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Abstract—This paper considers the problem of mapping virtual
links to physical network paths, referred to as Virtual Link
Embedding (VLE), under the condition that bandwidth demands
of virtual links are uncertain. To realize virtual links with
predictable performance, the mapping is required to guarantee
a bound on the congestion probability of the physical paths
that embed the virtual links. To this end, we consider a general
uncertainty model in which bandwidth demands of virtual links
are expressed by random variables for which only the mean and
variance (or a range) are known. We formulate the VLE problem
as a nonlinear optimization program and design an algorithm
called Equal Partition VLE (epVLE) to solve the problem by
employing an approximate formulation that results in a second-
order cone program (SOCP) that can be solved efficiently even
for large networks. We then provide simulation results as well as
model-driven and trace-driven experimental results from an SDN
testbed to show the utility and efficiency of the epVLE algorithm in
various network scenarios. We apply epVLE to commonly studied
small networks as well as randomly generated large networks.
Our results show that epVLE is able to satisfy the required link
congestion constraint, and that it produces results that are very
close to those obtained from the exact optimization model.

Index Terms—Network virtualization, Virtual link embedding,
Uncertain demands, Congestion probability.

I. INTRODUCTION

Background and Motivation. The problem of embedding
virtual networks into a physical substrate network, known as
virtual network embedding (VNE), is an important problem in
network virtualization. The VNE problem is computationally
hard due to its combinatorial structure [1], and has been
studied extensively (comprehensive surveys on the topic are
presented in [2] and [3]). In its abstract form, a VN is repre-
sented by a set of virtual nodes and virtual links. Virtual nodes
and links require specific amount of resources depending on
the services provided by the corresponding VNs. The VNE
problem is then to find a virtual to physical node-to-node and
link-to-path mapping that does not exceed the node and link
capacities of the physical network.

Most of the existing works on VNE assume that resource
demands of VNs are known deterministically [4]–[11], i.e.,
the resource demands are fixed and known a priori by the
mapping algorithm. In a real deployment though, the node
and link demands (i.e., processing power and bandwidth)
include significant uncertainty (e.g., because of estimation
errors or variability over time) [12]. As such, when employing
deterministic embedding algorithms, one has to consider either
the “worst-case” or “average” resource demands for each
VN. Both approaches, however, lead to inefficient use of
network resources depending on how much the actual demands

deviate from their presumed nominal values. Recently, a few
works have considered uncertainty in virtual network resource
demands [13]–[18] with the objective of finding a virtual-to-
physical mapping that is feasible even when resource demands
deviate from their nominal values, without sacrificing the uti-
lization of physical resources. In these works, the embedding
algorithm computes a mapping that satisfies virtual resource
demands probabilistically. In other words, the computed map-
ping may not be feasible in certain scenarios, e.g., when all
resource demands deviate significantly from their nominal
values. Consequently, “congestion” occurs at a node or link
where the allocated physical resources are insufficient to meet
the virtual resource demands. Congestion is detrimental to
the performance of VNs and results in unpredictable network
performance (e.g., unpredictable packet loss or latency).

In this paper, we focus on mapping virtual links to phys-
ical paths, referred to as the Virtual Link Embedding (VLE)
problem, under demand uncertainty, where the objective is to
minimize congestion in the substrate network. We show that
under the constraint of guaranteed virtual link congestion, the
mapping problem becomes considerably different and more
challenging compared to existing formulations without link
congestion guarantee.

Our Work. To guarantee a given congestion probability for
a virtual link, the end-to-end congestion on the corresponding
physical path must be bounded. Consider the simple example
depicted in Fig. 1, in which virtual link ` between virtual
nodes v1 and v2 is mapped to path P = 〈e1, e2, e3, e4〉 in
the substrate network (i.e., v1 and v2 are placed on n1 and
n2). Suppose that the pre-specified bound on the congestion
probability of virtual link ` is given by ε. Let εk denote
the congestion probability on physical link ek. In order to
satisfy the virtual link congestion requirement ε, the following
constraint should be satisfied,

1−
∏
ek∈P (1− εk) ≤ ε . (1)

Notice that εk is a function of the total bandwidth demand
on link ek, and should be (optimally) determined by the
embedding algorithm. The complexity of the problem arises
from the fact that 1) the optimal path connecting the physical
nodes n1 and n2 is not known in advance, and 2) the
bandwidth demand on each link, and consequently the link
congestion probabilities are functions of the unknown paths.
In other words, the problem is a joint optimization of path
selection and link congestion allocation, which as we show
later, results in a non-convex nonlinear optimization problem
that is computationally difficult to solve for large networks.

As mentioned earlier, most existing works assume deter-
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Fig. 1: Virtual link to physical path mapping.

ministic demands, and thus do not consider congestion at all.
Those works that do consider congestion, assume that it is
sufficient to guarantee a fixed congestion probability for every
physical link (e.g., [13]–[18]). As such, the actual end-to-
end congestion probability achieved by these works depends
on the length of the physical path, and hence cannot be
guaranteed. For example, consider a link embedding algorithm
that guarantees congestion probability ε on every physical
link. When applied to the link mapping depicted in Fig. 1,
the resulting congestion probability for virtual link ` is given
by 1 − (1 − ε)4, which may, or may not satisfy the required
congestion ε. If the same link ` was mapped to a different
path with 2 links, then the resulting congestion probability
would be 1 − (1 − ε)2. Our goal in this work is to design
a mapping algorithm that guarantees a required end-to-end
congestion probability regardless of the characteristics of the
underlying paths through the substrate network.

This paper does not attempt to address all aspects of VNE
under demand uncertainty. Instead, we focus on the problem
of mapping virtual links to physical paths with guaranteed
end-to-end congestion probabilities. However, we believe that
the ideas and formulations presented in this paper can often
be incorporated into existing VNE solutions. Specifically, if
link embedding is performed in the VNE solution after node
embedding (e.g., as in [9], [19]), it is possible to directly use
our algorithm for link embedding. We briefly touch on the
node and link embedding integration issues in Section V.

Contributions. The contributions of this paper are:
• We consider demand uncertainty in a flexible and general

model, where only limited information about resource
demands, namely mean and variance, is needed.

• We formulate the virtual link embedding problem with
constrained end-to-end congestion probability as a non-
linear optimization program that can be solved using
global optimization solvers for small network instances.

• To solve the problem efficiently, we propose an algorithm
called Equal Partition VLE (epVLE), which is based on
an approximate formulation of the problem as a second-
order cone program (SOCP) that can be solved in poly-
nomial time even for large network instances.

• We present simulation and real SDN testbed experimental
results to show the efficiency and utility of epVLE in a
variety of network scenarios.

Paper Organization. The remainder of this paper is organized
as follows. Section II presents a survey of related works. We
discuss our model and assumptions in Section III. Section IV is
dedicated to the derivation of exact and approximate problem
formulations. A discussion on how to incorporate our formu-
lation in existing node embedding algorithms is presented in
Section V. Performance evaluation results are presented in
Section VI. Concluding remarks are discussed in Section VII.

II. RELATED WORK

Most works on VNE have focused on link-by-link emedding
constraints as opposed to end-to-end requirements. There
are some works that consider end-to-end delay requirements,
however to the best of our knowledge no existing work has
considered guaranteed end-to-end congestion probability when
embedding virtual links, which is the problem considered here.

Deterministic Approaches. The deterministic VNE problem
is extensively studied in the literature. For example, the survey
paper [2] alone lists 78 algorithms. The works in this category,
generally formulate the VNE problem as a (mixed) integer
program, and then try to solve it either exactly [4], [5]
or by devising heuristic [6]–[9] or approximation [10], [11]
algorithms. These works differ from each other in terms of the
objectives considered (e.g., minimizing the cost of resources,
network energy consumption or minimizing the maximum
link utilization) and the constraints imposed on node and link
embedding (e.g., delay, routing and location constraints).

Stochastic Approaches. This category includes works that
assume the distribution of bandwidth demands is fully known.
Their roots can be traced back to the literature on the ef-
fective bandwidth concept. For instance, the works [13]–[15]
assume that virtual node and link demands follow a Normal
distribution. In this case, the congestion probability at each
physical node or link, i.e., the probability that the aggregate
demand exceeds available resources, can be computed using
the tail probability of Normal distribution. A rather different
approach based on demand prediction is proposed in [16],
where a seasonal ARMA model is employed to estimate the
unknown future demands. Then, to compute the link conges-
tion probability, it is assumed that the prediction errors of
the ARMA model follow a zero-mean Normal distribution for
which the variance can be estimated from past observations.

Robust Approaches. This category includes works that as-
sume while the distribution of demands is unknown, some
uncertainty model can be used to describe their variability.
In [20], the authors consider a model in which the demand
uncertainty is described by a number of scenarios. Each
scenario corresponds to a specific set of resource demands.
The work [21] presents a hose-model formulation in which
the computed embedding can support any traffic matrix con-
sistent with the given aggregate demands between pairs of
virtual nodes. A hybrid robust-reactive approach is presented
in [22] which dynamically modifies resource reservations at
runtime to satisfy minimum guarantees on link bandwidth
and node processing demands. A popular approach in de-
signing robust VNE solutions is to employ techniques from
the chance-constrained robust optimization [23] and Γ-robust
optimization [24] to formulate VNE as a robust optimization
problem. For example, [17] formulates the problem as a robust
optimization problem, where the objective is to provide link-
by-link congestion probability guarantees. An example using
Γ-robust formulation is [18]. In this approach, the level of
uncertainty in demands can be controlled by parameter Γ,
which determines how many demands can maximally deviate
from their nominal values simultaneously.
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TABLE I: Principal Notation Used in the Paper.
Symbol Definition

Input parameters
N Set of physical nodes in the substrate network
E Set of physical links in the substrate network
L Set of virtual links from all virtual networks
`i Virtual link i (`i ∈ L)
ek Physical link k (ek ∈ E)

O(`i) Physical origin node of `i
D(`i) Physical destination node of `i
Ck Capacity of physical link ek
Bi Bandwidth demand of virtual link `i
Pi Set of candidate physical paths for `i ∈ L
P Set of all candidate paths in substrate network
|Pj | Length of path Pj ∈ P
εi Required congestion probability on virtual link `i

Decision variables
0 ≤ xij ≤ 1 Fraction of demand Bi on path Pj ∈ Pi
0 ≤ yik ≤ 1 Total fraction of demand Bi on link ek ∈ E
0 ≤ εk ≤ 1 Congestion probability on link ek ∈ E
α ≥ 0 Utilization of the most congested physical link

Online Approaches. In offline approaches, a set of virtual
networks are given and the algorithm has to compute an
embedding in a one shot solution. In real situations though,
virtual network requests arrive sequentially over time and the
embedding decisions have to made at runtime without knowing
the sequence of future virtual network requests. Works that
consider online VNE are scarce. To this end, [25] designs a
competitive online algorithm, while [26], [27] use machine
learning (i.e., neural networks and reinforcement learning) to
design online solutions.

VNF Placement. A special case of VNE is the virtual network
function (VNF) placement problem [28]. The VNF placement
problem deals with embedding of so-called service function
chains (SFCs), which can be thought of as virtual networks
with specialized topologies (e.g., a line) and a specific order of
virtual nodes that are visited as traffic traverses the network.
There are several works on VNF placement that consider
demand uncertainty. For example, the recent works [29],
[30] consider VNF placement with end-to-end requirements.
However, the former considers end-to-end chain requirements
that are independent of the traffic load passing through the
links (e.g., fixed propagation delays on each link), while the
latter considers end-to-end delay in a load dependent model,
but does not consider congestion due to over-subscription of
physical resources, as we consider in this paper. Other notable
examples are [31], [32] in which the Γ-robust framework is
used to model uncertainty in VNF compute demands while
guaranteeing end-to-end delay when placing VNFs.

III. SYSTEM MODEL AND ASSUMPTIONS

In this section, we present our system model and describe
how demand uncertainty and link congestion are formulated.
Table I lists the principal notation used throughout the paper.

A. Physical Network

The physical network is specified by an undirected graph
G = (N , E), where N denotes the set of physical nodes and E
denotes the set of physical links (or edges) between the nodes.
Each physical link ek has a fixed capacity denoted by Ck > 0.

B. Virtual Network Requests

Setting up virtual networks takes time. Therefore, we as-
sume that virtual network (VN) requests are processed in
batches. Time is divided into time intervals, and all embedding
decisions for a time interval are made at the beginning of
that interval. The batch of VN requests processed at the
beginning of an interval includes requests that have arrived
during the previous time interval. Each virtual network request
is represented as a weighted undirected graph with a given
set of nodes and links. The weight of each link indicates the
(uncertain) bandwidth demand of that link. The objective is
to find a mapping from virtual nodes to physical nodes and
virtual links to physical paths so that the resource requirements
of all VNs are met while the node and link capacity constraints
of the physical network are not violated.

C. Virtual Link Embedding

Let O(`i) ∈ N and D(`i) ∈ N , for virtual link `i, denote
the physical nodes embedding the origin and destination of
virtual link `i, respectively. The VLE problem is to map every
virtual link `i ∈ L to a set of physical paths connecting O(`i)
to D(`i) in the substrate network so that the virtual link `i
satisfies the target congestion probability εi. This model allows
multi-path routing, however, we limit the number of candidate
paths to a fixed number independent of the size of virtual
networks. While multi multi-path routing requires explicit
network support, we note that all modern networks rely on
multi-path routing as the foundation of traffic engineering for
implementing load balancing, increasing network robustness
and reducing costs [19], [33], [34]. Specifically, our model is
based on static flow splitting over a fixed number of paths at
the source, which is straightforward to implement in current
software-defined networks (SDNs) using commodity off-the-
shelf OpenFlow switches (see our testbed description in sub-
section VI-E) and has been shown to scale to large production
networks [34], [35]. One of the main drawbacks of multi-path
routing is the potential packet reordering at the destination.
Since different paths could have different round-trip times,
multi-path routing may result in out-of-order packets at the
destination, which could negatively affect applications relying
on TCP. To deal with reordered packets, switch-level (e.g.,
FLARE [33]) or host-level mechanisms (e.g., reordering robust
TCP [36]) can be used to ensure applications are not affected.

D. Bandwidth Demand Uncertainty Model

Let Bi denote the (uncertain) bandwidth demand of virtual
link `i ∈ L. We assume that only limited statistical infor-
mation about Bi is available. Specifically, we assume that
the mean and variance of Bi, denoted by E [Bi] = µi and
Var [Bi] = σ2

i , are known. It is relatively straightforward
to estimate the mean and variance based on historical traffic
data [37]. In fact, as long as σ2

i provides an upper bound on the
actual variance of Bi, our formulation holds. We emphasize
that the considered uncertainty model is quite general. For
example, in the literature on robust optimization, a common
uncertainty model is the so-called box uncertainty model [23].
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In this model, each uncertain variable Bi is allowed to deviate
from its nominal value by a maximum deviation δi. That is,
Bi ∈ [µi − δi, µi + δi]. Our uncertainty model can easily
accommodate the box model by computing an upper bound
on the variance of an arbitrarily distributed random variable
that is confined to interval [µi − δi, µi + δi]. In this case, it
can be shown that σ2

i ≤ δ2i , with the equality attained when
all the probability mass is assigned to the extreme points
of the interval. In general, for a random variable Bi that is
confined to an interval [ai, bi], we have that σ2

i ≤ (bi−ai)2/4.
Alternatively, a less conservative approach is to assume Bi
is uniformly distributed over the interval, which leads to
σ2
i = δ2i /3.

E. Congestion Probability

Let Wik denote the bandwidth demand of virtual link
`i ∈ L on physical link ek ∈ E , where E [Wik] = µik and
Var [Wik] = σ2

ik. Note that Wik has to be determined by
the embedding algorithm based on bandwidth demands of all
virtual links (i.e., Bi’s) and capacities of all physical links
(i.e., Ck’s). The congestion probability on physical link ek is
then given by,

P {congestion on ek} = P

{∑
`i∈L

Wik ≥ Ck

}
. (2)

For simplicity of notation, in the following derivation, we
abbreviate the summation index and use i in place of `i ∈ L.
To avoid making any assumptions about the distribution of
the uncertain bandwidth demands, we use a concentration
bound to estimate (2). There are several forms of concentration
bounds which can be used based on how much information
about the distribution of the uncertain demands is available.
In this work, we use the Chernoff bound, as follows:

P

{∑
i

Wik ≥ Ck

}
≤ inf
θ≥0

E
[
eθ

∑
iWik

]
eθCk

. (3)

If Var [Wik] is bounded, i.e., Var [Wik] ≤ σ2
ik, then we

have [38],
E
[
eθWik

]
≤ eµikθ+

1
2σ

2
ikθ

2

. (4)

Noting that Wik’s are independent from each other and taking
the derivatives of the terms inside the exponent with respect to
θ, we see that θ =

Ck−
∑

i µik∑
i σ

2
ik
≥ 0 minimizes the expression

on the right-hand side of the inequality. Consequently, it
follows that,

P

{∑
i

Wik ≥ Ck

}
≤ exp

(
−

(
∑
i Ck −

∑
i µik)2

2
∑
i σ

2
ik

)
. (5)

In the following sections, we use (5) to compute congestion
probability on each physical link in the substrate network.

IV. VIRTUAL LINK EMBEDDING

In this section, we present exact and approximate VLE
formulations. Recall that each virtual link `i ∈ L can be
mapped to multiple paths from a set of candidate physical
paths Pi. In other words, Pi consists of multiple paths between
origin and destination nodes O(`i) and D(`i). Denote the set

of all candidate paths in the substrate network by P , that is
P = ∪`i∈LPi. Let xij , for 0 ≤ xij ≤ 1, denote the fraction
of bandwidth demand Bi that is allocated on path Pj ∈ Pi
for virtual link `i. Our goal is to find the routing variables
xij that minimize the utilization of the most congested link
in the substrate network subject to a constraint on the end-to-
end congestion probability of each path. To avoid splitting the
demand of a virtual link across many paths in the substrate
network, the number of paths for each virtual link can be
limited to only a few paths, e.g., first K shortest paths, as
done in our evaluations. Indeed, in practical scenarios, often
a few paths are sufficient to achieve a performance that is
close to that of a solution that utilizes all available paths in
the network [34], [39].

A. Congestion on Physical Links
Let yik, for 0 ≤ yik ≤ 1, denote the total fraction of

bandwidth demand Bi for virtual link `i ∈ L that is allocated
on physical link ek ∈ E . We have,

yik =
∑
Pj∈Pi

xij · Iek∈Pj , (6)
where Iek∈Pj denotes the indicator function, which is 1 if
ek ∈ Pj , and 0 otherwise. Notice that Wik = yikBi, and thus,
E [Wik] = yikµi and Var [Wik] = y2ikσ

2
i . Next, applying (5),

for a desired link utilization α ≥ 0, it is obtained that,

P

{∑
`i∈L

yikBi ≥ αCk

}
≤ exp

(
−

(αCk −
∑
`i∈L yikµi)

2

2
∑
`i∈L y

2
ikσ

2
i

)
.

Therefore, to restrict the congestion probability on physical
link ek by εk, the following inequality should be satisfied,

exp

(
−

(αCk −
∑
`i
yikµi)

2

2
∑
`i
y2ikσ

2
i

)
≤ εk, (7)

which leads to the following inequality,(
2 ln

1

εk

) ∑
`i∈L

σ2
i y

2
ik ≤

(
αCk −

∑
`i∈L

µiyik

)2
. (8)

Notice that εk is a decision variable whose optimal value needs
to be specified by the embedding algorithm.

B. Congestion on Physical Paths
A path is a sequence of links, thus, we have,
P {congestion on path Pj} = 1−

∏
ek∈Pj

(1− εk) . (9)
In practice, we have εk � 1, and thus using the union bound,
we obtain the following linear approximation for the path
congestion probability,

P {congestion on path Pj} ≤
∑
ek∈Pj

εk . (10)
Therefore, to restrict the congestion probability on path Pj ∈
Pi by a given εi, the following inequality should be satisfied,∑

ek∈Pj

εk ≤ εi, (11)

which is a linear constraint.

C. Exact VLE Formulation

Problem Formulation. The VLE problem can be formulated
as a non-linear optimization problem, as presented in Prob-
lem 1, where,
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Problem 1: Exact VLE.

minimize α

subject to:∑
Pj∈Pi

xij = 1, ∀`i ∈ L (12a)

yik =
∑
Pj∈Pi

xijIek∈Pj , ∀`i ∈ L, ∀ek ∈ E (12b)

∑
ek∈Pj

εk ≤ εi, ∀Pj ∈ Pi (12c)

(
2 ln

1

εk

) ∑
`i∈L

σ2
i y

2
ik ≤

(
αCk −

∑
`i∈L

µiyik
)2
, ∀ek ∈ E (12d)

xij , yij ∈ [0, 1], (12e)
α ≥ 0 . (12f)

• Constraint (12a) enforces bandwidth embedding over all
possible candidate paths for embedding link `i.

• Constraint (12c) enforces end-to-end congestion proba-
bility εi on candidate paths for embedding link `i.

• Constraint (12d) enforces link congestion probability εk
on link ek, so as to satisfy Constraint (12c).

The objective of the optimization problem is to minimize α.
It is then guaranteed that the utilization of every link in the
substrate network will be at most equal to α. To see this,
notice that if the inequality constraint (12d) is active for some
link, then the utilization of that link is exactly equal to α.
Otherwise, the utilization of the link is less than α. Thus, the
variable α denotes the maximum utilization of any link in the
substrate network (or equivalently, the utilization of the most
congested link in the network).

The input to the VLE problem is a set of VN requests. All
VNs in the set are embedded in one shot, and the problem
always has a solution as variable α can be set large enough to
satisfy the congestion requirement on every link. The resulting
embedding, however, is infeasible if α > 1.

Theorem 1. Problem 1 (Exact VLE) is non-convex.

Proof. All the constraints in Problem 1 are linear except (12d),
which is nonlinear. We will show that this constraint is non-
convex too. To this end, consider the equivalent form of this
constraint in (7). A real function f : X → R is convex (over
the convex set X ), iff ∀x1, x2 ∈ X ,∀t ∈ [0, 1]:

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) . (13)
To show non-convexity, it is sufficient to find x1, x2 and t that
violate the above. For ease of exposition, assume that physical
link ek ∈ E is shared between two virtual links `1 and `2 and
that µ1 = µ2 = 1 and σ1 = σ2 = 1. Set α = 1 and Ck = 1.
Let function f(·) denote the left-hand side of inequality (14).
We have,

f(y1k, y2k) = exp

(
− (1− y1k − y2k)2

2(y21k + y22k)

)
. (14)

Function f(·) is plotted in Fig. 2. The non-convexity of f(·)
can be seen by inspecting the graph, and can be verified by
considering two points z1 = f(0.1, 0.1) = 1.12535 × 10−7
and z2 = f(0.9, 0.9) = 0.820755. The middle point of the

Fig. 2: Function f(·) in (14).

line that connects (0.1, 0.1, z1) and (0.9, 0.9, z2), i.e., set t =
0.5, is point (0.5, 0.5, 0.410378) with f(0.5, 0.5) = 1. Since,
1 > 0.410378, function f(·) is not convex.

Discussion. To solve Problem 1, one approach is to use a
global nonlinear solver such as Knitro [40]. We have imple-
mented this approach and experimented with various network
configurations. While it is possible to solve the problem for
small network instances, it takes a prohibitively large amount
of time to solve the problem for any realistic network size
(e.g., hours). Moreover, since the problem is not convex,
the computed solutions may not even be globally optimal.
Therefore, to solve the problem for large network instances,
we design an approximate solution, as presented in the next
sub-section. We show that the approximation results in a
second-order cone program (SOCP) [41] that can be solved
efficiently (in polynomial time) using conventional solvers
such as Gurobi [42].

D. Approximate VLE Formulation

The complication in Constraint (12d) is due to the fact that
the program tries to optimally assign congestion probabilities
to each link on a given path. If we could pre-compute εk for
each link ek, then Problem 1 could be converted to a SOCP,
as established in Lemma 1.

Lemma 1. Problem 1 (Exact VLE) reduces to a second-order
cone program if εk is fixed for all `k ∈ E .

Proof. Let θk = 2 ln 1
εk

. Then, constraint (12d) is equivalent
to the following system of equations,∑

`i
σ2
i y

2
ik ≤ u2ik, (15a)

uik =
1√
θk

(
αCk −

∑
`i
µiyik

)
. (15b)

Notice that the above inequality is a second order cone, while
the equality is linear for a fixed θk. Recall that the objective
as well as all other constraints in Problem 1 are linear. Thus,
the formulation with fixed εk reduces to a SOCP.

Equal Partition Approximation. Our approximate formula-
tion is based on the simplification that all links in a path
achieve the same congestion probability (i.e., equal partition
allocation). Clearly, this results in a sub-optimal solution
because the optimal solution may assign different congestion
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Algorithm 1: epLCA – Link Congestion Assignment.
procedure epLCA(L, P , {εi})

foreach `i ∈ L do
foreach Pj ∈ Pi do

π[Pj ]← 1− |Pj |
√

1− εi
foreach ek ∈ Pj do

εk ← 0
~P ← sort P based on increasing order of π
for j ← 1 to |~P| do

λ← 1
Pj ← ~P[j]
P̂j ← {ek ∈ Pj |εk = 0}
foreach ek ∈ Pj \ P̂j do /*links already allocated*/

λ← λ× (1− εk)
foreach ek ∈ P̂j do /*links that need to be allocated*/

εk = 1− |P̂j |
√

1−εi
λ

/*cong εi is for Pj ∈ Pi*/
θk = 2 ln(1/εk)

return {θk}

probabilities to different links on the same path. However, it
has been shown that when the end-to-end congestion bound
εi (for each virtual `i) is very small, there is little difference
in the performance of different congestion allocation poli-
cies [43]1. From a practical point of view, the equal partition
approximation is indeed quite accurate, as will be shown in
Section VI. Recall that, our focus is on applications that are
congestion sensitive and thus require very small end-to-end
congestion probability. For instance, applications relying on
TCP, generally require end-to-end packet loss rates of only a
few percentage points to operate effectively (otherwise, TCP
connections break down).

Link Congestion Assignment. Let εj denote the link conges-
tion probability for each link in path Pj , that is εk = εj , for
all ek ∈ Pj . Let |Pj | denote the length of path Pj . We have,

P {congestion on path Pj} = 1− (1− εj)|Pj | . (16)
Therefore, to satisfy the end-to-end path congestion probability
εi, we obtain that,

1− (1− εj)|Pj | ≤ εi ⇔ εj ≤ 1− |Pj |
√

1− εi . (17)

One problem arising from the above congestion probability
allocation policy is that a link may be common among multiple
paths requiring different end-to-end congestions. In such cases,
the path whose links have the most stringent congestion re-
quirement determine the allocated congestion on the common
links. As a result, the congestion probability assignment for
the uncommon links must be updated (i.e., increased) to satisfy
the end-to-end path congestion constraint, as described next.
Consider some path Pj . Let P̂j denote the set of links in
this path whose congestion probabilities are not assigned yet.
For the remaining links in the path, i.e., ek ∈ Pj \ P̂j , their
congestion probabilities have already been assigned as they are
common with some other paths with lower link congestion
requirement. Let ε̂j denote the congestion probability that
should be assigned to every link in P̂j . The following relation

1The results in [43] concern the end-to-end packet loss probability, which
is directly related to the congestion probability considered in our model.

Problem 2: Approximate VLE.

minimize α

subject to:∑
Pj∈Pi

xij = 1, ∀`i ∈ L (20a)

yik =
∑
Pj∈Pi

xijIek∈Pj , ∀`i ∈ L, ∀ek ∈ E (20b)

uik =
1√
θk

(
αCk −

∑
`i∈L µiyik

)
, ∀`i ∈ L, ∀ek ∈ E (20c)∑

`i∈L σ
2
i y

2
ik ≤ u2

ik, ∀ek ∈ E (20d)

xij , yik ∈ [0, 1], (20e)
α ≥ 0 . (20f)

should be satisfied:
1− (1− ε̂j)|P̂j |∏

ek∈Pj\P̂j
(1− εk) ≤ εi, (18)

which yields the following relation,

ε̂j ≤ 1− |P̂j |

√
1− εi∏

ek∈Pj\P̂j
(1− εk)

. (19)

The congestion assignment algorithm called epLCA is described
in Algorithm 1. The first for loop is to compute the default
link congestion requirements, which are then used to sort paths
from the smallest to largest link congestion requirement. The
second for loop iterates over the paths and for each path adjusts
its link congestion requirements based on (19).

Lemma 2. Algorithm 1 (Link Congestion Assignment) runs in
O
(
|P| · (log |P|+ maxPj∈P |Pj |)

)
time.

Proof. Each of the main for loops runs in O(
∑
Pj∈P |Pj |)

time, while sorting |P| paths takes O(|P| log |P|) time.
The lemma is established by noting that

∑
Pj∈P |Pj | ≤

|P|maxPj∈P |Pj |.

Observation. Since each virtual link is mapped to a constant
number of paths, the running time of Algorithm 1 can be
expressed as O(|L| · (log |L| + |E|)), which is dominated by
the number of virtual links.

Approximate Algorithm. By fixing the link congestion prob-
abilities, the optimization problem formulated in Problem 1
is reduced to the SOCP problem presented in Problem 2.
Once the routing variables xij are computed, we may find
that some paths are not used by any virtual network. Thus,
we can adjust link congestion probabilities accordingly. To
adjust link congestion probabilities, we simply remove the
unused paths, re-assign link congestion probabilities and solve
the optimization problem again. The Equal Partition VLE
(epVLE) algorithm based on the approximate VLE formulation
is presented in Algorithm 2.

Theorem 2. Algorithm epVLE runs in O
(
|P|(log |P| +

maxPj∈P |Pj |) + |P|3.5
)

time.

Proof. A SOCP program with |P| decision variables can be
solved in O(|P|3.5) time using the interior point methods. The
proof then follows from Lemmas 1 and 2.
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Algorithm 2: epVLE – Equal Partition VLE.
procedure epVLE(L, B, P , {εi})
{θk} ← epLCA(L, P , {εi})
SOCP(L,B,P, {θk})
foreach Pj ∈ P do

if
∑
`i∈L xij = 0 then
P ← P \ Pj

{θk} ← epLCA
α, {xij} ← SOCP(L,B,P, {θk})
return α, {xij}

V. VIRTUAL NETWORK EMBEDDING

In this section, we discuss some possibilities for how
our VLE formulation may be incorporated in a virtual node
embedding algorithm to construct a complete VNE solution.
First, we demonstrate how our approach can be used to model
node embedding under demand uncertainty and then discuss
integration with existing VNE algorithms. The notation used
in this section is summarized in Table II.

A. Node Embedding under Uncertain Demands
Virtual node demands, e.g., processing demands, could also

be uncertain similar to virtual link demands. However, node
resources are allocated on a per-node basis, e.g., a virtual
node is placed on a single physical node. As such, there is
no complication as in virtual link embedding due to end-to-
end requirements. To this end, the following formulation can
be used to model node demands under uncertainty. Let N and
V denote the set of physical and virtual nodes, respectively.
Also, let ∆i denote the uncertain node (processing) demand of
virtual node vi ∈ V . We assume that ∆i is a random variable
with mean E [∆i] and variance Var [∆i] (recall that an upper
bound on the variance suffices). Define the binary variable
zik to be 1 if virtual node vi is placed on substrate node nk.
The following inequality expresses the capacity constraints in
virtual node embedding,

P
{ ∑
vi∈V

∆izik > Rk
}
≤ η, (21)

where 0 < η < 1 is the acceptable bound on the probability of
resource violation on each node and Rk denotes the capacity
of node nk. Using the inequality (5), the equivalent robust
counterpart of the above constraint is given by the following
conic constraint,∑

vi∈V

Var [∆i] z
2
ik ≤

(Rk −∑vi∈V E [∆i] zik√
2 ln(1/η)

)2
. (22)

B. Integration with VNE Algorithms

As mentioned earlier, numerous algorithms are proposed
in the literature for the VNE problem (most consider the
deterministic variant, where resource demands are known
exactly). These algorithms can be broadly divided into two
categories with respect to how node and link embedding
decisions are made [2], as follows.

I. Uncoordinated. Algorithms in this category solve the
link and node embedding problems separately. An example
is [19], in which node embedding is solved first based on
the availability of resources at substrate nodes independent
of the virtual links. Clearly, it is straightforward to use our
VLE algorithm in the second phase of these algorithms. One

TABLE II: Notation Used in Section V.
Symbol Definition

Input parameters
N Set of physical nodes in the substrate network
V Set of virtual nodes from all virtual networks
vi Virtual node i (vi ∈ V)
nk Physical node k (nk ∈ N )
Rk Compute capacity of physical node nk
∆i Compute demand of virtual node vi
η Acceptable congestion on each physical node

Decision variables
zik ∈ {0, 1} Virtual node vi is placed on physical node nk

complication is the uncertainty in node demands, which can
be addressed using the formulation (22), which results in a
second-order cone program.

II. Coordinated. Algorithms in this category are further
divided to:
• Two-stage coordinated: These algorithms perform node and

link embedding sequentially as in uncoordinated algorithms
but during node embedding consider link requirements too.
An example is [8], in which node embedding is solved
by considering both node and link requirements. Once the
virtual nodes are mapped, it applies a link embedding
algorithm similar to the one proposed in [19]. As such, our
VLE algorithm can still be used in the second stage of these
algorithms. Of course, modifications needed to be made
to consider demand uncertainty in the node embedding
stage. Moreover, the resulting optimization problems will
be second order instead of linear as in [19].

• One-stage coordinated: These algorithms perform node and
link embedding jointly. An example is [7], which uses the
PageRank algorithm to rank physical nodes for embedding
virtual nodes. Most are based on heuristics or solving the
exact problem formulation. As such, incorporating our VLE
algorithm in these works requires substantial modifications
and may not even be feasible. One idea is to apply these
algorithms to compute an embedding and then try to mod-
ify it to accommodate uncertain demands and congestion
requirements heuristically.

VI. PERFORMANCE EVALUATION

We evaluate the performance of epVLE via simulations and
SDN testbed experiments. We start in subsection VI-B by
comparing epVLE with the exact VLE model described in
Problem 1 using simulations in small-scale network topologies
(solving the exact model for large networks is not feasible).
Then, in subsection VI-C, we compare epVLE with an existing
robust link embedding algorithm that considers congestion on
physical links individually [17]. In subsection VI-D, large-
scale evaluations on randomly generated network topologies
are considered to show the scalability of epVLE. Finally, mea-
surement results based on model-derive as well as trace-driven
experiments in a testbed are presented in subsection VI-E.

A. Simulation Setup

Network Topology. For small-scale simulations, the USA (24
nodes and 43 links) and European Optical Network (EON)
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(a) USA network topology.
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(b) EON network topology.

Fig. 3: Small-scale network topologies.

(19 nodes and 37 links) topologies are used (see Fig. 3).
These topologies are widely used in the literature for similar
evaluation purposes (e.g., see [17]).

Virtual Networks. For each network topology, a random set
of VNs is generated and embedded in the physical network.
Generally, the optimization programs take as input the set
of virtual network requests that need to be embedded in the
physical network. Moreover, virtual nodes can be embedded
by any desired algorithm before the link mapping stage. In the
simulations, we assume that a virtual network consists of a set
of origin-destination pairs connected with virtual links. Each
virtual link is assigned to a randomly chosen origin-destination
pair in the physical network. Every node in the graph of the
physical network can potentially be chosen as an origin or
destination for some virtual link.

Exact Solution. To have a baseline for comparison, we also
show the results obtained by solving the exact VLE model
in Problem 1. Optimization solver Knitro [40] in conjunction
with the AMPL [44] modelling language is used to solve the
exact VLE model. The epVLE algorithm is a SOCP, which is
solved using Gurobi [42] version 7.5.2. Simulations are carried
out on a basic desktop machine with an Intel(R) Core(TM) i7-
4770 CPU@3.40 GHz with 16 GB RAM.

Simulation Parameters. For the sake of simplicity, we assume
uniform bandwidth demands (with mean µ) for all virtual
links. Physical link capacities are also assumed to be equal
and given by C, where C is scaled with respect to the mean
bandwidth demand µ (i.e., C = ρ means that the link capacity
is ρµ in bps). In our simulations, C varies between 10 and 100,
but is set to 20 by default. We note that using unscaled values
for link capacities (e.g., 1 Gbps) actually slows down solving
the quadratic optimization model considerably, since it leads
to a large coefficient range and numerical issues. We also set
the variance of bandwidth demands to σ2 for all virtual links.
In this section, we use the Coefficient of Variation, denoted by
CoV and defined as CoV = σ/µ, to describe the burstiness of
bandwidth demands. A high CoV indicates high uncertainty
in bandwidth demands, and vice versa.

Performance Measures. We use the following measures to
compare the performance of different approaches: 1) the
number of admitted virtual links, 2) the achieved congestion
probability, and 3) the utilization of the most congested link
(denoted by α). To compute the number of admitted virtual
links, we solve the problem starting with a small set of virtual
link requests. Then, we iteratively increase the number of
virtual link requests until the problem becomes infeasible.

TABLE III: Default simulation parameters.
Parameter Value

C 20
µ 1
K 3

CoV 1.0
ε 0.1

Network Topology USA

While this linear search can be improved, e.g., by a binary
search, it takes only seconds to find the maximum number of
admitted links for epVLE. For the exact model, however, it is
a time-consuming process. Therefore, we have used starting
points based on the solutions produced by epVLE to speedup
the search process. That is, to compute the number of admitted
virtual links under the exact model, we start by solving the
model for the number of links that were admitted under the
approximate model epVLE. We then linearly search around this
number to find the maximum number of links that can be
admitted by solving the exact model.

Methodology. In each network scenario, a K-shortest-path
algorithm [45] is run to compute K candidate paths between
the chosen origin-destination nodes for each virtual link. Next,
the optimization models are solved based on the computed
candidate paths and network parameters. The default values
for the parameters are presented in Table III. The value of a
parameter changes only when its impact is investigated. Each
point in the plots is the average of 4 simulation runs. The error
bars (showing the min and max values) are not presented in
cases where the deviation from the average was very small.

B. Comparison with the Exact Model

In this subsection, we compare the performance of epVLE
with that of the exact model in terms of the average number
of admitted virtual links and achieved congestion probability.

Number of Admitted Links. Fig. 4 shows the the number of
admitted virtual links by each model for different coefficients
of variation (CoV = 0, 0.5, 1, 1.5). By increasing CoV, demand
uncertainty increases and more bandwidth is reserved per
virtual link, which causes a sharp decline in the number of
admitted virtual link requests. We observe that the results
achieved by epVLE and exact model are very close to each
other. The reason for slightly higher number of admitted links
under epVLE can be explained by looking at Fig 5. We can see
that epVLE generally achieves higher congestion probabilities,
which translates to more admitted virtual link requests.

Congestion Probability. Fig. 5 depicts the achieved end-to-
end congestion probabilities for epVLE and the exact model. For
both models, the objective is to satisfy a maximum congestion
probability of ε = 0.1. We observe that: 1) both models
generally satisfy the target congestion probability, and 2) the
exact model generally achieves lower congestion probabilities
compared to epVLE. With both models, the achieved congestion
probabilities are below the required target probability. The
reason is that, the global solver used to solve the exact
model may only find a local optimum, which satisfies the
target requirement but is far from the global optimal. Also, as
presented in Algorithm 1, if a shorter path is fully contained in
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Fig. 4: Average number of admitted virtual links with epVLE and the
exact model. As the variance of bandwidth demands increases, the
number of admitted virtual links decreases. In all cases, the solution
produced by epVLE is very close to the exact solution.

a longer path, then the achieved congestion probability for the
shorter path will be smaller than the required target. Finally,
the fluctuation in achieved congestion probability under both
models is attributed to random selection of origin-destination
pairs in each simulation run.
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(b) epVLE.

Fig. 5: Congestion probability with epVLE and the exact model.
Regardless of the variance of bandwidth demands, both algorithms
are able to satisfy the desired end-to-end congestion probability.

C. Comparison with the Link-by-Link Model

In this subsection, the algorithm epVLE is compared with the
robust VLE algorithm proposed in [17]. The VLE problem
in [17] is formulated as a robust optimization problem, where
the placement of virtual nodes is assumed to be known. The
objective is to provide a pre-specified congestion probability
guarantee on each physical link, which is achieved by model-
ing demand uncertainty using ellipsoidal uncertainty sets [23].
This algorithm is chosen as a representative of link-by-link
approaches that are able to deal with demand uncertainty
using robust optimization. The main challenge in link-by-link
approaches is how to properly set the physical link congestion
requirement. Recall that we do not need to deal with this
problem in our approach as in our formulation the appropriate
congestion requirement for each physical link is determined
by the algorithm itself as part of the solution. To show the
effect of physical link congestion on the performance of the
link embedding algorithms, in this experiment, the physical
link congestion probability varies between 0.001 and 0.1. The
congestion probability 0.001 (i.e., 0.1% congestion) is selected
to represent no congestion, since the congestion probability
cannot be set to 0% in the model due to the term ln( 1

εk
) in the

optimization program. In the case of the link-by-link model,
there is no guarantee that end-to-end congestion probability
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Fig. 6: Comparison of epVLE and the robust link-by-link model [17].
The dashed red line shows epVLE results. The link congestion achieved
by epVLE is always below 0.1, as required. In contrast, the link con-
gestion achieved by the link-by-link approach either underachieves
or overshoots the required 0.1 level.

remains less than the specified target (i.e., ε = 10%) for any
of these values, since it depends entirely on the number of
physical links in substrate paths.

The results are presented in Fig. 6, which shows the
number of admitted virtual links and the virtual link congestion
probability for the link-by-link approach in comparison with
epVLE (indicated by the red line). We observe that as the
physical link congestion probability is allowed to increase,
slightly more virtual links are admitted with the link-by-
link approach. However, this comes at the cost of violating
the congestion requirement of virtual links, as presented in
Fig. 6(b). In particular, it can be seen that as soon as the
physical congestion probability is set to more than 0.04, the
end-to-end congestion probability achieved under the link-
by-link approach shoots up and violates the required 10%.
In contrast, epVLE always satisfies the required congestion
regardless of the specific physical link congestion. We note
that the error bars in this figure show the min and max values
observed across all simulation runs.

D. Scalability Analysis

In this section, we focus on epVLE, as it is computationally
fast and is reasonably accurate compared to the exact model.

Number of Candidate Paths. Fig. 7 shows the effect of in-
creasing the number of candidate paths K on the performance
of epVLE. As can be seen in Fig. 7(a), the maximum number of
admitted links increases drastically by increasing the number
of candidate paths from 1 to 3. However, the gain diminishes
as the number of paths increases beyond 3. Therefore, we set
the default number of candidates paths to 3 in the rest of the
simulations in this section. Fig. 7(b) illustrates the impact of
K on the most congested link, i.e., the link with the highest
utilization α. In this figure, the number of virtual links is fixed
at |L| = 30. As expected, the highest link utilization drops as
we increase the number of candidate paths. Again, there is no
considerable reduction after K = 3.

Running Time. In this experiment, the Barabasi-Albert
model [46] is used to generate random scale-free networks
with up to 2000 nodes. The number of virtual links given to
the model as input varies from 100 to 1000 virtual links. The
results are averaged over 100 runs, where in each run epVLE is
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(b) Utilization of the most congested link.

Fig. 7: Effect of the number of paths (K).

used to compute a link embedding. The resulting embedding
may be feasible or infeasible depending on the computed
value for the maximum link utilization α. For example, when
embedding 1000 flows in a network with only 100 nodes,
most computed embeddings are not feasible, but epVLE has to
solve the problem anyways. It is observed that, as expected
from the analysis presented in Section IV, the running time is
dominated by the number of virtual links to be embedded, but
in all cases it remains in the order of seconds.

Fig. 8: Running time of epVLE. The running time is dominated by the
number of virtual links, but is also affected by the size of the network.
In all these cases, the running time is in the order of seconds.

E. Testbed Setup

In this subsection, we describe the Software Defined Net-
working (SDN) testbed we have built to conduct our exper-
iments. Then, in the subsequent subsections, we present the
measurement results that we have obtained from the testbed.

Physical Topology. We used four Aruba 2930F JL259A
OpenFlow switches to construct the substrate network into
which virtual links are embedded. Each of the physical
switches supports OpenFlow version 1.3 and can host up
to 16 distinct OpenFlow instances. From the perspective of
the SDN controller, each OpenFlow instance appears as a
distinct switch in the substrate network. Each of the OpenFlow
instances hosted by a particular Aruba switch is assigned a
subset of the physical ports present on the switch. This scheme
in which multiple OpenFlow instances are co-located in the
same physical switch allows for the construction of diverse
network topologies using relatively small amounts of physical
switching hardware. Specifically, for this set of experiments
we configure the testbed to emulate the Abilene topology
shown in Fig. 9. All Ethernet interfaces in the testbed are
1 Gbps interfaces. Our SDN testbed also includes five DELL
PowerEdge R330 servers equipped with Intel Xeon E3-1240

Fig. 9: High level system architecture.

processors, 16 GB of RAM and 6 Ethernet ports, each of
which can forward packets at a rate of 1 Gbps. Each server
hosts one or more virtual machines (VMs). A single server is
dedicated to hosting the SDN controller as well as the software
that implements epVLE. The remaining four servers host VMs
that act as sources and sinks for network traffic. In total we
provision 11 of these traffic generator VMs, each of which is
connected to a distinct switch in the substrate network.

System Architecture. In order to conduct our experiments,
we have implemented a generic orchestration framework that
will configure both the forwarding plane and the end hosts
in response to virtual link requests submitted by users. Fig. 9
provides an overview of our orchestration framework. Virtual
link requests are submitted to the orchestrator process in
batches either via a REST endpoint exposed by the experiment
controller or via a Python API. Upon receiving a new batch of
virtual link requests the orchestrator process does two things:

1) Invoke the epVLE solver module to compute the path
allocations for the batch of virtual link requests.

2) Configure the end hosts to generate traffic in accordance
with the rates specified in the batch of virtual link
requests. The orchestrator process carries out this task
by invoking functionality provided by the host module.

After receiving path allocations from the epVLE solver, the
orchestrator process instructs the SDN controller to update
the flow table state of the switches in the network according
to the path allocations generated by the epVLE solver. Once the
forwarding plane state updates are complete, the orchestrator
signals the host module to begin traffic generation.

Virtual Network Generation. Virtual networks are generated
randomly such that the number of virtual nodes and links
for a VN are uniformly chosen from the range [2, 3, 4]. Then
the Barabasi-Albert model [46] is used to generate the corre-
sponding virtual network topology. The next step is to assign
CPU and uncertain bandwidth demands to virtual nodes and
links respectively. Since our work focuses on link embedding,
CPU demands are assumed to be insignificant compared to
actual processing power capacity of servers so that they do not
impose any capacity restrictions during the node embedding
process. To embed each virtual node, a physical node is
selected uniformly randomly from the set of substrate nodes.
On the other hand, the uncertain bandwidth demand for each
virtual link ` is defined by its mean and standard deviation,



11

(a) Normalized data volume per path. (b) Normalized throughput per path.

Fig. 10: Flow splitting in SDN testbed.

i.e., (µ`, σ`). We consider different sets of experiments with
varying demand characteristics, as described later.

Multipath Routing Implementation. In accordance with the
model outlined in section III, each virtual link (corresponding
to a flow) is mapped to K physical paths that traverse the
substrate network. Typically the policies of traditional routing
protocols lack the expressiveness required to implement this
type of routing since a packet’s path through the network is
entirely determined by its layer three destination address. As
such we chose to implement the multipath routing scheme
using relatively inexpensive OpenFlow switches. Since the
OpenFlow agent implementation present in our switching
hardware mandates that the mapping from header space to
OpenFlow actions must be deterministic (i.e., the same header
must always yield the same action under a given flowtable
configuration) each packet header of a particular flow must
be augmented with additional information indicating which
of the K physical paths through the substrate network the
packet should transit. For this set of experiments, we set
the value of the Differentiated Services Codepoint (DSCP)
field in the IP header to indicate which of the K physical
paths the packet should transit. While this solution sufficed
to allow us to conduct our experiments, we note that the use
of the DSCP field in this unorthodox fashion could interfere
with preexisting QoS policies in real network deployments.
However we do not see this as a major issue since any one of
the commonly available traffic tunneling methods could be
used to implement the multipath routing scheme described
without the need to infer the route a packet should take through
the substrate network from its DSCP value.

Flow Splitting. Fig. 10 demonstrates the granularity of flow
splitting that we were able to achieve using the multipath
routing scheme described above. Fig. 10(a) shows the expected
and actual data volumes per path for a flow split over three
distinct paths through the substrate network. We note that
the maximum deviation of the actual data volume from the
expected data volume was less than 2%. Similarly, Fig. 10(b)
shows the expected and actual throughputs over time on each
of the three constituent paths in the flow. Again, se see that
the actual throughput on each of the paths exhibits very small
deviation from the expected value.

Traffic Generation. Because it was necessary to implement
the DSCP tagging scheme described previously, we were
not able to utilize any existing traffic generation tools. As
such, we implemented a basic traffic generation application
that allows packets to be generated and transmitted at rates

sampled from a number of common statistical distributions.
Our traffic generation application is also able to adjust virtual
link transmission rates in accordance with values derived from
traffic traces. In addition, the traffic generation application is
also responsible for tagging generated packets according to the
path splitting ratios, i.e., xij variables. The traffic generator is
implemented in Python using the Python sockets API.

Measurements and Statistics Collection. In order to evaluate
the performance of our VLE solution in the physical testbed
we collect a number of metrics, specifically we tabulate:

1) Utilization of each link in the substrate network over time.
2) End to end packet loss rates for each of the virtual links

embedded in the substrate network.
In order to obtain the data necessary to compute the utilization
of each link in the substrate network, the statistics module
periodically instructs the SDN controller to query the values
of the packet and byte counters for each of the ports on each
of the switches that constitutes the substrate network. The
statistics module then computes utilization for each link based
on the values of the counters retrieved from the SDN controller
and can report utilization statistics to users via the orchestrator
process. The statistics module computes end to end packet loss
rates by querying the host module to obtain transmitted and
received packet counters for each of the virtual links embedded
in the substrate network. Using the values of these counters
the statistics module can report end to end packet loss rates
for each virtual link to users via the orchestrator process. We
note that congestion events are the primary cause of packet
drops in our experiments. However, during each congestion
event, multiple packets could be dropped. Thus, while there
is a strong correlation between packet drop probability and
congestion probability, their values do not necessarily match.

Implemented Algorithms. In addition to epVLE, we have
implemented the following VLE algorithms as well:
• Average: This algorithm ignores demand variability and

bases its link mapping decisions on the mean bandwidth
demand only. Specifically, it allocates µ bps bandwidth
to each virtual link. This algorithm can be considered as
a deterministic VLE algorithm.

• 95-Percentile: This algorithm actually considers demand
variability when mapping virtual links. Specifically, it
assumes that the bandwidth demands follow a Normal
distribution with mean µ and variance σ2 (which are
assumed to be known). It then computes an effective
demand for each virtual link, which is equal to the 95-
percentile of the bandwidth demand given by µ+ 1.65σ.
We chose the 95-percentile so that if a virtual link
is mapped to a path of length 2, then the end-to-end
congestion probability of the link satisfies the requirement
ε = 0.1. This algorithm can be considered as a link-by-
link robust VLE algorithm.

Methodology. We compare the performance of algorithms
epVLE, Average and 95-Percentile using model-driven and trace-
driven experiments, as described below:
• Model-Driven Testbed Experiments: In these experiments,

traffic demands of virtual links are generated randomly
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(a) Mean transmission rates. (b) Instantaneous transmission rates.

Fig. 11: Properties of model driven virtual links.

based on a distribution model. Specifically, we generate
demands that follow a Gamma distribution (which is
defined over R+) with given mean and variance.

• Trace-Driven Testbed Experiments: In these experiments,
traffic demands of virtual links are generated based on
real traffic traces collected from an ISP backbone link.
The traffic traces have packet-level information that can
be used to derive the traffic rate for each virtual link.

The results of these experiments are presented in the next
subsections. The duration of each experiment is 15 minutes.
In these experiments, candidate paths for each virtual link are
the K = 3 shortest paths between origin and destination nodes
of each virtual link.

F. Model-Driven Testbed Experiments

In these experiments, we use the Gamma distribution to
generate virtual link demands based on a given mean and
variance. Fig. 11 illustrates some basic statistical properties of
the virtual links that were generated during the model-driven
experiments. More precisely, Fig. 11(a) shows the mean and
standard deviation of the transmission rates for a selection of
model-driven virtual links under various model parameters.
Fig. 11(b) shows the instantaneous transmission rates of a
selection of model-driven virtual links under various model
parameters. During each experiment, the transmission rate of
each virtual link is changed every 10 seconds. That is, every
10 seconds, we generate a new traffic rate for each virtual link
using the corresponding Gamma distribution and reconfigure
our traffic generation application with the new rates.

We consider two different scenarios for this set of experi-
ments:
• Homogeneous Scenario: In this scenario, the mean and

variance of demands for all virtual links are equal. That is,
for every virtual link, we set (µ = 100, σ = 100) Mbps.
In this scenario, origin-destination nodes of virtual links
are chosen randomly (i.e., random embedding).

• Heterogeneous Scenario: In this scenario, demands of
different virtual links have different mean and variance.
Specifically, the mean demand is randomly chosen from
{100, 200, 300} Mbps, while CoV (= σ/µ) is chosen
randomly from the set {0, 0.5, 1}. In this scenario, origin-
destination nodes of virtual links are chosen by the
TK-Match algorithm [47].

Results and Discussion. The results for homogeneous and
heterogeneous scenarios are presented in Figs. 12 and 13. The

main observations are: 1) epVLE is more aggressive compared
to 95-Percentile, which achieves the lowest utilization, and 2)
epVLE is more conservative than Average, which admits the most
number of links at the cost of overshooting the packet drop
probability. Next, with respect to the packet drop probability,
we see that in the homogeneous scenario, both epVLE and
95-Percentile are able to bound the packet drop probability below
10%. However, in the heterogeneous scenario, both algorithms
result in higher packet drop probabilities. As discussed earlier,
this does not necessarily mean that the achieved congestion
probabilities are higher than 10%. Recall that during a single
congestion event, multiple packets could be dropped. As such,
in general the packet drop probability provides an upper bound
on the actual congestion probability.

We can also see the effect of increased traffic burstiness on
the performance of the algorithms. Recall that there is more
traffic burstiness in the heterogeneous scenario. As a result,
we see that the packet drop probability for all algorithms
has increased compared to the first experiment. Fig. 13(a)
illustrates the number of admitted VN requests and their cor-
responding virtual links for all three algorithms. Interestingly,
we observe that, compared to the homogeneous scenario, more
virtual links are embedded in the network on average. This is
due to the fact that some virtual link demands actually have
less variability compared to the virtual link demands in the
homogeneous scenario (when CoV is 0 or 0.5).

Another interesting behavior is observed in the link utiliza-
tion plots under 95-Percentile and epVLE. While the difference
between the number of virtual links admitted by each of
these algorithms is negligible, the difference between their
link utilizations is somewhat more substantial. Specifically, the
link utilization under epVLE is higher than the link utilization
under 95-Percentile. The reason is that the order and type of
VNs becomes important as we consider heterogeneous VNs
in this experiment. This means that a different set of VNs
is admitted under each algorithm. Therefore, we can have
situations where the 95-Percentile algorithm rejects some large
VNs with high bandwidth demand, while epVLE admits some
of the large VNs. As a result, while both algorithms admit
roughly the same number of VNs, the link utilization under
epVLE is higher.

G. Trace-Driven Testbed Experiments

In these experiments, we use real traffic traces collected
from an ISP backbone link [48] to generate traffic demands
for virtual links.

Traffic Traces. The traffic traces contain packet-level infor-
mation about traffic traversing the ISP link during a 60 minute
period. For the entire trace, the mean and standard deviation
of the throughput on the link are 89.05 Mpbs and 7.74 Mpbs,
respectively. To generate virtual link demands, we first divide
the trace into segments such that each segment represents
traffic flow on the ISP link during a 1 minute period. Each
of these segments is mapped to a virtual link. Transmission
rates for a virtual link are sampled from its corresponding
traffic trace segment. Recall that the rate of each virtual link
is re-sampled every 10 seconds during the experiments. Fig. 14
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Fig. 12: Homogeneous model-driven testbed experiments.
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Fig. 13: Heterogeneous model-driven testbed experiments.

shows some basic properties of the virtual link transmission
rates that were derived from these traces. Specifically Fig 14(a)
shows the mean and standard deviation of transmission rates
of a collection of virtual links and Fig. 14(b) shows the
transmission rates of a selection of virtual links over time.

(a) Mean transmission rates. (b) Instantaneous transmission rates.

Fig. 14: Properties of trace driven virtual links.

Results and Discussion. The results for this set of experiments
are shown in Fig. 15. The main observations are: 1) the relative
performance of the three algorithms is similar to that seen
in the previous model-driven scenarios, 2) since the trace-
based demands have less variability compared to the model-
driven experiments, even epVLE and 95-Percentile are able to
achieve significantly higher link utilization and admit more
virtual links, and 3) epVLE is able to bound the packet drop
probability to 10%. We note that in Fig. 15(a), the number
of admitted virtual links in this scenario was considerably
higher than in the previous experiments. This is a result of both
the diminished variability and the reduced mean transmission
rates of the trace-driven virtual links when compared with

those of the model-driven virtual links. Similarly, Fig. 15(b)
demonstrates that, as a result of the diminished variability in
the transmission rates, algorithm epVLE as well as the other
algorithms, are able to pack virtual links into the substrate
network in a denser fashion. Finally, the CDF of the packet
drop probability for this scenario is shown in Fig. 15(c). The
observed packet loss probabilities are significantly lower in
this scenario when compared with those observed in the other
scenarios, which is again explained by smoother traffic rates
in this experiment.

VII. CONCLUSION

In this paper, we considered the problem of probabilistic vir-
tual link embedding with uncertain demands. We formulated
the problem as an optimization problem, where link demands
are described by random variables for which only the mean
and variance are known. We showed that the problem can be
well approximated by a second order cone program, which
can be solved efficiently even for large networks. Using a
combination of simulations and testbed measurements, we then
studied the performance and scalability of our approximate
algorithm in a variety of network scenarios. Our results show
that the approximate algorithm achieves near-optimal perfor-
mance, while easily scaling to large-scale problem instances.
They also confirm that our algorithm is able to satisfy a
required congestion probability fo each virtual link in realistic
network scenarios. An interesting extension of this work is
to consider an online version of the problem in which virtual
network requests arrive one-by-one over time.
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(a) Average number of admitted virtual links (b) Average utilization of physical links. (c) CDF of packet drop probability.

Fig. 15: Trace-driven testbed experiments.
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