problem [16], in this paper, we focus on
designing fast algorithms for this problem.

B. Our Work

In this work, we consider consistent multi-flow rule-update
with minimum makespan in SDNs. We assume that the SDN
is under a single administrative domain and controlled by
a virtually centralized controller. We design our approaches
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based on an iterative scheduling model to save TCAM mem-
ory. We consider three consistency properties: (1) WayPoint
Enforcement (WPE) that mandates all packets of each flow
in the network visit a particular node, such as a firewall.
(2) Loop Freedom (LF) that prevents transient routing loops.
(3) Conflict Freedom (CF) that ensures conflicting flows (e.g.,
correlated bursty flows) do not use the same link at the same
time (see [17]). To the best of our knowledge, no schedule-
based polynomial-time algorithm exists for minimizing the
makespan while considering these three consistency proper-
ties. For example, the authors in [16], [18] restrict themselves
to the single-flow setting, works in [19], [20] ignore the update
makespan, and works in [3], [21] neglect routing restrictions
that enforce traversing through specific nodes. We propose two
algorithms, named TimeX and RMS, to address this research
gap. Our contributions can be summarized as follows:
• We formulate the rule-update makespan minimization prob-

lem in an SDN while preserving the Loop-Freedom,
Conflict-Freedom, and WayPoint Enforcement properties.

• To advance the theoretical study of the makespan minimiza-
tion problem, we present the design of an integer program
relaxation-based algorithm, called TimeX, and investigate its
performance in practice.

• We propose a more scalable algorithm, called RMS, that
does not rely on linear program solutions. We prove a
property called reversibility, which allows obtaining two
potentially different solutions for each problem instance and
then merging the solutions to reduce the update makespan.

• Finally, we thoroughly evaluate the performance of the pro-
posed algorithms with simulation and Mininet experiments.

C. Paper Organization

We review related works in Section II. System model
and problem definition are presented in Sections III and IV,
respectively. In Section V, we design an LP-based solution
called TimeX. In Section VI, we avoid using the LP solution to
create a scalable algorithm called RMS. Section VII presents
the evaluation results. Section VIII concludes the paper.

II. RELATED WORK

We categorize previous studies into TCAM-based, schedule-
based, and multi-flow methods to highlight our work’s dis-
tinctions. Each category discusses several seminal and recent
studies. For a comprehensive list of papers on the consistent
update, please refer to [22]. Table I presents a concise com-
parison of our proposed methods with the existing ones.
TCAM-based Methods. Authors in [11] considered PerPacket
Consistency (PPC) property and proposed a method named
the 2-phase commit based on the packet and rule tagging
to guarantee PPC. Although their solution minimizes the
update makespan by imposing only two rounds of message
passing between the controller and switches, it doubles the
TCAM memory usage [23]. Authors in [24] considered the
Per-Flow Consistency (PFC) model, which is more imposing
than PPC, and proposed concrete mechanisms for PPC and
PFC. Authors in [25] considered the Per-Bidirectional-Flow
Consistency (PBFC) property that guarantees PFC for both

TABLE I: Relevant Related Works.

Literature no-TCAM Makespan Multi-flow Consistency Complexity

[11] 7 3 7 PPC Poly
[26] 7 3 7 Path-based Exp
[15] 3 3 7 LF Poly
[18] 3 3 7 WPE+LF Exp
[16] 3 3 7 Multi-WPE+LF Exp

This Paper

TimeX 3 3 3 WPE+LF+CF Poly
RMS 3 Heuristically 3 WPE+LF+CF Poly

forward and backward directions. Authors in [23] proposed an
incremental update mechanism to reduce the TCAM overhead
when forwarding rules are not exact matches. Their algorithm
uses a pre-determined set of predicates to update a subset of
flows with the 2-phase commit. They proposed an integer
program to select predicates that minimize the rule-update
makespan subject to a constraint on the TCAM overhead.
These works rely on using extra TCAM entries, which reduces
the switching capacity and increases energy consumption.
Schedule-based Methods. To avoid redundant TCAM entries,
authors in [15] considered scheduling the rule updates in
multiple time slots. They discussed a general framework for
SDN updates. However, they do not provide mechanisms for
ensuring policy-related properties like WPE. Authors in [27]
proved that approximating the minimum makespan with a ratio
better than 4

3 is NP-hard, even for the simple consistency
property of loop-freedom. [18] and [16] present exact Mixed-
Integer Program (MIP) formulations for loop-freedom and
waypoint enforcement consistency properties. Authors in [26]
combined the scheduling and packet tagging methods. How-
ever, their approach relies on solving integer linear programs
that are computationally expensive. Authors in [20], instead of
minimizing the makespan, considered maximizing the number
of updated switches in each time slot in topologies with
bounded tree-width. However, this approach can increase the
update makespan by a factor of n, compared to the optimal
makespan (where n is the maximum path length of the affected
traffic flows in the network [28]). The work presented in [29]
assumes that update rules are bounded and pre-computed
and chooses the configuration that minimizes the makespan
with a max-cover-based algorithm. The effectiveness of this
approach is limited to the availability of these pre-computed
configurations. These works ignore flow inter-dependencies
and focus on the single flow update problem.
Multi-flow Methods. The majority of existing multi-flow
methods address congestion freedom and packet delivery dur-
ing the network update [3], [21], [27], [30]–[33]. However,
these works neglect higher-level policies that are typically
crucial for network operators. For example, some flows can
only use specific paths for security or quality of the service
reasons. Authors in [34] defined an abstraction at the event
level to aggregate related traffic flows. Then, they minimized
the bandwidth consumed for the migration of flows that block
a specific update event. The challenges of handling wireless in-
terference while updating a software-defined wireless network
are considered in [35], in which the authors propose a greedy-
heuristic scheme to minimize the update makespan. Authors
in [9] used a priority-based sorting mechanism that exploits
the dependencies among the forwarding rules to reduce the
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flow update delay. Most of these methods do not consider
high-level network policies or do not consider the makespan
minimization objective.

A preliminary version of this work appeared in [36], where
we presented a heuristic algorithm to minimize the update
makespan in the single-flow setting.

III. SYSTEM MODEL

In this section, we model the consistent update of paths in
an SDN based on message scheduling. We specify network
and traffic models in subsections III-A and III-B, respectively.
Then, we discuss the set of properties used to model the net-
work consistency in subsection III-C. Finally, we explain the
controller’s approach for preserving the consistency properties
in subsection III-D. Table II lists notations of this section.

A. Network Model

We consider an SDN with a centralized controller and a
set of OpenFlow-enabled switches. The controller maintains
a connection to each switch for installing forwarding rules in
their memories, where each forwarding rule is composed of
a match on the packet header fields and an action. Switches
forward the traffic by applying the action corresponding to
the best-matching forwarding rule. Meanwhile, the controller
monitors the network and updates the rules to keep the
performance at the desired level. The controller can up-
date a forwarding rule and change its action by sending
a specific message defined in the OpenFlow protocol (i.e.,
OFPFC_MODIFY) to the corresponding switch. We assume
that rule updates do not disrupt the connections between the
controller and switches. This assumption is valid when those
connections use dedicated paths (i.e., out-of-band control).
Moreover, when those connections use the same infrastructure
as data flows (i.e., in-band control), we assume that control
connections use isolated forwarding rules that do not overlap
with the forwarding rules of traffic flows. For example, Open
vSwitch implements the in-band control with rules not visible
through the OpenFlow protocol [37].

B. Traffic Model

We define a flow as a sequence of packets that use the
same forwarding rules along their paths. For splittable flows,
the controller treats each split as a distinct flow. We assume
that the controller selects a subset of flows to update their
routing path and stores them in the set F . Each flow f ∈ F
carries traffic from its source s f to its destination df . We use
L1

f and L2
f to show the set of links in the paths of flow

f before and after the update, respectively. We refer to the
routing paths before and after the update as initial and final
paths, respectively. Since a switch that is only in the initial
path does not undergo a routing update, we can remove it
from the model and connect its neighbors directly via a link.
Furthermore, a switch that is only in the final path does not
initially forward packets of the corresponding flow, so we can
update its routing state before other switches and eliminate it
similar to switches that are only in the initial path. Consider

TABLE II: Input Notations.

Sym. Description Sym. Description

F Set of flows to be updated s f Source of flow f

Wf Switches in the path of f d f Destination of flow f

L1
f Links in the initial path of f Ω f WayPoint of flow f

L2
f Links in the final path of f `.h Head of the link `

C Partition of flows to compute makespan `.t Tail of the link `
L f Links in L f , not connected to Ω f L f L1

f ∪ L
2
f

Pf (w, t) Path of flow f from switch w in t Pf (t) Pf (s f , t)

M(i) Makespan for flows in Ci K Size of C
X(Q, `) Conflict indicator function

switches w8 and w9 in Fig. 1 that are only in the initial and
final paths, respectively, and their removal in Fig. 2. Therefore,
we assume that the initial and final paths use the same switches
but in a different order and useWf to show the set of common
switches between both paths. We use `.h and `.t to show the
head and tail of each link ` ∈ L1

f (or ` ∈ L2
f ), which means

packets of f over ` go from switch `.h to switch `.t. We
allow each flow to specify a switch that its packets should
traverse before reaching the destination. Henceforth, we call
this distinguished switch a WayPoint, and for each flow f ,
represent it by Ω f . The WayPoint can model the existence
of mission-critical functions in the network (e.g., a NAT). If
a flow does not have a WayPoint, we let Ω f = df , which
eliminates the effect of the WayPoint, as all packets always
traverse their destination switch. For convenience, we define
L f and L f to show the links in L1

f ∪ L
2
f and links not

connected to Ω f , respectively. We consider conflict among
flows, where some flows should not share specific links with
other designated flows even for a short period. For example,
bursty flows that can momentarily fill a switch queue and
create transient congestion are conflicting. SDN applications
can use techniques such as the one in [17] to detect these flows.
To represent the conflicts, we define the function X(Q, `),
which is equal to 1 if flows in Q ⊆ F conflict with each
other over link ` and is equal to 0 otherwise.

C. Consistency Model

Previous studies showed that even when the controller
dispatches all rule-update messages together, network switches
do not change their routing behavior simultaneously [38].
This inherent uncertainty about the exact moment of change
can lead to a transient inconsistent routing state that is not
equal to the initial or the final routing states. We consider
three consistency properties to guarantee during update peri-
ods regardless of existing uncertainty. To demonstrate these
properties, we investigate different possible outcomes for the
shown flow f ∈ F in Fig. 2 when the controller sends all
rule-update messages without further planning. We draw the
initial and final paths of the flow with solid and dashed black
lines, respectively. Switch w2 is the WayPoint of f . Also, we
consider a conflicting flow f

′

∈ F and represent it by a bold
red line. For simplicity, we omit the complete list of links
and switches that f

′

traverses. We only assume that the initial
path of f

′

uses the link between switches w2 and w6. The
considered consistency properties are listed as follows:
Loop-Freedom (LF). This property indicates that packets
should not enter a loop at line-rate speed. Consider Fig. 2 and
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w1
w8 w2

w9
w3 w4

w5

w6

w7
f f

Fig. 1: Example of a scenario with switches only in the initial or
final path of the flow (see w8 and w9).

assume that switch w4 updates its rule before other switches
and starts using the dashed outgoing link instead of the
solid outgoing link. Consequently, w4 forwards the incoming
packets from w3 back to w3 and creates a routing loop, where
packets will drop quickly since their TTL expire.
WayPoint-Enforcement (WPE). This property indicates that
all the packets in a flow should traverse the specified Way-
Point before reaching the destination. Assume that switch w1
in Fig. 2 updates its rule before other switches and starts
forwarding the packets to switch w4. Forwarded packets will
follow the initial path from switch w4 and eventually reach
the destination switch w7 without traversing the WayPoint.
Conflict-Freedom (CF). We use this property to avoid tran-
sient congestion during the time that the routing of flows is
updated. Consider Fig. 2 and assume that switch w2 updates
the forwarding path of flow f while f

′

still uses the link
between switches w2 and w6. Consequently, two conflicting
flows share the same link and create transient congestion in
the network.

D. Update Model

The controller employs a discrete-time scheduling approach
by dividing time into time slots to guarantee consistency
properties. The controller works in a stop-and-wait fashion by
sending rule-update messages only at the beginning of time
slots. If the time slot duration is sufficiently long, all sent
rule updates come into effect by the end of the time slot. We
only consider fixed-length time slots, although it is possible
to consider adaptive time slots using the approach presented
in [9]. We use the experimental results reported in [8] to set
the length of a time slot as the maximum propagation delay
on any control-plane path plus the maximum processing delay
of rule-updates on any network switch.

Time slotting permits the controller to control the order in
which rule updates come into effect. To be specific, when
the controller sends two rule-update messages in two con-
secutive time slots, the time-slotted system ensures that the
first message applies before the second message. Assume that
in time slot t, a packet of flow f arrives at switch w that
has not received a rule-update message from the controller
so far. Thus, the switch will forward the incoming packet via
link ` ∈ L1

f such that `.h = w. Alternatively, switch w that
has received a rule-update message in the first t time slots
forwards the packet via link `

′

∈ L2
f such that `

′

.h = w. We
define two notations to represent the forwarding behavior of
switches in time slot t for packets of flow f . We use Pf (w, t)
to show the set of switches that a packet of flow f traverses
if forwarded from switch w in time slot t. When the starting
switch is the source switch s f , we omit the first argument and

w1

w2 w3 w4

w5

w6

w7
f f

f
′

f
′

Fig. 2: Solid and dashed lines represent the initial and final paths of
flow f , respectively. The thicker line partially shows the initial path
of flow f

′

that has a conflict with flow f .

use the notation Pf (t) (i.e., Pf (t) ≡ Pf (s f , t)). In time slot t,
the current path of flow f is an ordered sequence of switches
that a packet of f traverses to reach the destination switch df .
Pf (t) specifies the switches along the current path of flow f
in time slot t. We call a switch reachable in time slot t if it
is a member of Pf (t).

To send out all the rule-update messages, the controller
should partition them into a sequence of disjoint subsets and
send them out in consecutive time slots. The order in which
rule-update messages come into effect in the same time slot
should not violate the consistency properties. We call this
sequence of subsets a rule-update schedule. Let “makespan”
denote the number of time slots required to apply a rule-update
schedule. Note that conflicting flows affect the makespan of
each other. To capture this interdependence when computing
the makespan, we partition the flows into disjoint subsets in
such a way that flows from different subsets do not have
a conflict. To obtain these subsets, we pick a random flow
and assign it to the first subset. Then, we add all flows that
have a conflict with the selected flow to the first subset and
repeat this process until no further flow can be added to the
first subset. Further subsets can be constructed similarly. We
denote the partition of flows by C = {C1, . . . , . . .CK }, where
we assumed that the partition has K subsets. Then, we define
M(i) to show the makespan of the rule-update schedule for the
flows in each Ci ∈ C. In the next subsection, we develop an
optimization formulation to compute a rule-update schedule
that minimizes the sum of M(i)’s. Since subsets in C are
disjoint, the sum of M(i)’s is minimized when all M(i)’s are
minimized individually and vice versa.
Discussion. Consider Fig. 3 for an example of the importance
of explicitly modeling the WayPoint. Assume a solution ap-
proach in which we split the problem into two sub-problems,
where the WayPoint is the destination and source of the first
and second subproblems, respectively. But, updating all the
switches preceding the WayPoint along the final path (w1,
w8, and w2) creates a loop. And, updating the WayPoint and
its successors along the final path (w4, w6, w5, w3, and w7)
violates WPE.

IV. FORMAL PROBLEM DEFINITION

In this section, we formally define the problem of minimiz-
ing the Makespan of Consistent Multi-flow Update schedule
and refer to it as MCMU in the rest. We extend the formulation
of [18] to the multi-flow setting and add the CF property to it.

First, we describe the conditions to ensure that all rule-
update messages associated with flows are sent to the cor-
responding switches, while LF, CF, and WPE properties are
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Fig. 3: Example in which updating all the switches that come
after the WayPoint or before it in the final path violates one of the
consistency properties.

preserved. Then, we formally specify the objective. Important
notations are listed in Table III.
Delivery. To compute the rule-update schedule, we define the
set of binary decision variables xw

f
(t) ∈ {0,1} to indicate

whether or not the controller sends a rule-update message for
flow f ∈ F to switch w ∈ Wf in time slot t. Let Ti be
the maximum possible value of t for any flow in the subset
Ci ∈ C. Also, for all f ∈ Ci define Tf to be equal to Ti . Since
destination switches do not need a rule-update message in our
model (e.g., w7 in Fig. 2 that is the destination switch for flow
f ) and we can send a rule-update message for at least one flow
to one switch (otherwise we are blocked), Ti is equal to:

Ti =
∑

f ∈Ci

(
|Wf | − 1

)
. i ∈ {1, . . . ,K} (1)

We ensure that the rule-update messages of flow f are
delivered to the switches inWf with the following constraint:∑

t∈{1,...,Tf }
xw
f
(t) = 1. w ∈ Wf − {df }, f ∈ F (2)

Loop-Freedom. To prevent loops in the path of flow f , we
characterize the switches and links that receive a packet from
s f and enforce a strictly ascending order on the switches that
forward packets of f in each time slot t. To this end, we first
define binary variable y

f
`
(t), which is equal to 1 if switch `.h

forwards the traffic of flow f using the link ` in time slot t.
Link ` in the initial path of flow f is in use while the controller
has not sent an update message to switch `.h. However, link `
in the final path of flow f becomes available if the controller
sends the rule-update message to switch `.h,

y
f
`
(t) = 1 −

∑
t
′
∈{1,...,t } x`.h

f
(t
′

), t ∈ {1, . . . ,Tf }, ` ∈ L
1
f

(3)

y
f
`
(t) =

∑
t
′
∈{1,...,t } x`.h

f
(t
′

) . t ∈ {1, . . . ,Tf }, ` ∈ L
2
f

(4)

Next, we define binary variables a f
w(t) to represent whether

switch w ∈ Wf receives packets from the source of f in time
slot t or not, which happens if there is another switch in time
slot t that forwards the traffic of f on a link that its tail is w.
Since switches in time slot t are updated at different moments,
we should consider all the active links of the previous time
slot (i.e., t − 1) along with the links that will become active
in the current time slot,

a f
`.t
(t) ≥ a f

`.h
(t) × y

f
`
(t), t ∈ {1, . . . ,Tf }, ` ∈ L f (5)

a f
`.t
(t) ≥ a f

`.h
(t) × y

f
`
(t − 1), t ∈ {1, . . . ,Tf }, ` ∈ L f (6)

Note that the source always receives packets and thus
a f
s f (t) = 1 for all t. Similarly, we define binary variables z f

`
(t)

to represent whether any packet of flow f is in transmission
on link ` in time slot t or not. Similar to the definition of
a f
w(t), we can write,

TABLE III: Formulation Notations.

Sym. Description

xw
f
(t) Update of switch w for flow f in time slot t

y
f
`
(t) Availability of link ` to flow f in time slot t

a
f
w (t) Possible reachability of switch w from s f in time slot t

z
f
`
(t) Existence of f ’s packets on link ` in time slot t

o
f
w (t) Order of switch w in f ’s path in time slot t

a
f
w (t) Reachability of switch w from s f without meeting the WayPoint

z f
`
(t) ≥ a f

`.h
(t) × y

f
`
(t), t ∈ {1, . . . ,Tf }, ` ∈ L f (7)

z f
`
(t) ≥ a f

`.h
(t) × y

f
`
(t − 1) . t ∈ {1, . . . ,Tf }, ` ∈ L f (8)

Finally, we impose a strictly ascending ordering on the
switches that carry the packets of flow f in time slot t by
defining integer decision variables o f

w(t) ∈ N as follows:

o f
`.t
(t) ≥ o f

`.h
(t) × z f

`
(t) + 1 . t ∈ {1, . . . ,Tf }, ` ∈ L f (9)

WayPoint-Enforcement. We define binary decision variables
ā f
w(t) to represent whether packets of f in time slot t can reach

switch w without going through Ω f or not. A packet in the
source has not traversed through the WayPoint yet if Ω f , s f ,
thus we set a f

s f (t) = 1. Otherwise, a f
s f (t) = 0. Then, we can

characterize ā f
w(t)’s as,

a f
`.t
(t) ≥ a f

`.h
(t) × y

f
`
(t), t ∈ {1, . . . ,Tf }, ` ∈ L f (10)

a f
`.t
(t) ≥ a f

`.h
(t) × y

f
`
(t − 1) . t ∈ {1, . . . ,Tf }, ` ∈ L f (11)

Finally, we ensure that no packet can reach the destination
without first going through Ω f by enforcing a f

d f
(t) = 0.

Conflict-Freedom. For every subset of flows Q ⊆ F that have
a conflict with each other on a specific link ` (i.e., X(Q, `) = 1),
we apply the following constraint to ensure that they do not
share the link in the transient periods of updating the routes,∏

f ∈Q z f
`
(t) = 0. Q ⊆ F , ` s.t. X(Q, `) = 1 (12)

Makespan. To compute the makespan associated with the
flows in the subset Ci ∈ C, we determine the latest time slot
in which a rule-update message for some flow f ∈ Ci is sent
out to a switch in Wf . To this end, we compute the largest
value of any time slot t where xw

f
(t) is equal to 1 for some

flow f ∈ Ci and switch w ∈ Wf . We first obtain the largest
time slot for each switch by summing the values of t × xw

f
(t)

over all the time slots. Then, we use the inequality operator to
capture the maximum time slot across all switches by using
the following equation:∑

t∈{1,...,Ti }
(
t × xw

f
(t)

)
≤ M(i). w ∈ Wf , f ∈ Ci,Ci ∈ C (13)

Recall that the objective is to compute a rule-update schedule
that minimizes the sum of M(i)’s. Therefore, we obtain the
following objective,

Min.
∑
Ci ∈C

M(i) . (14)
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Theorem 1. MCMU is NP-hard.

Proof. We can demonstrate a reduction from [18], a proven
NP-hard problem [16], by assuming that set F contains only
one flow. Thus, if we could solve MCMU in polynomial time,
the problem in [18] is also solved in polynomial time, which
contradicts its NP-hardness. Thus, MCMU is NP-hard. �

V. TIMEX: LP-BASED ALGORITHM

Since MCMU is NP-hard, exact methods such as branch-and-
bound and cutting-plane can take a prohibitively long time
to compute the optimal solution. So, we design TimeX, an
approximation algorithm outlined in Algorithm 1, by using the
solution of the Linear Program (LP) obtained from relaxing
the integrality constraints in MCMU as guidance to reduce
the makespan. Observe that constraints with multiplication
operators (e.g., (5) to (12)) are linearizable because a f

`.h
(t),

y
f
`
(t), and z f

`
(t) are binary variables (see [39]). Without loss of

generality, we assume that the number of CF constraints (12)
is polynomial in the size of the problem input (i.e., number
of flows, time slots, and switches). Thus, the number of
decision variables and constraints is polynomial in the input
size. Therefore, the obtained LP is solvable in polynomial time
with methods such as interior point [40]. We use the notation
x̃w
f
(t) ∈ [0,1] to denote the optimal (possibly fractional) value

of the decision variable xw
f
(t) in the LP. The usage of the

values of x̃w
f
(t) by TimeX is discussed in subsection V-A.

TimeX does not use the value of other decision variables
besides x̃w

f
(t), and instead, uses efficient subroutines to guar-

antee the required consistency properties. To ensure LF and
WPE, we use three easy-to-check conditions discussed in
subsection V-C. Regarding CF, observe that constraint (12) is
not affected by the relaxation process. So, in the solution of the
relaxed problem, not all conflicting flows traverse a link in the
same time slot. We only send a rule-update message to a switch
when the solution of the relaxed problem indicates a non-zero
probability for that update (i.e., x̃w

f
(t) > 0). Therefore, the

output of TimeX respects constraint (12). We use the book-
keeping mechanism of Section VI that records the existence
of flows on links when constrain (12) is affected by the
linearization process.

A. Randomized Acceptance of Solutions

TimeX uses the input data to construct the MCMU and then
relaxes it, respectively in lines 1 to 2. Then, it uses an off-the-
shelf LP solver to compute the optimal fractional solution and
the values of x̃w

f
(t)’s in line 3. Then, TimeX enumerates the

flows in F and for each one constructs a series of schedules
based on the values of x̃w

f
(t) and probabilistically accepts one

of them. TimeX initializes a map data structure, denoted byHHH ,
to store the computed rule-update schedules for flows in F . We
use HHH[ f ] to refer to the rule-update schedule of flow f ∈ F
andHHH[ f ][t] to refer to the switches that receive a rule-update
message for flow f ∈ F in time slot t ∈ {1, . . . ,Tf }.

For each flow in F , TimeX defines a normalization coef-
ficient named p f to scale the acceptance probabilities based

Algorithm 1: TimeX: LP-based MCMU solver

Input : C, F, {Wf , L
1
f
, L2

f
, s f , d f ,Ω f | f ∈ F}, Γ

Output: Rule-update schedule HHH for all flows in F
1 MCMU ← Construct the problem based on input values
2 �MCMU← Relax(MCMU)
3 {x̃w

f
(t)} ← Solve( �MCMU) // Using existing LP solvers

4 HHH ← Map() // A map to store schedules
5 for f ∈ F do
6 p f ← 0
7 HHH[ f ] ←

SchedulerFinder(Wf , L
1
f
, L2

f
,Ω f , s f , d f , {x̃

w
f
(t)}, Γ)

8 if HHH[ f ] is empty then
9 goto line 5 // Failure

10 π f ← mint∈{1, . . . ,Tf }
minw∈HHH[ f ][t ] {x̃wf (t)}

11 if rand() < π f /(1 − p f ) then
12 for t ∈ {1, . . . ,Tf } do
13 for w ∈ HHH[ f ][t] do
14 x̃w

f
(t) ← x̃w

f
(t) − π f

15 p f ← p f + π f
16 goto line 7 // Try again
17 return HHH

on the probability of previously rejected schedules in line 6.
For example, assume that there are three schedules, where the
acceptance probability of each one is 1/3. If we reject the first
schedule, we will have two schedules with equal probabilities.
Thus, we should scale their acceptance probabilities to 1/3

1−1/3 =
1/2. If we reject the second schedule, only one schedule
remains. So, we should scale its acceptance probability to

1/3
1−(1/3+1/3) = 1. Thus, p f shows the sum of the probability
of rejected schedules and the acceptance probability of a new
schedule is scaled by dividing it by 1 − p f .

TimeX employs a subroutine called SchedulerFinder to obtain
a feasible rule-update schedule in line 7. SchedulerFinder is
a limited-backtrack search mechanism that is explained in
subsection V-B. If SchedulerFinder can not find a schedule
for the flow, it is necessary to use a fall-back algorithm
(e.g., tagging-based solutions) to perform the update. However,
when a schedule is found, an acceptance probability π f is
assigned to it in line 10. π f is set to the minimum value
of variables x̃w

f
(t), where switch w receives its rule-update

message in time slot t, according to HHH[ f ]. Then, TimeX uses
a uniform random number generator to accept or reject the
computed schedule in line 11. Upon acceptance, the algorithm
proceeds to compute a schedule for the next flow in the next
iteration of the for loop in line 5. When HHH[ f ] is rejected,
we subtract π f from the corresponding fractional values x̃w

f
(t)

and repeat the process (see line 16). This subtraction helps to
find a different schedule in the next iteration. Then, we add
π f to p f in line 15. Our complexity analysis in Appendix B
demonstrates that this process terminates in polynomial time.
We analyze the performance of TimeX in Appendix C.

B. Computing a Complete Schedule

SchedulerFinder, outlined in Algorithm 2, is a limited-
backtrack search mechanism [41] that calls a subroutine called
SwUpdate in successive time slots until all switches receive
their corresponding update messages. Throughout the search,
the algorithm is allowed to undo Γ steps and take Γ + 1
new steps. Specifically, SchedulerFinder starts by initializing
five variables: (1) τ that represents the time slot, (2) SSS is a
map that shows which switches receive a rule-update message
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Algorithm 2: SchedulerFinder: LP-based schedule finder

Input : Wf , L
1
f
, L2

f
,Ω f , s f , d f , {x̃

w
f
(t)}, Γ

Output: Rule-update schedule SSS for flow f

1 τ ← 1, SSS ← Map(), SSS ← Map(), γ ← Γ, V ← set()
2 while |V | < |Wf | − 1 do
3 π ← SwUpdate(L1

f , L
2
f ,Ω f , s f , d f , {x̃

w
f
(t)}, τ,V , SSS[τ])

4 if π , {} then
5 SSS[τ] ← π // Target switches in time slot τ
6 V.add(π)
7 τ ← τ + 1
8 γ ← min{Γ, γ + 1}
9 else if γ = Γ then

10 γ ← max{−1, Γ − τ − 1} // Perform a backtrack
11 τ ← max{0, τ − Γ}
12 SSS[τ] ← SSS[τ]
13 ∀t ≥ τ : delete SSS[τ]
14 V ←

⋃
t∈{1, . . . ,τ−1} SSS[t]

15 else if |Wf | − 1 − |V | ≤ Tf − τ then
16 τ ← τ + 1
17 γ ← min{Γ, γ + 1}
18 else
19 return {}
20 return SSS

in a given time slot, (3) SSS is an auxiliary map that stores
information about the unsuccessful search decisions to avoid
them subsequently, (4) γ is an auxiliary variable that is used
to implement the limited-backtrack mechanism, and (5) V
is a set that stores updated switches. Then, in line 3, the
SwUpdate subroutine is called to compute a set of switches π
that can receive a rule-update message in time slot τ. SwUpdate
considers the fractional solution and obtains a set with the
higher values of x̃w

f
(τ) while assuming that the switches in

V are updated in previous time slots (i.e., before τ) and
avoiding solutions in SSS. If SwUpdate computes a non-empty set
of switches to be updated, they are added to V and stored in
the τ-th entry of SSS. Then, the time slot is incremented by one
(see lines 4-7). If SwUpdate can not update any switch due to
the consistency properties, it attempts to perform a backtrack,
which is viable when the value of γ is equal to Γ. Then, the
value of γ is set to −1, and for each non-backtracking step in
the future, γ is incremented by one but never greater than Γ
(see line 8) to ensure that the algorithm takes Γ+ 1 new steps
before doing another backtrack. If backtrack is not possible
but the number of remaining time slots is bigger than or equal
to the number of switches that need a rule-update message, it
is still possible to update all switches. So, SwUpdate continues
without updating any switch (see lines 15 to 17). Finally, if
it is not possible to proceed, the subroutine returns an empty
set to indicate a failure.

C. Determining Target Switches in a Specific Time Slot

In this subsection, we design an algorithm named SwUpdate
that finds a subset of switches that can receive a rule-update
message for a specific flow in a given time slot. To this end,
we assume that a feasible value assignment for the decision
variables o f

w(t), which represent an ordering on the set of
switches (see equation (9)), is available. In appendix A, we
present a procedure, called OrderCompute, that computes these
values efficiently. Then, we employ the following conditions
on the values of o f

w(t)’s to determine which switches can
receive a rule-update message for flow f in time slot t without

Algorithm 3: SwUpdate: Target switches in a time slot

Input : L1
f
, L2

f
,Ω f , s f , d f , {x̃

w
f
(t)}, t ,V , SSS

Output: Set of target switches for flow f in time slot t
1 Compute Pf (t) based on V
2 {o

f
w (t)} ← OrderCompute(L1

f
, L2

f
, Pf (t),V) // See Appendix A

3 best_sol ← {}
4 x?best_sol ← −∞

5 for w ∈ Pf (t) do
6 if w < V and x?best_sol < x̃w

f
(t) and 0 < x̃w

f
(t) then

7 Q ← priority_queue((w, [w]), SSS)
8 while Q is not empty do
9 n, p ← Q.dequeue()

10 if n = d f then
11 Remove updated switches from p
12 best_sol ← p

13 x?best_sol ← minw′∈p {x̃w
′

f
(t)}

14 break
15 M ← {}
16 if n ∈ V then
17 M .append(`.t : ` ∈ L2

f
and `.h = n)

18 else
19 if 1 − x̃n

f
(t) ≥ x̃w

f
(t) then

20 M .append(`.t : ` ∈ L1
f

and `.h = n)
21 if x̃n

f
(t) ≥ x̃w

f
(t) then

22 M .append(`.t : ` ∈ L2
f

and `.h = n)
23 for m ∈ M do
24 if Eq. (15) or (16) holds and Eq. (12) holds then
25 p′ ← p + [m] // Append m to p
26 Q.enqueue((m, p′))

27 sol2 ← {w | x̃w
f
(t) ≥ x?best_sol and w < Pf ( f )}

28 if |sol2 | > |best_sol | then
29 Return sol2
30 else
31 Return best_sol

violating WPE or LF properties.

o f
Ω f
(t) ≤ o f

w(t) < o f
w′(t), ` ∈ L2

f , `.h = w, `.t = w′ (15)

o f
w(t) < o f

w′(t) ≤ o f
Ω f
(t), ` ∈ L2

f , `.h = w, `.t = w′ (16)

w < Pf (t) . (17)

Condition (15) states that a packet in w has already passed
through the WayPoint Ω f and it will be forwarded to w′ which
has a strictly higher o f

w′(t) and thus the packet would not enter
a routing loop. Condition (16) states that a packet in w will
pass through the WayPoint after leaving w′ and similar to (15)
this condition ensures the LF property. Condition (17) states
that when no packet can reach w from the source of f , we
can change its routing behavior without violating LF or WPE
properties. Based on conditions (15)-(17), we compute a path
of switches from source to destination that has at least one
new updated switch, respects the consistency properties, and
maximizes the minimum value of x̃w

f
(τ)’s.

SwUpdate is outlined in Alg. 3. The inputs to this subroutine
are: a specific time slot t, the fractional solution { x̃w

f
(t)}, set

of all updated switches in the previous time slots V (is empty
is in the first time slot), and set of switches that should not be
updated togetherSSS. Then, SwUpdate computes a set of switches
that can receive their corresponding rule-update messages in
time slot t, where their minimum value of the fractional value
x̃w
f
(t) is maximized. Maximization with respect to the values

of the fractional solution guides the algorithm to select a subset
of switches that provide a higher probability of minimizing the
overall makespan. We search for the best set of switches in
lines 5 to 26 and save the best set of switches found so far
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TABLE IV: Example values for flow f in Fig. 2.

x̃w
f
(t) o

f
w (t)

t=1 t=2 t=3 t=4 t=5 t=6 t=1 t=2 t=3 t=4 t=5 t=6

w1 0.00 0.50 0.50 0.00 0.00 0.00 1 1 1 1 1 1

w2 0.50 0.00 0.50 0.00 0.00 0.00 2 2 2 4 4 4

w3 0.00 0.50 0.50 0.00 0.00 0.00 3 3 2 3 3 3

w4 0.00 0.75 0.00 0.25 0.00 0.00 4 3 2 2 2 2

w5 0.50 0.00 0.25 0.00 0.25 0.00 5 3 3 5 6 6

w6 0.00 0.88 0.00 0.00 0.00 0.12 6 3 3 5 5 5

w7 - - - - - - 7 4 4 6 6 7

and its corresponding minimum x̃w
f
(t) in variables best_sol and

x?best_sol, respectively. In multiple rounds, we select a switch
w ∈ Pf (t) and assume that it is one of the target switches that
receive a rule-update message in time slot t. Note that we only
consider switch w when its update probability is greater than
the best solution so far (see line 7). We use a priority queue Q
to find the best path from switch w to the destination switch df .
This priority queue favors the paths with the highest number
of updated switches. Therefore, among the subsets with the
same value of x̃w

f
(t), the one which updates more switches is

selected. Also, the priority queue gets SSS as an input, and when
the current search path contains all the switches in SSS, it will
delete the path to prevent exploring previous search branches.
In lines 15 to 22, the next switches that can be explored are
computed based on the status of the current switch (whether it
has been updated in previous time slots or not) and the value
of their corresponding fractional variables. In lines 23 to 26,
we use the order variables o f

w(t) and conditions (15)-(16) to
explore only the search branches that preserve the network
consistency properties (LF and WPE). Finally, upon finding a
path to the destination switch, the algorithm updates the best
solution and breaks the while loop to restart its search from the
next switch in the current path Pf (t). We also select a subset of
unreachable switches with fractional variables x̃w

f
(t) ≥ x?best_sol

in line 27. If this set (i.e., sol2) becomes equal toSSS, we remove
the switch with the smallest value of x̃w

f
(t) from sol2. Finally,

SwUpdate returns the bigger set of either unreachable switches
or those switches that constitute a new path from s f to df in
lines 28 to 31.

Example 1. Consider the values of x̃w
f
(t) in Table IV for the

flow f in Fig. 2. Based on the values of order variables, ob-
tained from the OrderCompute algorithm, and conditions (15)-
(17), only w2 and w5 can receive a rule-update message in the
first time slot. Since the value of x̃w

f
(t) for w5 is not bigger

than w2’s value, SwUpdate selects w2 after executing codes in
lines 5-26. For the second time slot, no switch in the current
path can receive a rule-update message, and thus best_sol
will be empty. However, SwUpdate selects the unreachable
switches w3 and w4 (stored in sol2 in line 27), as their x̃w

f
(t)

values are greater than 0. In the third time slot, switch w1 is
selected to receive its rule-update message, as its x̃w

f
(t) value

is bigger than w5’s value. Based on the values of x̃w
f
(t) no

switch can receive a rule-update message in the fourth time
slot. In the fifth and sixth time slots, only the values of x̃w

f
(t)

for w5 and w6 are greater than zero. Therefore, these switches
receive their rule-update messages accordingly and the rule-
update process terminates.

Algorithm 4: RMS: LP-independent MCMU solver
Input : F, {Wf , L

1
f
, L2

f
, s f , d f ,Ω f | f ∈ F}

Output: Rule-update schedule HHH for all flows in F
1 {z

f
`
(t) | ` ∈ L f , t ∈ {1, . . . ,Tf }, f ∈ F} ← 000

2 HHH ← Map() // A map to store schedules
3 for f ∈ F do

4 α← FindSchedule(Wf , L
1
f
, L2

f
,Ω f , {z

f
′

`
(t) | f

′
∈ F})

5 β ← FindSchedule(Wf , L
2
f
, L1

f
,Ω f , {z

f
′

`
(t) | f

′
∈ F})

6 HHH[ f ] ← Merge(α, β) // See Algorithm 6
7 for ` ∈ L f

1 ∪ L
2
f

and t ∈ {1, . . . ,Tf } do
8 if f uses ` at t or t − 1 then
9 z

f
`
(t) ← 1

10 return HHH

VI. RMS: LP-INDEPENDENT ALGORITHM

The TimeX algorithm runs in polynomial time (see Ap-
pendix B) but relies on the generic linear program solvers,
which eventually limits its scalability. The complexity of
solving LPs is O(n3.5L), where n is the number of variables
(in MCMU n = O(Ti |Wf | |F |)) and L is the number of
required bits to represent the problem. So, time of solving
the LP can dominate the runtime of TimeX. So, we design a
more scalable heuristic algorithm, which we call Reduced-
Makespan Scheduler (RMS). RMS applies OrderCompute sub-
routine that we employed in Section V to compute the values
of decision variables o f

w(t) and uses equations (15) to (17)
to send rule-update messages to a large number of switches
in successive time slots. Algorithm 4 outlines RMS, where
it starts by computing a rule-update schedule for each flow
by calling a search-based mechanism called FindSchedule in
line 4. Then, RMS swaps the initial and final paths (i.e.,
L1

f and L2
f ) and calls FindSchedule for the second time in

line 5 to obtain a possibly different rule-update schedule. The
possibility of obtaining the second schedule is based on an
important property called reversibility that we will demonstrate
later in this section. Then, RMS uses the Merge algorithm,
defined in subsection VI-C, to combine obtained schedules and
improve the makespan of the rule-update schedule. RMS uses
a set of variables z f

`
(t) to handle inter-flow dependencies that

are specified by function X(Q, `). After computing the rule-
update schedule for each flow f , RMS sets the variable z f

`
(t) to

1 to indicate that link ` is used by flow f during the time slot
t. See lines 7 to 9. RMS passes these variables to FindScheudle
subroutine to ensure that CF property is respected.

A. FindSchedule Algorithm

We first explain a heuristic to obtain a large subset of
switches that can receive a rule-update message while re-
specting consistency properties. Then, we design a search
mechanism to send out all rule-update messages in an iterative
manner during successive time slots.
Determining Target Switches. We define If (t) to show the
set of those switches that satisfy one of the equations (15) to
(17) in time slot t. In [36], we proved that it is possible to send
a rule-update message to at least half of the switches in If (t)
while preserving the LF and WPE properties. The proof is based
on partitioning the set If (t) into reachable switches Uf (t) =
If (t) ∩ Pf (t) and unreachable switches U f (t) = If (t) −Uf (t).

Authorized licensed use limited to: University of Calgary. Downloaded on February 20,2022 at 22:45:46 UTC from IEEE Xplore.  Restrictions apply. 



1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3146971, IEEE
Transactions on Network and Service Management

9

Algorithm 5: FindSchedule: Heuristic schedule finder

Input : Wf , L
1
f
, L2

f
,Ω f , {z

f
′

`
(t)}

Output: A rule-update schedule for flow f
1 θ ← {xw

f
(0) = 0 |w ∈ Wf − {d f }}

2 Q ← PriorityQueue()
3 Q.push((θ, []))
4 while Q is not empty and ξ1 > 0 do
5 θ, Θ ← Q.pop()
6 Compute Pf (t) based on θ
7 {o

f
w (t)} ← OrderCompute(G f , Pf (t),Θ)

8 If (t) ← Compute based on {o f
w (t)} and conditions (15)-(17)

9 Uf (t) ← If (t) ∩ Pf (t)

10 U f (t) = If (t) − Uf (t)

11 if Uf (t) ∪ U f (t) = {} then
12 ξ1 ← ξ1 − 1
13 for k ∈ {1, . . . , ξ2 } do
14 V ← k-th set in P(Uf (t)) ∪ P(U f (t))
15 for w ∈ Wf − {d f } do
16 ` ← outgoing link of w based on L2

f

17 Z ← { f
′
|z

f
′

`
(t + 1) = 1} ∪ { f }

18 if w ∈ V and X(Z, `) = 0 then
19 θ′[xw

f
(t + 1)] ← 1

20 else
21 θ′[xw

f
(t + 1)] ← θ[xw

f
(t)]

22 if xw
f
(t + 1) = 1, ∀xw

f
(t + 1) ∈ θ′ then

23 return Θ.append([θ, θ′])
24 else
25 Θ′ ← Θ.append(θ)
26 Q.push((θ′, Θ′))
27 return No Solution

Sending All Messages. We design the FindSchedule procedure,
presented in Algorithm 5, that starts from the network config-
uration where none of the switches in the path of a specific
flow have received their corresponding rule-update message
and searches for the network configuration where every switch
is updated. We use a map data structure from variables
xw
f
(t) to {0,1} to represent a network configuration. The first

configuration, called θ, is defined in line 1, where all xw
f
(t)’s

are set to 0. We use the bracket notation to set or get the value
of a specific variable (e.g., θ[xw

f
(t)]). FindSchedule uses a pri-

ority queue to store the network configurations. Then, it uses
the stored configurations to compute the next configurations,
until it finds the final configuration, where every switch has
received its corresponding rule-update message. The priority
queue prioritizes the network configurations with the higher
number of updated switches, which significantly increases the
probability of finding the target configuration. FindSchedule
uses OrderCompute in Algorithm 7 to efficiently compute the
values of variables o f

w(t) and then specifies the sets Uf (t) and
U f (t). Based on [36], we know that either of these two sets
can be updated without violating the consistency properties.
Therefore, FindSchedule considers the subsets of these two sets
to search the network configurations. To this end, we used P(.)
to denote the power set function that determines all subsets of a
given set in line 14. We determine the set of flows that use each
link based on the value of z f

`
(t) variables in lines 16 and 17.

Then, we use the condition in line 18 to ensure that conflicting
flows do not share that link. Parameters ξ1 and ξ2 control the
runtime by, respectively, limiting the number of backtracks and
the branching factor. Thus, the time complexity of FindSchedule
is O(ξ1ξ2 |Wf |

2 log |Wf |), as the maximum length of a search
branch and the time complexity of OrderCompute subroutine
are both O(|Wf |). The time complexity of insertion into a

w1 w2 w3 w4 w5 w6 w7

(a) Original Problem.

w1 w4 w3 w2 w6 w5 w7

(b) Transformed Problem.

Fig. 4: FindSchedule algorithm finds a better rule-update schedule
when we swap the initial path and final paths.

priority queue is O(log |Wf |).

B. Reversibility Property

We demonstrate the existence of a property in the MCMU,
called reversibility, which can be used to obtain rule-update
schedules with shorter makespans. Reversibility allows the
algorithm to transform the input problem by swapping the
initial and final paths, and obtain another schedule (we have to
apply it in reverse order) with a potentially shorter makespan.
We demonstrate the reversibility with an example. For the
formal proof refer to [36].

Example 2. Consider the problem in Fig. 4(a). If we update

the maximum number of switches in the first time slot (i.e.,
{w1,w2}), we have to send a rule-update message to only one
switch in the next 4 time slots. Specifically, in the second time
slot, only switch w3 can be updated because updating switch
w4 or w6 creates the loops (w4 → w3 → . . . ) and (w6 →
w5 → . . . ), respectively, and updating switch w5 violates WPE.
In the third time slot, we can only update switch w4. Finally,
switches w5 and w6 are updated in the fourth and fifth time
slots, respectively. Therefore, the makespan of the resulting
rule-update schedule is 5 time slots. However, if we transform
the problem by swapping the initial path and final path (see
Fig. 4(b)), we can find a rule-update schedule with 3 time
slots-long makespan. We can update {w1,w6} in the first time
slot, {w3,w4,w5} in the second time slot, and {w2}, in the third
time slot. If we apply the second schedule in reverse order,
the original problem in Fig. 4(a) is solved in 3 time slots.

C. Merge Algorithm

We propose Merge, outlined in Algorithm 6, to derive a
third schedule from two given schedules with a possibly
shorter makespan. Merge gets two schedules α and β, and
creates a graph, called Gm, by adding a node for every
distinct network configuration that is reachable in schedules
α and β. Gm has two sets of nodes nα(t) and nβ(t), which
are, respectively, the set of switches that have received their
intended rule-update message in time slots τ ≤ t if the
controller follows schedule α and β (see lines 5 and 8).
Also, two dummy nodes ns and nd represent the initial and
final network configurations, respectively. Each edge in Gm

represents a transition between two network configurations,
where a subset of switches receives their rule-update messages
while consistency properties are preserved. Clearly, for each
pair nα(t − 1),nα(t) or nβ(t − 1),nβ(t) the transition preserves
consistency properties because they are intermediate steps of
the schedules α and β, respectively, which we know preserve
the consistency properties at every moment (see lines 10 and
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Algorithm 6: Merge: Merge two rule-update schedules
Input : α, β: Two rule-update schedules
Output: A rule-update schedule from merging α and β

1 Gm(Nm = {}, Em = {})
2 ρα , ρβ ← |α |, |β |
3 for t ∈ {1, . . . , ρα } do
4 nα(t) = {w |∀τ ≤ t : xw

f
(τ) = 1 in α}

5 Nm .add_node(nα(t))
6 for t ∈ {1, . . . , ρβ } do
7 nβ (t) = {w |∀τ ≤ t : xw

f
(τ) = 1 in β }

8 Nm .add_node(nβ (t))
9 for t ∈ {2, . . . , ρα } do

10 Em .add_edge(nα(t), nα(t − 1))
11 for t ∈ {2, . . . , ρβ } do
12 Em .add_edge(nβ (t), nβ (t − 1))
13 Nm .add_nodes({ns , nd })
14 Em .add_edge(ns , nα(1)), Em .add_edge(ns , nβ (1))
15 Em .add_edge(nα(ρα), nd ), Em .add_edge(nβ (ρβ ), nd )
16 for ni (t), n j (t

′) ∈ Nm and i, j ∈ {α, β } do
17 if n j (t

′) ⊆ Ui
f
(t) ∪ ni (t) or n j (t

′) ⊆ U
i
f (t) ∪ ni (t) then

18 if Outgoing link of w ∈ n j (t
′) − ni (t) is not occupied by

conflicting flows in time slot t + 1 then
19 Em .add_edge(ni (t), n j (t

′))
20 return Sets along the shortest path from ns to nd

12). Moreover, for each pair of nodes nα(t),nβ(t ′) we check
whether or not it is possible to send rule-update message to all
the switches that are in nβ(t ′) but not in nα(t) without violating
the consistency properties, and add a new edge in between
nα(t) and nβ(t ′). These new edges provide the opportunity to
create a schedule from fragments of either α and β with fewer
time slots. Finally, we obtain a valid schedule by following the
configurations on the shortest path from ns to nd .

Example 3. Consider Fig. 5 that presents the graph Gm for
the schedules in Fig. 4. The square nodes in the first and
second rows represent schedules α and β, respectively. The
shortest schedule with three time slots can be obtained from
two different paths.

Lemma 1. The time complexity of Merge is O(|Wf |
3).

Proof. Gm has at most 2|Wf |+2 nodes and |Wf |
2+2|Wf |+2

edges. We use order variables of Appendix A to specify the
edges in Gm, which requires O(|Wf |) per edge. So, we can
construct the graph and use the Breadth-First Search algorithm
to find the shortest path from ns to nd in O(|Wf |

3). �

VII. PERFORMANCE EVALUATION

In this section, we present the evaluation of the proposed
algorithms: TimeX and RMS.
Evaluation Methodology. The first set of results in sub-
section VII-A shows the behavior of algorithms by using
simulations. These results demonstrate the runtime, success
rate, and makespan minimization ability of our algorithms by
focusing on the single flow setting. The second set of results,
presented in subsection VII-B, use realistic network conditions
implemented in Mininet [42] to show the ability to prevent
transient congestion in a multi-flow setting.
Comparison Methods. We evaluate TimeX and RMS by com-
paring them with MIP [18] and GRD [20]. The former
solves the integer formulation directly. The latter computes
the maximum number of switches in each time slot (an NP-
hard problem) as a heuristic for minimizing the makespan.
Although this greedy approach exhibits good performance on

w1, w2 w1, w2, w3
w1, w2, w3

w4

w1, w2, w3

w4, w5

w1, w2, w3

w4, w5, w6

w2
w2, w3, w4

w5

w1, w2, w3

w4, w5, w6

ns nd

Fig. 5: Merging two schedules for the problem in Fig. 4.

average, its worst-case performance is not bounded. We also
present the results of running the FindSchedule procedure (see
Alg. 5) on the original and transformed problem instances (see
Section VI) and denote them by ORG and SWP, respectively.
We implemented all algorithms in Python and used Gurobi
9.0 [43] to solve the optimization problems. All algorithms
terminate after 1 second if they don’t find a solution. We con-
ducted the experiments on a machine with Intel(R) Core(TM)
i7-8550U at 1.80-1.99 GHz CPU and 16.0 GB RAM.
Dataset. In simulations of subsection VII-A, we used 3265
instances of the WayPoint-enforced single-flow rule-update
problem from a public dataset that is publicly available at [44]
with 10 to 20 switches in each instance.
Time slot. In emulations of subsection VII-B, we assume
that the round-trip delay between switches and controller is
50 milliseconds (similar to [8]) and per-rule update time is
between 3 and 18 milliseconds (based on [8]). Thus we let
each time slot be 80 > 18 + 50 milliseconds. Consequently,
the controller waits for an extra 80 milliseconds before sending
new rule-update messages to the switches. Although this value
is larger than the typical delays in local-area networks, we
adopted it to account for the uncertainties of the emulation
environment and the software-based sleep mechanism.
Topology. Each problem instance in the simulation has at least
10 switches and 18 links and has at most 20 switches and
38 links (see Fig. 2 for an example instance). In Mininet
experiments, we implemented the G-Scale topology [38] that
has 12 switches and 18 links, where the bandwidth of each
link is selected from the interval [1,15] Mbps.

A. Simulation Results

Runtime. Figure 6(a) shows the average runtime of TimeX
and MIP as the number of switches increases from 10 to 20.
On average, TimeX consistently is better than MIP. Although
their difference is small at the beginning, MIP reaches the
1 second time limit for updating more than 17 switches.
However, TimeX exhibits great scalability, where its average
runtime reaches 0.2 seconds for the largest problem instances.
The average and maximum speed-up achieved by TimeX in
Fig. 6(a) are 4.9x and 7.3x, respectively. To investigate the
runtime in more detail, we also presented the range of runtime
values obtained by TimeX and MIP for 10 to 14 and 15 to 20
switches in Figs. 6(c) and 6(d), respectively. Figure. 6(c) shows
that even for a considerable number of instances with 10 to 14
switches MIP encounters the 1 second time limit. Figure. 6(d)
shows that for the majority of problem instances with 15 to
20 switches MIP incurs at least 1 second of delay. However,
TimeX spends less than 0.2 seconds to find a solution for the
majority of problem instances (consider the upper-whiskers
of box plots). To analyze the average runtime of RMS, we
compared it with GRD in Fig. 6(b) for the increasing number
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Fig. 6: Runtime evaluation, in seconds, of TimeX by comparing it to
MIP. Runtime evaluation of RMS by comparing it to GRD.

of switches. We observe that RMS shows better scalability, as
its runtime increases by less than 0.015 seconds, compared to
the 0.033 seconds increase in GRD. Based on Fig. 6(b), RMS
achieves 9.1x and 13.8x speed-up on average and in maximum,
respectively, compared to GRD. Figs. 6(e) and 6(f) show that
the runtime of RMS remains less than 0.08 seconds. However,
GRD’s runtime can be as high as 0.25 seconds. By comparing
Figs. 6(e) and 6(f) with Figs. 6(c) and 6(d), we can verify
that the range of runtime for TimeX and GRD is less than 0.3
seconds for the majority of problem instances.

Makespan. Fig. 7(a) shows the average makespan of TimeX
and MIP for the increasing number of switches from 10 to
20. When the problem size is smaller, MIP performs better
by about 2 time slots. As the problem instances become more
complex, the performance of MIP degrades significantly, due
to the runtime limit. For problem instances with 16 switches,
TimeX starts to outperform MIP. For the largest problem
instances, TimeX improves the makespan by more than 8 time
slots. Based on Fig. 7(a), TimeX improves the makespan by 2%
and 108% on average and in maximum, respectively. Next,
we study the presented theoretical bound in Appendix C. If
we evaluate the bound for the different number of switches,
we find out that TimeX should not increase the makespan by
more than 6.1 times of the optimal value with the probability
of at least 1/2. To investigate this, we plotted the empirical
cumulative density function (ECDF) for the ratio of makespan
between TimeX and MIP and GRD in Fig. 7(b). We observe

that for 2.6% of problems the ratio between MIP and TimeX
is 0.3 (i.e., a factor of 3.3), and for 2.4% of problems the
ratio between GRD and TimeX is 0.4 (i.e., a factor of 2.5).
These results show that the worst-case performance of TimeX
in practice is considerably better than the theorized bound.
Note that the ECDF in Fig. 7 only presents the problem
instances that both GRD and TimeX have solved. Thus, it does
not show the effect of GRD failures that happen up to 15%
more compared to TimeX (see the success rate experiment later
in this section for further detail). Our measurements show that
each failure by GRD on average wastes about 120 milliseconds
and the distance between the makespans of GRD and TimeX
in the majority of cases is less than or equal to two time slots.
If we use a fallback solution whose performance is similar
to GRD (e.g., TCAM-based work in [26]) to handle failures,
in an environment where the duration of a time slot is less
than or equal to 40 milliseconds, the practical performance
of TimeX is better by up to 15% compared to the result of
Fig. 7. The difference becomes more visible in time-stringent
systems that have shorter time slots, where the wasted time
due to failures translates to more wasted time slots. Figure 8(a)
investigates the makespan of RMS for the increasing number
of switches by comparing it with GRD. RMS consistently
outperforms GRD and achieves an 18% and 36% reduction
on average and in maximum. Figure 8(b) shows that MIP
and GRD achieve better results than RMS in about 10% of
instances. The performance of MIP and GRD is similar to RMS
in about 35% and 49% of instances, respectively, which results
in the jump at ratio 1. Thus, RMS provides a better solution
compared to MIP and GRD in 55% and 41% of instances,
respectively.
Effect of the Merge algorithm. To show the effect of the Merge
mechanism that RMS employs, we compared its makespan
with ORG and SWP and plotted the average result for the
increasing number of switches in Fig. 9(a). On average, we
observe an improvement of 4% to 10% compared to SWP
and ORG, respectively. We compared the average runtime of
RMS with ORG and SWP in Fig. 9(b) to study the Merge
algorithm’s runtime overhead. We observe that the maximum
overhead is about 0.01 seconds, while the average runtime
overhead is approximately 0.004 and 0.002 seconds compared
to ORG and SWP, respectively. Also, we recorded the range
of makespan values for RMS, ORG, and SWP for 15 to 20
switches to present a deeper comparison. We observed that the
third quantiles increase by less than 0.02 seconds, displaying
the efficiency of the Merge algorithm.
Success rate. Figure 10(a) shows that RMS obtains the highest
success rate. At first, for smaller problem instances with fewer
switches, MIP’s performance is similar to RMS. However, as
the size increases, the performance of MIP degrades signifi-
cantly. Specifically, for larger problem instances, MIP has the
worst result compared to other algorithms. In this figure, we
set Γ = 0, which means that TimeX does not backtrack. Never-
theless, TimeX solves 5 to 10 percent more problems compared
to GRD. However, their performance converges for instances
with 16 switches or more. We observe that the success rate
of MIP monotonically decreases due to its lack of scalability.
However, the success rates of other algorithms increase after
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Fig. 7: Makespan evaluation of TimeX by comparing it to MIP.
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Fig. 8: Makespan evaluation of RMS by comparing it to GRD.
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Fig. 9: Effects of the Merge algorithm.

their first decline. The behavior resembles finding a path
between two nodes in a graph. Finding a path is not time-
consuming when the graph has few edges. On the other hand,
having many edges means that there probably are several short
paths between nodes that simplify the path-finding process. In
intermediate cases, long paths from the source that do not lead
to the destination can significantly waste the available time of
the search process.
Effect of parameter Γ on TimeX. This parameter allows
TimeX to perform backtracking and find a solution with a
higher probability. Figure 10(b) shows that Γ = 4, compared to
Γ = 0, improves the success rate by 7% on average and 10% at
maximum. Moreover, our experiments with other intermediate
values show that the success rate consistently improves as Γ
increases. In our experiments, we observed that the effect of
Γ on the runtime is negligible, which allows us to increase it
without significant overhead.
TCAM. To show the effect of RMS and TimeX on TCAM
usage, we compare them with the method in [23]. To simulate
a data center with a 3-tier 4-pod fat-tree network, where the
maximum hop between two servers is 5, we restrict this test to
employ the problem instances with five switches in [44]. When
RMS or TimeX fail, they use the 2-phase commit algorithm
as the fallback strategy, which maximally penalizes them by
doubling the TCAM entries along the path. RMS and TimeX
reduced the number of extra TCAM entries used to update
the path of all considered problem instances by about 42%
compared to the algorithm in [23].

B. Mininet Results

Setup. The network controller is implemented in Ryu [45].
We test the algorithms with 5 to 20 flows that have random
sources, destinations, and waypoints. The runtime of MIP,
TimeX, and GRD is similar to simulation results and lies in
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Fig. 10: Evaluation of algorithms’ success rate.

the range of 0.04 to 0.11 seconds. RMS outperforms others
by at least an order of magnitude. Each flow has a fluctuating
behavior, where its minimum and maximum transmission rates
are uniformly selected from the intervals 0.2-0.5 and 1-3
Mbps, respectively. We ensure that the initial routing of the
flows in the network respects the link capacities. Then, flows
increase their transmission rate by a factor of 2 over a span
of 5 minutes. Whenever the utilization of a link goes above
80 percent, the controller computes a set of new paths for all
the affected flows and re-configures the network.
Makespan. Figure 11 shows the average makespan of different
algorithms throughout the operational lifetime of the system.
We can see that the overhead of RMS and TimeX for ensuring
that conflicting flows do not use the same link in the same
time slot is marginal. Since the network size and number of
flows are moderate, the MIP manages to obtain the shortest
makespan. However, it does not consider flow conflicts and
leads to transient congestion. GRD is similar to MIP and
does not account for flow conflicts. TimeX uses the solution
of the relaxed linear program and achieves slightly shorter
makespans. However, the performance of TimeX and RMS is
similar. We observe that the probability of a flow conflict
during the transient period of an update rises as the number of
flows increases. Consequently, TimeX and RMS have to sched-
ule the rule-update messages across more time slots to avoid
routing conflicting flows over the same links. Specifically, the
update makespan is increased up to 10 percent. However, when
the number of flows is low, the overhead is as low as 4 percent.
Utilization. Figure 12 shows the distribution of link utilization
throughout the system’s lifetime. We can see that Both MIP
and GRD allow link utilization for some links in the network
to go considerably above the desired 80 percent in several time
slots. Note that our routing algorithm does not allow conflict-
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ing flows to use the same link. Particularly, this undesirable
situation happens because the MIP and GRD algorithms do
not account for conflicting flows during the transient update
interval. However, TimeX and RMS ensure that conflicting flows
do not use the same link even during the transient periods of
routing updates (note the upper-whiskers, which are limited to
85% utilization). We see that the maximum link utilization is
about 80 percent. Since the network configurations before and
after updates are identical under all algorithms, their median
of utilization is similar. The only difference stems from the
way that algorithms handle the network update procedure.

VIII. CONCLUSION

We designed TimeX and RMS algorithms to minimize the
update makespan in SDNs while guaranteeing LF, WPE, and
CF properties. TimeX is a randomized algorithm that exploits
the solution of a linear program to minimize the makespan
methodically. We also presented the performance analysis of
TimeX under special considerations. To increase the scalability,
we designed a second algorithm called RMS that does not
rely on solving linear programs. Then, we demonstrated a
property of rule-update schedules, called reversibility, that RMS
employs to achieve shorter makespans. Considering multi-
domain systems, service chaining, and opportunistic usage
of empty TCAM entries to increase the success rate are
interesting future directions for our work.
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Algorithm 7: OrderCompute

Input : L1
f
, L2

f
, Pf (t), SSS

Output: A valid assignment for o
f
w (t)

1 For all w ∈ Pf (t), set o f
w (t) using ascending integers

2 Dst ← Pf (t)

3 for w < Pf (t) and o
f
w (t) is not set do

4 Q ← queue((w, []))
5 while True do
6 w, p ← Q.dequeue()
7 if w ∈ SSS then
8 v ← `.t such that ` ∈ L2

f
and `.h = w

9 else
10 v ← `.t such that ` ∈ L1

f
and `.h = w

11 p′ ← p + [w] // Append w to p
12 Q.enqueue((v, p′))
13 if v ∈ Dst then
14 ∀w′ ∈ p′ : o f

w′
(t) ← o

f
v (t) and break

15 else if v ∈ p′ then
16 ∀w′ ∈ p′ : o f

w′
(t) ← 1 and break

17 Dst.add(p′)
18 Return {o f

w (t)}
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APPENDIX A

We use the following rules to compute o f
w(t) for switch w

in time slot t:
Case I. www ∈ Pf (t)Pf (t)Pf (t): If w is the k-th (counting from 1) switch
in the current path of flow f , we set o f

w(t) = k.
Case II. www < Pf (t)Pf (t)Pf (t) and Pf (t) ∩ Pf (w, t) , φPf (t) ∩ Pf (w, t) , φPf (t) ∩ Pf (w, t) , φ: In this case, we
define o f

w(t) = min{o f
w′(t)|w

′ ∈ Pf (t) ∩ Pf (w, t)}.
Case III. www < Pf (t)Pf (t)Pf (t) and Pf (t) ∩ Pf (w, t) = φPf (t) ∩ Pf (w, t) = φPf (t) ∩ Pf (w, t) = φ: This happens
when a subset of switches that are not in Pf (t) form a loop.
For these switches, we define o f

w(t) to be 1.
Algorithm 7, named OrderCompute, computes the values of

o f
w(t). First, it assigns the value for switches in the current

path Pf (t) based on Case I. Then, it stores switches of the
current path in a set called Dst in line 2. The value for other
switches is computed based on Case II or Case III and a
breadth-first search algorithm in lines 3 to 17. Specifically, the
algorithm finds the shortest path from each remaining switch
to the nearest switch in Dst. If the path exists, o f

w(t) for all
switches along the path is set to the value of the nearest switch
in Dst (see line 14 and refer to Case II). When the path does
not exist, the algorithm finds a set of switches that form a loop
(see Case III) and sets the value of o f

w(t) to 1 for all retrieved
switches (see line 16). Note that in each iteration of the while
loop in line 5 either a path or a loop is computed. Then, the
value of o f

w(t) is set for all the visited switches. They would
not appear in the subsequent iterations because they are added
to Dst. Thus, the complexity of OrderCompute is O(|W f |).

APPENDIX B

In each run of the SchedulerFinder, the value of x̃w
f
(t)

for one w-t pair is reduced to zero. There are at most Tf

time slots and |Wf | switches. Thus, the time complexity of
TimeX is O(Tf |Wf |TSF ), where TSF shows the complexity of
subroutine SchedulerFinder. The algorithm performs at most Γ
backtracks to fix the set of updated switches in a specific time
slot. The total number of time slots is at most Tf . Thus, the
time complexity of SchedulerFinder is O(ΓTfTSSU ), where TSSU

denotes the time complexity of subroutine SwUpdate. SwUpdate
calls OrderCompute that runs in O(|Wf |) (see Appendix A)
once at the beginning. Then, for each switch w in the current
path, which are at most |Wf |, the procedure in lines 5 to
26 repeats. In each iteration, a path from w ∈ Pf (t) to df

is computed. Since the size of Pf (t) is O(|Wf |), there are at
most O(2|Wf |) edges in the initial and final paths of flow f ,
and priority queue insertion complexity is O(log |Wf |), the
total runtime of SwUpdate is O(|W f | + |Wf |

2 log |Wf |). Thus,
SchedulerFinder runs in O(ΓTf |Wf |

2 log |Wf |). Thus, TimeX
runs in O(|F |T2

f Γ|Wf |
3 log |Wf |).

APPENDIX C
Since MCMU is NP-hard to approximate, we consider the

sub-class of the problems that SwUpdate has the potential to
send a rule-update message to all switches that satisfy condi-
tions (15)-(17). Then, the probability of sending a rule-update
message in a specific time slot to a switch is proportional to
the fractional values x̃w

f
(t). So, we can show that, for each

subset Ci ∈ C, TimeX increases the update makespan by at
most a factor α = 3 log 2(W−1)

log log 2(W−1) , with the probability of at most
1/2. W is the size of the largest set Wf for a flow f ∈ Ci .
To this end, for a given switch w ∈ Wf , define independent
random variables ∆w

f
(1), . . . ,∆w

f
(Ti) to be equal to t

M(i) if w is
updated in time slot t and equal to 0 otherwise. The probability
of sending a rule-update message to switch w in time slot t
is x̃w

f
(t), i.e., the optimal value of the variable xw

f
(t) in the

relaxed problem. Therefore, the expectation of the sum of these
random variables for each switch w is,

E
[ ∑
t∈{1, . . . ,Ti }

∆
w
f (t)

]
=

∑
t∈{1, . . . ,Ti }

∆
w
f (t)x̃

w
f (t) =

∑
t∈{1, . . . ,Ti }

t x̃w
f
(t)

M(i)
, (18)

which is at most 1 because of the constraint (13). Applying
the Chernoff Bound from [46] with N = 2(|Wf | − 1), we
obtain,

P
{
∆
w
f (1) + · · · + ∆

w
f (Ti ) ≥ α

}
<

1
2( |Wf | − 1)

. (19)

The following equality can characterize the time slot in which
switch w receives the rule-update message of flow f ,

M(i)
∑

t∈{1, . . . ,Ti }
∆
w
f (t) =

∑
t∈{1, . . . ,Ti }

t x̂wf (t) (20)

where, x̂w
f
(t) is the integer value of decision variable xw

f
(t)

that is determined in the process of solving MCMU. Conse-
quently,

P
{ ∑
t∈1. .Ti

t x̂wf (t) ≥ αM(i)
}
<

1
2( |Wf | − 1)

. (21)

By the Union Bound, the probability of
∑

t∈{1,...,Ti } t x̂w
f
(t)

exceeding αM(i) for all switches in Wf − {df } is at most
1/2. Equivalently, for all switches,

∑
t∈{1,...,Ti } t x̂w

f
(t) is less

than αM(i) with probability of at least 1/2.
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