
Opportunistic Packet Forwarding for Proactive
Transport in Datacenters

Amir Shani∗, Sogand Sadrhaghighi∗, Mahdi Dolati† and Majid Ghaderi∗
∗Department of Computer Science, University of Calgary, Calgary, Canada.

†School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
Emails: {amir.shani, sogand.sadrhaghighi, mghaderi}@ucalgary.ca, m.dolati@ipm.ir

Abstract—Proactive transport protocols in datacenters are
designed to avoid congestion by regulating flow sending rates
via credit allocation. However, when a new flow starts, it takes
one RTT before credits can be assigned to the new flow. To
avoid stalling flows, modern proactive protocols such as NDP and
Homa allow a new flow to blast a burst of unscheduled packets
at line rate during the pre-credit phase. However, sending too
many unscheduled packets could cause temporary traffic spikes
that lead to queue build-ups, packet losses, and retransmissions,
which are particularly detrimental to short flows. In this paper,
we present the design and evaluation of Opportunistic Packet
Forwarding (OPF), a data-plane building block for proactive
transports designed to minimize pre-credit packet losses with
negligible overhead on network switches. The key idea in OPF is
to allow pre-credit packets to opportunistically take detours to
avoid congested links on the shortest paths, effectively trading off
packet losses for slightly increased delay. We have implemented
OPF using P4 switches and integrated our implementation with
both Homa and NDP. Our results on a range of traffic loads show
significant improvement in the 99-th percentile of flow completion
time for short flows, namely up to 54% reduction in NDP and
50% in Homa.

I. INTRODUCTION

Thanks to advances in network hardware, modern datacen-
ters have the potential to offer low-latency communication
to distributed applications running in the datacenter. In fact,
base round-trip-times (RTTs) of 5 µ-seconds or less are now
prevalent in datacenters [27]. However, for applications that
require fast data transfers within the datacenter, such short
RTTs may not translate to proportionally faster completion
times. The reason is that, the completion times of data transfers
depend on both the high-speed network hardware and the
ability of the network software running on the end hosts to
take full advantage of the capabilities of the hardware.

Specifically, the sending rate of a traffic flow1, and thus
its completion time, is determined by a transport protocol
such as TCP or its many datacenter optimized variants (e.g.,
DCTCP [6] and DCQCN [38]). To determine the right sending
rate for each flow in the network, the transport protocol
continuously probes for available bandwidth, but reduces its
sending rate if congestion is detected in the network. The
consequences of using such protocols are that, not only it takes
a few RTTs to converge to the right rate, but also they react to
congestion only after the fact. This reactive behavior makes
them ill-suited to modern datacenters in which the majority

1We use the term ‘flow’ to refer to a traditional 5-tuple IP flow.

of flows are short [7]. While long flows are less sensitive to
such behavior, short flows could be significantly impacted.
Specifically, long flows requiring good average performance
over many RTTs can tolerate transient sub-optimal sending
rates over a few RTTs while the transport protocol tries to
converge. But a few RTTs with sub-optimal performance could
lead to unnecessarily long tail latency for short flows that
could have been finished in just a few RTTs.

The latency of short flows has become critical due to several
converging trends. First, the adoption of communication mod-
els such as remote procedure call (RPC) that consist of short
requests and responses is making datacenter flows smaller
in size. Second, as the link speeds increase, more flows can
finish within a few RTTs. Indeed, measurements of production
workloads show that more than 60% of flows can potentially
finish in one RTT [7]. Third, the rate of increase in link speeds
is outpacing the rate of increase in switch buffer spaces in
datacenters [9], resulting in shallower buffers that make traffic
bursts more likely to cause packet drops. Dropping even a
single packet from a short flow can significantly increase its
completion time. For example, for a short flow that could
finish in one RTT, even if the most aggressive setting for the
retransmission timeout is considered (i.e., one RTT), the flow
completion time will be inflated by 2× (from 1 RTT to 2 RTT).
Thus, to reduce the tail latency for short flows, it is critical to
prevent packet drops and subsequent retransmissions.

Recently, an alternative approach to reactive transport pro-
tocols in datacenters, called proactive transport, has been
considered [11], [20], [23], [27], [28] in which the right
sending rate is proactively allocated to each flow either by the
receiver or a central controller. The rate allocation is based on
credit scheduling, where a flow is allowed to send a packet
only if it has obtained a credit to do so. A straightforward
implementation of this approach, however, still requires one
RTT before credits can be assigned to a flow that is just
starting. During this initial RTT, which is referred to as the
pre-credit phase [23], no data can be sent even though the
network could be lightly utilized. In particular, for a short
flow, this could essentially double its completion time.

To avoid this problem, protocols such as NDP [20] and
Homa [27] allow a new flow to blast a burst of packets, called
unscheduled packets, at line rate during the first RTT. This
allows short flows to potentially finish in the first RTT, while
longer flows are regulated during the subsequent RTTs. The

ISBN 978-3-903176-63-8 © 2024 IFIP

2024 IFIP Networking Conference (IFIP Networking)

978-3-903176-63-8/24/$31.00 ©2024 IEEE 231

downside of this approach is that sending many unscheduled
packets could cause temporary traffic spikes that lead to queue
buildups and eventually packet losses for both scheduled and
unscheduled packets (even when a higher priority is given to
scheduled packets [23]). In particular, datacenter workloads
often require sending requests to a large number of worker
processes and then handling their near-simultaneous responses,
causing a problem known as incast. Such a communication
pattern results in many short flows blasting unscheduled pack-
ets at a high rate in their pre-credit phase, which could create
bursts that result in packet drops. As mentioned earlier, packet
drops, even on a short time-scale, are catastrophic to short
flows. As an example, Homa suggests setting its retransmission
timeout to a few milli-seconds. For a flow that could be
finished in 12 µ-seconds, which is common with 100 Gbps
link speeds, a delay of 1.2 milli-seconds could mean a 100×
increase in its flow completion time.

In summary, while proactive transport protocols such as
Homa and NDP can substantially decrease the completion time
of flows that last for multiple RTTs, they are still sub-optimal
for tiny flows that are dominant in datacenter networks.
Moreover, packet drops in the pre-credit phase are the main
culprit for their sub-optimal performance. This is the problem
we try to address in this work, namely how to minimize packet
drops during the pre-credit phase, by proposing Opportunistic
Packet Forwarding (OPF), a transport-agnostic solution to the
pre-credit phase problem. Compared to a recently proposed
pre-credit solution called Aeolus [23], OPF takes a fundamen-
tally different approach. The approach proposed in Aeolus is
to prioritize scheduled packets, selectively drop unscheduled
ones, and then utilize fast retransmissions for loss recovery in
the pre-credit phase. But even fast retransmissions take at least
one RTT, inflating short flow completion times by at least 2×.

Our key insight in designing OPF is that due to the unbal-
anced load distribution in datacenters, there exists a distributed
pool of under-utilized switch buffers in the network that
have low occupancy during burst incidents. Additionally, due
to high path redundancy, these under-utilized switch buffers
can be exploited as detours for packets facing congestion,
to avoid congestion with little increase in their end-to-end
latency. This is exactly what OPF is designed for, namely
to divert congestion-facing unscheduled packets to under-
utilized switch buffers, thereby preventing catastrophic packet
drops during the pre-credit phase. Other detour-induced buffer
sharing solutions such as DIBS [35], detour packets indis-
criminately during congestion, and are consequently prone to
congestion spreading, infinite loop formation, and interfering
with credit allocation logic of proactive transports which can
result in extreme latency penalties [23]. Leveraging the P4
technology, OPF takes measures to limit network resource
over-utilization, effectively controlling congestion spreading.
Moreover, OPF can detour packets selectively and therefore,
protect sensitive background traffic, e.g., TCP, from packet
reordering, as well as avoid interfering with the rate control
and flow scheduling of proactive transports during the credit
phase, by only detouring unscheduled packets.

The aim of OPF is to realize the original zero-loss goal of
proactive transports without any modifications to the underly-
ing transport protocols, or penalizing long flows. We show that
OPF can be implemented at line rate with little overhead using
commodity programmable switches. To this end, we have
implemented OPF on software programmable switches with a
P4 program, integrated it with two popular proactive transport
protocols (i.e., Homa and NDP) and conducted extensive
experiments to analyze its impact on flow completion time
(FCT) 2 for short flows and goodput for long flows.

Our contributions in this paper are:
• We present the design and evaluation of OPF, a light-

weight solution to minimize packet drops in the pre-credit
phase of proactive transport protocols. OPF requires only
minimal modifications to the host stack and switch data-
plane logic, and can be implemented on commodity
programmable switches.

• As a proof-of-concept, we have implemented OPF in
Mininet using P4 programmable software switches and
Homa’s Linux kernel module [29]. In our experiments
with a 14-node network setup, we observed that OPF cuts
the p993 of Homa’s FCT by 60%. We also experiment
with UDP workloads to demonstrate that OPF can be
added to other transport protocols (such as those devel-
oped for UDP-based RoCEv2 [8]) as a generic technique
for improving FCT of short flows.

• We have incorporated OPF in the same simulation soft-
ware (using the same code base) that was used to evaluate
Homa and NDP, namely OMNeT++ [3] for Homa and
htsim [2] for NDP. Our results show that Homa+OPF
leads to 1.5× reduction in the median FCT and over 50%
reduction in the p99 FCT compared to Homa. Compared
to NDP, we observe that NDP+OPF reduces the median
FCT by up to 6.8× and the p99 FCT by up to 54%.

The rest of the paper is organized as follows. The design
of OPF is presented in Section II. Implementation details are
covered in Section III. Evaluation methodology as well as
Mininet and simulation results are presented in Section IV.
Related works are reviewed in Section V, while Section VI
concludes the paper and discusses potential future directions.

II. DESIGN

OPF is designed to be simple and fast to mitigate packet
drops by detouring them on the fly entirely in the data plane
at line rate. In particular, OPF design is inspired by two well-
known techniques: Random Packet Spraying (RPS) [14] and
Random Early Detection (RED) [15]. OPF combines aspects
of RPS and RED to achieve a low-latency and light-weight
solution in absorbing micro-bursts during transient congestion
events. Unlike RPS, OPF is congestion-aware and acts only
when congestion is detected. Similar to RED, OPF is a switch-
local solution and does not keep per-connection states at

2Unless otherwise specified, in this paper, the term ‘FCT’ is used to refer
to the flow completion time for short flows.

3We use the term ‘p99’ to denote the 99-th percentile.

2024 IFIP Networking Conference (IFIP Networking)

232

the switch. However, OPF acts in much smaller time scales
compared to RED and only controls transient queue buildups.

A. Design Motivation

The design of OPF is motivated by the following well-
known observations about datacenters:

High Path Redundancy. Datacenters are structured in a
way to provide scalable and multi-path connectivity between
switches using hierarchical Clos topologies [4], [18]. A con-
sequence of this design is that there are multiple paths with
similar RTTs between any pair of hosts in a datacenter [14].
In fact, path redundancy and symmetry have been exploited
before for handling link failures [4], [5], [25], and load
balancing [14] in datacenters.

Unbalanced Load Distribution. Datacenter switches rarely
experience balanced utilization among their ports in the short
term [36]. Also, a significant amount of traffic never leaves
the server rack [10]. Therefore, datacenter traffic is unbalanced
within switches as well as across topology layers, with the pri-
mary cause of packet drops being transient traffic spikes (i.e.,
micro-bursts) in the network [10], as opposed to consistent
over-utilization of links. In fact, the average link utilization in
datacenters is relatively low due to over-provisioning.

B. Design Requirements

In order to have a practical solution, we have designed OPF
such that the following requirements are satisfied:

Seamless Integration. OPF is designed to work with com-
modity programmable switches with minimal modifications to
the host stack or switch software. Specifically, OPF is designed
as a stand-alone building block that does not make any particu-
lar assumption about the underlying transport protocol, except
for being able to tolerate benign out-of-order packets [14].

Packet-Scale Reaction. OPF reacts at line rate to congestion
by being implemented entirely in the data plane. Any mech-
anism that relies on the control plane or software implemen-
tation introduces high latency, and as such is not suitable for
dealing with packet drops in the pre-credit phase.

Stateless Operation. Due to memory limitations at the data
plane [37], OPF keeps as little state as possible. In particular,
OPF only keeps track of egress queue lengths on the switch, so
that queue length information is available at ingress. However,
it does not keep any states regarding the flows.

C. OPF Operation

On the host, all OPF does is marking unscheduled packets
during the pre-credit phase of flows so that they are distin-
guishable by switches from the scheduled ones. Upon the
arrival of a packet at the ingress control block of a switch,
OPF observes the queue length at the packet’s destination
port. If the queue length exceeds a congestion detection
threshold, congestion is detected. In such cases, OPF detours
the congestion-facing unscheduled packets by forwarding them
to other egress ports on the switch. While detouring may
add extra delay by forwarding packets over longer paths,

Fig. 1: High-level diagram of the PSA pipeline. [19]

Fig. 2: The datacenter topology used in the Mininet setup. Each link
has 100 Mbps bandwidth.

the impact of the extra delay is negligible compared to the
cost of packet drops and retransmissions, as we show through
extensive experiments in Section IV. Finally, OPF limits the
number of times a packet gets detoured and therefore, exploits
under-utilized network resources while curbing over-utilization
by preventing the detour paths from getting excessively long.

D. Design Elements

In the following, we present various design elements in OPF
and discuss their operations.

Unscheduled Packet Marking. To avoid penalizing long
flows, e.g., by potentially creating larger queue backlogs as
a consequence of not dropping packets, OPF only detours
unscheduled congestion-facing packets. To do so efficiently,
OPF marks unscheduled packets on the host by setting a bit
in their headers. This way, every switch is able to parse the
packet headers and distinguish the unscheduled packets from
the scheduled ones without tracking the state of the flows.

Detour Count Check. In case of pervasive congestion
throughout the network, the detoured packets could face
congestion on multiple links along their path, and as such be
detoured several times. While these additional detours increase
the packet path length, OPF limits the path length increase
of packets using a threshold on detour count denoted by
dcc-thresh. Specifically, the number of times each packet
has been detoured by OPF, henceforth referred to by DCC,
is inferred from the TTL field of the IP header. To avoid
congestion spreading, prevent network over-utilization, and
limit the detour latency, OPF’s switch module checks the value
of DCC against dcc-thresh and does not detour packets
with DCC higher than the threshold, allowing their fate to be
decided by the rest of the packet processing pipeline.

Congestion Detection. There is a mapping between each
egress port and an estimate of that port’s queue length. When
standard IP routing chooses an output port for the packet, OPF
observes the queue length leading up to that port. To determine
whether the port is congested, its queue length is compared
against a threshold denoted by opf-thresh.

2024 IFIP Networking Conference (IFIP Networking)

233

Port Selection. If the port is not congested, the packet is
forwarded normally. But if the queue length surpasses the
threshold, the packet has to be detoured in order to 1) avoid
further increasing the congested port’s queue length, and 2)
prevent the packet from experiencing the queuing delay of that
port or being dropped. The packet is detoured by selecting two
ports at random and forwarding on the least congested one.
Queue State Update. The queue length information for each
port is communicated from egress to ingress using global
registers that map each egress port to its estimated queue
length. This map is constantly updated in order to have an
accurate estimate of egress queue length.

III. IMPLEMENTATION

We have implemented OPF on a P4 software switch to
evaluate it through emulation. We used the bmv2 [13] software
switch within a Mininet setup. The bmv2 interprets the output
of a P4 compiler and emulates the packet-processing behavior
specified by the compiled P4 program.

A. Host Implementation

OPF only requires a sending host to set the value of the OPF
bit in each packet header. This bit, set at the host, indicates
whether the packet belongs to the pre-credit phase of a flow. In
our implementation, we have chosen the least significant bit of
the ToS (Type of Service) field in the IP header to represent the
OPF bit. Marking packets on the host is straightforward and
can be done in several ways, e.g., minimal modifications to the
transport’s host implementation, adding an extra marker logic
using DPDK [1], or leveraging programmable smart NICs.
In our implementation, this was achieved by modifying the
Homa’s Linux kernel module [29].

B. Switch Implementation

The bmv2 switch follows the PSA architecture [13]. P4
programs define the programming and interconnection of dif-
ferent programmable blocks within a target architecture, such
as those that adhere to the PSA architecture [19]. Fig. 1 shows
the high-level diagram of the PSA pipeline. When a packet
enters the pipeline, it goes through multiple programmable
blocks, each of which has a role in determining the packet’s
destination. In implementing OPF, the two main blocks on the
path of the packet, namely ingress and egress, are used.
Ingress. In this block, a table lookup is performed based
on the information in the packet’s header. When a match is
found, an action with proper parameters is invoked. In IP
routing, the output port of the packet is one of the parameters
which is chosen based on the routing decision. We call this
parameter the original egress port. Once the IP forwarding
action is invoked in the data plane, OPF intervenes as a
hook. Specifically, OPF functions as a part of the packet
processing pipeline and makes decisions based on the value
of the OPF bit and the action parameters such as the original
egress port. Algorithm 1 demonstrates the functionality of OPF
within the ingress block. Specifically, OPF only processes the
packet if OPF bit is set and DCC is less than the detour

limit threshold dcc-thresh; otherwise, the packet proceeds
to the rest of the pipeline (lines 3-4). The algorithm then
checks for congestion at the original egress port (lines 6-
8). If the corresponding queue length exceeds the threshold
opf-thresh, then OPF detours the packet by forwarding it
to the least congested of two randomly selected egress ports,
effectively changing the packet forwarding outcome (line 13).

Algorithm 1: OPF Operation at Ingress.

1 port ← original egress port /*From routing tables*/
2 DCC ← MAX_TTL - header.TTL /*DCC estimate*/
3 if DCC ≥ dcc-thresh or header.OPF ̸= 1 then
4 goto 16
5 /* Get estimate of the original egress queue length*/
6 qlength ← qlenRegister[port]
7 /*Check for congestion*/
8 if qlength > opf-thresh then
9 /* Generate two random port numbers*/

10 randPort1, randPort2 ← random port numbers
11 /* Find the least congested one*/
12 detourPort ← argmin

x∈{randPort1, randPort2}
(qlenRegister[x])

13 /* Set the egress port to the selected detour port*/
std metadata.egress spec ← detourPort

14 else
15 /* Forward packet normally */
16 std metadata.egress spec ← port

Egress. After determining the output port and deciding on the
forwarding decision in the ingress control block, the packet is
forwarded to the queue of the chosen egress port and egress
processing starts on the packet. The pseudo code for OPF’s
egress processing is shown in Algorithm 2. Specifically, OPF
only updates the egress port queue length with the actual queue
length of the port.

Algorithm 2: OPF Operation at Egress.

1 /*current port*/
2 index ← standard metadata.egress spec
3 qlengthRegister[index] ← queue length at the last

packet dequeue

DCC Inference. The value of DCC can be inferred from the
TTL field in the IP header, i.e., it does not have to be explicitly
encoded in the packet header. Specifically, we have

DCC ≤ MAX_TTL− packet.TTL,

where MAX_TTL is the initial TTL value of IP packets in
the network. This inequality sets an upper bound for DCC.
Therefore, if OPF calculates (MAX_TTL − packet.TTL)
and ensures it is less than dcc-thresh, then DCC is
necessarily less than dcc-thresh.

Tracking Egress Queue. Due to the PSA design constraints,
egress queue length information is not directly available

2024 IFIP Networking Conference (IFIP Networking)

234

at ingress [19]. To work around that, we have chosen to
use registers available in P4 switches as persistent stateful
memories. This also aligns with other works that rely on
queue length feedback [26]. Registers can mediate information
among control blocks, passing queue length information from
egress to ingress ports [13].

IV. EVALUATION

In this section, we first show the feasibility of OPF through
emulation of its P4-based implementation. Then, we evaluate
OPF with large-scale simulations using the simulators that
were used in Homa [27] and NDP [21]. We investigate a
diverse set of benchmarks with bursty incast combined with
short tail and long tail background traffic. We test our hypoth-
esis of whether integration of OPF with Homa and NDP can
reduce the tail latency of short flows, without degrading the
throughput of long flows. We provide insights into how OPF
achieves latency improvements by analyzing the queue build-
ups within switches IV-A and across topology layers IV-B.
We use the following real-world workloads in emulation and
simulations: (1) Hadoop from Facebook [31], and (2) Web
from Microsoft [6]. opf-thresh is set to 4 to 12 packets
lower than the maximum queue length in the experiments.

A. Proof of Concept Implementation

The objective of this subsection is to show the feasibility of
implementing OPF on commodity programmable switches.
Setup. We set up a Mininet topology consisting of 14 hosts and
9 switches organized in a leaf-spine topology, as depicted in
Fig. 2. All link bandwidths are set to 100 Mbps. Deploying our
network emulation platform on a 192-core compute-optimized
AWS instance provides ample resources to ensure that our
emulation experiments yield results that closely mirror those of
a physical deployment for a network of this size and practical
traffic loads. We evaluate OPF using synthetic and real-world
workloads. Our synthetic workload evaluates OPF using a
blend of protracted TCP flows and bursts of UDP traffic. We
then incorporate OPF with the Homa kernel module and test
its effect on Hadoop and Web workloads.
Synthetic Traffic. We synthesized a combination of protracted
TCP flows and bursty UDP traffic. OPF can use the protocol
field in the IP header to distinguish these protocols. We
then instructed OPF to ignore TCP traffic and detour UDP
datagrams to showcase the effects of its detouring mechanism
in the presence of background traffic, such as TCP, that is
sensitive to packet reordering. We measured the throughput
for TCP flows and packet drops for UDP flows under OPF
and compared them to the case where switches have standard
forwarding functionality.

Fig. 3 shows that OPF prevents excessive queue build-up
and reduces the number of packet drops. Specifically, Fig. 3(a)
compares the number of packet drops between OPF and the
basic forwarding approach, i.e., Baseline. TCP flows also
benefit from the queue length control achieved by detouring
UDP packets. This is illustrated in Fig. 3(b), which shows p90
and p75 improvements in TCP traffic throughput.

OPF Baseline

0

5

10

15

20

25

30

35

D
ro

p
p

ed
P

ac
ke

ts
/

F
lo

w
(%

)

p50

p90

p75

p50

p90

p75

(a) Percentage of dropped UDP pack-
ets shows that OPF reduces packet drops
through packet detouring.

OPF Baseline
20

30

40

50

60

70

80

T
C

P
T

h
ro

u
gh

p
u

t
(M

b
p

s)

p50

p90

min

p75

p50

p90

min

p75

(b) The increase in TCP median through-
put and higher percentiles shows that TCP
flows benefit from OPF.

Fig. 3: Mininet experiments comparing OPF and baseline forwarding
under the synthetic UDP and TCP workloads.

Real-World Workloads. We conducted experiments using the
Hadoop and Web workloads supplemented with incast traffic.
In addition, we incorporated the Homa Linux kernel module
into the hosts of our network to demonstrate the efficacy of
OPF in proactive transports in a real-world scenario. Fig. 4
demonstrates the CDF of FCT when using Homa’s kernel im-
plementation. The figure provides a comparison of the latency
improvements gained when Homa is enhanced by OPF with
dcc-thresh=2, and when the DCC limiting mechanism is
disabled with dcc-thresh= ∞. The figure demonstrates
that FCT improves with OPF in both cases. In other words, the
benefits of the reduction in packet drops outweighs the cost of
increased path length with OPF. However, when OPF does not
impose a limit on the number of times packets get detoured,
path lengths might increase to a point where the trade-off
does not favour tail latency, despite improvements at the
head of the distribution. This demonstrates the efficacy of the
dcc-thresh parameter in preventing congestion spreading
and network resource over-utilization.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Flow Completion Time (µs)×107

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

C
D

F

Homa

Homa + OPF
dcc-thresh=∞
Homa + OPF
dcc-thresh=2

(a) CDF of FCTs under Hadoop workload.

0 1 2 3 4 5 6 7 8
Flow Completion Time (µs)×106

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

Homa

Homa + OPF
dcc-thresh=∞
Homa + OPF
dcc-thresh=2

(b) CDF of FCTs under Web workload.

Fig. 4: Mininet experiments with Homa’s Linux kernel module show-
ing the impact of OPF on Homa’s FCT. When OPF limits the detour
count for packets by setting dcc-thresh=2, tail latency improves
significantly. Background traffic load is 0.25 in these experiments.

Queue Length Analysis. Analysis of switch queues is es-
sential to delineate where gains of OPF come from. To this
end, we investigated switch port states during traffic bursts in
our network. Specifically, we measured the length of packet
queues leading up to egress ports of the switches and recorded
them in packet transmission-time granularity. Investigating the
recorded queue length data, we observed that under the same
bursty traffic pattern, the egress ports experience different

2024 IFIP Networking Conference (IFIP Networking)

235

queue length distributions using OPF compared to normal
forwarding behaviour. The results are illustrated in Fig. 5 for
one switch. Fig. 5, shows for all egress ports of the switch, how
often each queue length was observed in the measurements, by
attributing a heat color to each queue length value. Looking
at Fig. 5(a), it is apparent that the bursts have caused port
4 to experience packet buffer saturation as indicated by the
discernible heat value at the maximum queue length while
there is little to no activity at four of the other ports. Fig. 5(b)
shows how OPF mitigates the adverse effects of the bursts
by shifting queue length concentration from maximum queue
length to lower queue lengths at the congested port and elicits
more balanced packet buffer utilization among other ports.

1 2 3 4 5 6 7 8
Port No.

1
9

17
25

33
41

49
57

64
E

g
re

ss
Q

u
e
u

e
L

e
n

g
th

→Packet Drops
Normal Switch

0

5

10

15

lo
g
(f

re
q
u

e
n

cy
)

(a) The intense heat of the maximum queue
length at port 4 indicates severe packet drop
while buffer utilization is highly unbalanced
among other ports.

1 2 3 4 5 6 7 8
Port No.

1
9

17
25

33
41

49
57

64
E

g
re

ss
Q

u
e
u

e
L

e
n

g
th

→Packet Drops
OPF Switch

0

5

10

15

lo
g
(f

re
q
u

e
n

cy
)

(b) OPF prevents packet drops as indicated
by the reduced heat of maximum queue
length at port 4, as well as more balanced
activity among other ports.

Fig. 5: Queue length heat map for different ports of a switch
experiencing bursts of packets. OPF reduces the concentration at the
saturation queue length by diverting packets to other egress ports.

B. NDP-Based Large-Scale Simulations

NDP Integration. We have integrated OPF with NDP’s
simulator without replacing the core concepts of NDP. Flow
sources in NDP start transmission by sending a number of
packets specified by the initial window parameter at line-rate.
Then, they wait for PULL packets from the receiver to adjust
their sending rate. OPF marks a subset of the initial window
packets as detour candidates. Recall that OPF never marks
or detours scheduled packets. Moreover, OPF does not mark
all the unscheduled packets. That is to limit the number of
detouring candidates and avoid overflowing the spare queue
capacity of the network. Therefore, the initial window size
and the network’s buffer capacity are the two parameters that
bound the number of packets in each flow that OPF marks and
subsequently detours.

When a packet arrives at an overflowed switch port, the
NDP switch, instead of dropping the packet, trims the packet
and sends the packet header to the receiver. The receiver
upon receiving a trimmed packet, generates a NACK and
sends it to the sending host. The trimmed packet is inevitably
retransmitted when the sending host receives the NACK,
but this way, the sender is explicitly notified of the packet
loss. OPF works as a hook in the packet processing pipeline
of the NDP switch. When the queue length surpasses the
opf-thresh, the hook activates and detours whole packets
before the cut-payload mechanism of NDP trims the packets,
in the hope of avoiding NACKs and ensuing retransmisisons.

0.0 0.2 0.4 0.6 0.8 1.0
Flow Completion Time (µs)×106

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
D

F

NDP + OPF

NDP

(a) Hadoop Workload.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Flow Completion Time (µs)×106

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
D

F

NDP + OPF

NDP

(b) Web Workload.

Fig. 6: FCTs of 0 − 100 KB flows of different workloads under
NDP and NDP+OPF. The traffic consists of incast scenarios on top
of random background traffic. The background traffic load is 30%.
Incasts arrive at regular intervals depending on the workload type.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Background Traffic Load

27

28

29

30

31

32

33

34

A
v
g

G
o
o
d

p
u

t
(G

b
p

s)

NDP + OPF

NDP

(a) Hadoop Workload.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Background Traffic Load

34

36

38

40

42

44

A
v
g

G
o
o
d

p
u

t
(G

b
p

s) NDP + OPF

NDP

(b) Web Workload.

Fig. 7: Average goodput of all flows of different workloads, consisting
of incast and random background traffic, under NDP and NDP+OPF.

Setup. The network topology is the same 432-node FatTree
used in the original NDP paper. The bandwidth of every link is
set to 100 Gbps, and the output queue capacity of every switch
port is set to 64 packets. To measure OPF’s effect on NDP’s
FCT in the presence of bursts, we run experiments consisting
of regular incast responses of various sizes destined to multiple
servers in a destination pod. Many sources are generating
these responses at different pods towards the destination pod
receivers. All of this is in the presence of random background
traffic between all the nodes at 30% load. The background
traffic is the dominant traffic in terms of the number of flows.
In terms of message size, the incast messages have the same
size distribution as the background traffic.

54 90 126 162 198
Number of Messages / Incast Response

4

5

6

7

8

9

A
v
g

P
a
ck

e
t

P
a
th

L
e
n

g
th

NDP + OPF

NDP

(a) Average path length of packets under
NDP and NDP+OPF. OPF increases path
lengths by detouring packets when they face
congestion. NDP has constant path length.

54 90 126 162 198
Number of Messages / Incast Response

0.0

0.2

0.4

0.6

0.8

1.0

T
o
ta

l
N

u
m

b
e
r

o
f

N
A

C
K

S ×105

NDP + OPF

NDP

(b) Total number of NACKs generated in
network under NDP and NDP+OPF. The
decrease in number of NACKs is because
OPF prevents unnecessary cut-payloads.

Fig. 8: The trade-off between increasing packet path lengths by
detouring them and decreasing costly retransmissions.

Results. In these experiments, we first demonstrate that OPF
improves latency and goodput (Fig. 6 and 7). Then, to study
the impact of OPF on the path and queue lengths in the

2024 IFIP Networking Conference (IFIP Networking)

236

54 90 126 162 198
Number of Messages / Incast Response

0

1

2

3

4

5

6

7

8

A
vg

N
or

m
al

Q
u

eu
e

L
en

gt
h

(B
yt

es
) ×104

NDP

NDP + OPF
ToR

Agg

Core

(a) NDP+OPF better utilizes the normal queues by prevent-
ing unnecessary cut-payloads at previous layers.

54 90 126 162 198
Number of Messages / Incast Response

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

H
ea

d
er

Q
u

eu
e

L
en

gt
h

(B
yt

es
) ×103

N
D

P

N
D

P
+

O
P

F

ToR

Agg

Core

(b) NDP+OPF decreases header queue lengths.

54 90 126 162 198
Number of Messages / Incast Response

0.2

0.4

0.6

0.8

1.0

T
ot

al
T

ri
m

m
ed

P
ac

ke
ts

×105

N
D

P

N
D

P
+

O
P

F

Agg

Core

(c) Comparison of cut-payloads happening at each topology
layer between NDP and NDP+OPF.

Fig. 9: Queue length comparison of NDP and NDP+OPF as the size of incast increases. For each incast size, the right-hand bar shows the
data for NDP+OPF and the left-hand bar shows NDP’s.

network, we design a specific scenario. In this scenario, we
create incast without any background traffic (Fig. 8 and 9)
where sources from different pods start sending short messages
of 100 KB sizes to receivers in a destination pod in bursts. This
scenario considers multiple bursts with a constant inter-burst
arrival time.
• Latency and Goodput. Fig. 6 presents CDFs of the
measured FCTs for the original NDP and OPF-enabled NDP
referred to as NDP+OPF. The FCTs in the figure are for
flows less than 100 KB in size. These results show 32− 43%
improvement in p99 of FCT depending on the workload type.
Moreover, we observe up to 4× median and 2× average FCT
improvement. We also measure the average per-flow goodput
for all the flows using the same experiment setup to verify that
OPF does not degrade the throughput as a result of improved
latency. Moreover, we vary the background traffic load to study
the effect of traffic load on OPF’s performance. The results in
Fig. 7 demonstrate that OPF enhances the average goodput of
flows by 7 − 38% depending on the workload type. The key
to understanding how OPF is able to improve both latency
and goodput is to realize that OPF reduces the number of
retransmissions while allowing for line-rate transmission of
the latency-critical first-RTT portion of each flow.
• Path Length Measurements. Recall that OPF prevents
data loss by detouring packets. There is an inherent trade-
off here as OPF essentially avoids retransmissions at the cost
of lengthening packet routes. Fig. 8 shows that OPF indeed
increases path lengths (see Fig. 8(a)) but at the same time
decreases the number of NACKs (see Fig. 8(b)) compared
to NDP. We can observe that as the size of incast increases,
NDP keeps the path length constant since the switches always
adhere to the designated packet route at the source. Therefore,
all packets facing congestion are trimmed and only the headers
reach the destination, generating NACKs. This results in the
drastically increased number of NACKs generated, with the
increase in the incast size. OPF, on the other hand, keeps the
number of NACKs lower by detouring packets and increasing
their path lengths. An important note is that OPF still takes
advantage of NDP’s cut-payload mechanism while reducing
the number of unnecessary NACKs.
• Queue Length Measurements. We have conducted fine-

grained measurements of queues in the network to better
demonstrate the buffer space utilization under NDP+OPF.
Fig. 9(a) shows the size of the low priority queues, or “normal
queues”, that hold the full packets in the NDP switches at
each layer of the topology. It is interesting to see that despite
one’s expectation, under NDP, the average size of normal
queues across different topology layers at the destination pod
does not have a direct relationship with the size of incast.
It increases initially, but after some point starts shrinking.
NDP+OPF, on the other hand, shows a different behaviour:
queue sizes keep increasing until congestion reaches a point
that saturates them. To identify the cause of this difference, we
have sampled the high priority queues, or “header queues”, that
hold all the high priority packets including the header packets.
The results are depicted in Fig. 9(b). These results, alongside
the number of payload cuts at each layer (see Fig. 9(c)),
clarify this behaviour. As incast intensifies, congestion starts
propagating towards higher topology layers. Under NDP, the
first layer that experiences congestion, starts cutting payloads
and generating header packets (as demonstrated in Fig. 9(c).
Fig. 9(b) corroborates this by showing a drastic increase in
header queue size with the increase in incast intensity. As the
congested layers start generating more header packets, they
send them towards the receiver causing the next layers to see
fewer full packets and more trimmed packets. This results in
an under-utilization of queues at the next layer (as illustrated in
Fig. 9(a)) since they have the capacity to forward full packets
but instead, are receiving headers. OPF keeps more full packets
in the network and makes use of the spare buffer capacity.

C. Homa-Based Large-Scale Simulations

Homa Integration. We integrated OPF with Homa’s OM-
NeT++ simulator. Our setup was the same as the original
Homa paper with a 2-tier FatTree topology consisting of 144
hosts. We increased the speed of Host links from 10 Gbps to
40Gbps and the ToR-aggregation link speeds from 40Gbps to
100Gbps which are abundant in today’s datacenter networks.
The queue capacity of each egress switch port was set to
64 packets. We have reused and modified the retransmission
mechanism added to Homa’s OMNeT++ simulation by the
Aeolus authors [23] optimizing it by adding random back-off

2024 IFIP Networking Conference (IFIP Networking)

237

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Flow Completion Time (µs) ×104

0.94

0.95

0.96

0.97

0.98

0.99

1.00

C
D

F

Homa + OPF

Homa

(a) Hadoop Workload.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Flow Completion Time (µs)×103

0.88

0.90

0.92

0.94

0.96

0.98

1.00

C
D

F

Homa + OPF

Homa

(b) Web Workload.

Fig. 10: FCT of flows under Homa and OPF-enabled Homa. The
traffic consists of incast scenarios on top of random background
traffic. The background traffic load is 25% − 35%. Incasts arrive
at regular intervals depending on the type of the workload.

0.35 0.45 0.55 0.65 0.73 0.80 0.87
Background Traffic Load

29.2

29.4

29.6

29.8

30.0

30.2

A
vg

G
oo

d
p

u
t

(G
b

p
s)

Homa + OPF

Homa

(a) Hadoop Workload.

0.25 0.35 0.45 0.55 0.65 0.73 0.80 0.87
Background Traffic Load

25.0

25.5

26.0

26.5

27.0

27.5

A
vg

G
oo

d
p

u
t

(G
b

p
s)

Homa + OPF

Homa

(b) Web Workload.

Fig. 11: Average goodput measured for all the flows during experi-
ments consisting of incast and random background traffic.

to the sender side timeout in order to prevent global synchro-
nization in case of incast. Homa’s retransmission timeout has
been adjusted to micro-second values to align with the higher
link speeds. The workloads were similar to those used in the
evaluation of NDP, i.e., incast responses of various sizes in
combination with random background load with the same flow
size distributions as those used with NDP.
Results. The FCT results for each workload are shown in
Fig. 10. The experiments in Fig. 10 have moderate background
load values of 25%− 35%. The results show that Homa+OPF
has 26% − 50% lower p99 tail latency compared to Homa.
This is because OPF detours packets at the congested switch
ports to the spare buffer capacity available in the network
instead of dropping and subsequently retransmitting them
after a timeout. As with the NDP experiments, we have
measured the average per-flow goodput of Homa+OPF and
compared it to Homa’s while varying the background load. The
results are presented in Fig. 11. We observe that Homa+OPF
goodput performance is on par with Homa’s. Hence, OPF
has effectively improved the latency of short flows without
incurring goodput degradation to longer flows.

V. RELATED WORKS

Credit-Based Transport. ExpressPass [12] is a credit-based
transport protocol, where end-hosts distribute credit packets,
while switches and NICs rate-limit the credit packets. Express-
Pass uses explicit packets sent from the sender to the receiver
to start and stop the flow of credit packets, which introduces
one RTT delay. Another approach is proposed in pHost [16]
where each flow is assigned a few free credits to avoid the one

RTT delay required to receive its credit allocation. Similarly,
senders in NDP [21] and Homa [27] start their transmissions
before receiving credits, but their sending rate is regulated
by an initial window size. Employing OPF would reduce the
chance of dropping these unscheduled packets. Aeolus [23]
takes a different approach by allowing flows to start at line-
rate, but uses an in-network mechanism to selectively drop
unscheduled packets to protect the scheduled packets. OPF is
orthogonal to this technique and can reduce the number of
dropped unscheduled packets under Aeolus.

Adaptive Routing. In adaptive routing, the pre-determined
path of a packet can change during transmission in response to
changes in the network. Various forms of adaptive routing have
been proposed for HPC clusters [17], [24], [32], [33] to better
utilize high-radix topologies such as the flattend butterfly or
dragonfly in HPC. While the idea of avoiding congestion
zones in the network is similar to OPF, there are major
differences between the two approaches. Adaptive routing
is a slow control plane technique that is more suitable for
dealing with semi-persistent traffic spikes in order to amortize
the cost of indirect routing, while OPF is a fast data plane
forwarding technique (as opposed to routing) that has minimal
overhead. Deploying adaptive routing requires changing the
global routing structure of the network to support indirect
routing via intermediate hosts, while OPF is independent of
the specific routing mechanism deployed in the network.

Load Balancing. Oblivious load balancing techniques [22],
[33], [34] can not completely eliminate network congestion
or imbalanced link utilization. Load-aware end-to-end tech-
niques [5], [25], [30] suffer from the same slow reaction
problem as traditional reactive congestion control approaches.
OPF works in the data plane; and while it is congestion-aware,
it does not depend on end-to-end congestion information to
reroute a packet, which allows it to operate over packet time-
scale (as opposed to RTT time-scale). Switch-local random
forwarding techniques such as DIBS [35] and RPS [14] can be
considered variants of OPF in theory. Specifically, by adjusting
the opf-thresh and dcc-thresh parameters properly,
OPF can operate as either DIBS or RPS. For example, by
setting dcc-thresh=∞, OPF can operate as DIBS during
the pre-credit phase. However, the consequent unconstrained
increase of path lengths might hinder tail latency improve-
ments (section IV-A). In practice, DIBS and RPS both have
hardware implementations that lack flexibility to accommodate
the modern datacenter environments, whereas, OPF with its
P4 implementation, can be easily integrated with commodity
programmable switches, and deploy selective detouring mech-
anisms that make it more suitable for datacenters where differ-
ent transports might coexist. For example, DIBS’s nonselective
packet detouring might interfere with TCP’s fast retransmis-
sion mechanism by reordering TCP packets. Whereas, OPF
can detect TCP packets by parsing packet headers at line rate
and avoid detouring them (section IV-A).

2024 IFIP Networking Conference (IFIP Networking)

238

VI. CONCLUSION

In this paper, we presented the design and evaluation of
OPF, a light-weight data-plane mechanism to minimize the im-
pact of traffic spikes in datacenters. The key idea in OPF is to
exploit the under-utilized buffer space across network switches
by opportunistically detouring congestion-facing packets in
the network. We implemented OPF in software switches and
Linux kernel. Our extensive emulation and simulation results
show that integrating OPF with Homa and NDP leads to
significant improvements in p99 completion time of short
flows without negatively impacting the goodput of long flows.
Our experiment results show that OPF’s parameters have
significant impact on OPF’s performance improvements. The
choice of these parameters for an optimal outcome depends
on network characteristics such as topology and traffic load.
In this work, the OPF parameters were set experimentally
which is not guaranteed to result in the optimal outcome. As a
worthwhile effort to extend this work, we believe it is possible
to design a mechanism that dynamically tunes the values of
opf-thresh and dcc-thresh parameters.

REFERENCES

[1] DPDK: Data Plane Development Kit. https://www.dpdk.org/. Accessed
September 20, 2023.

[2] htsim. https://github.com/kellianhunt/htsim. Accessed September 20,
2023.

[3] OMNeT++ Simulation of Homa. https://github.com/PlatformLab/
HomaSimulation. Accessed September 20, 2023.

[4] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity datacenter network architecture. ACM SIGCOMM
computer communication review, 38(4), 2008.

[5] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, et al. CONGA: Distributed congestion-
aware load balancing for datacenters. In Proc. ACM SIGCOMM, August
2014.

[6] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Datacenter TCP (DCTCP). In Proc. ACM SIGCOMM, August
2010.

[7] Serhat Arslan, Yuliang Li, Gautam Kumar, and Nandita Dukkipati. Bolt:
Sub-RTT congestion control for ultra-low latency. In Proc. USENIX
NSDI, April 2023.

[8] InfiniBand Trade Association et al. Infiniband architecture specification
release 1.2.2. http://www.infinibandta.org. Accessed September 20,
2023.

[9] Wei Bai, Kai Chen, Shuihai Hu, Kun Tan, and Yongqiang Xiong.
Congestion control for high-speed extremely shallow-buffered datacenter
networks. In Proc. ACM Asia-Pacific Workshop on Networking (APNet),
August 2017.

[10] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic
characteristics of datacenters in the wild. In Proc. ACM IMC, November
2010.

[11] Inho Cho, Keon Jang, and Dongsu Han. Credit-scheduled delay-bounded
congestion control for datacenters. In Proc. ACM SIGCOMM, August
2017.

[12] Inho Cho, Keon Jang, and Dongsu Han. Credit-scheduled delay-bounded
congestion control for datacenters. In Proc. ACM SIGCOMM, August
2017.

[13] P4 Language Consortium. bmv2: The reference p4 software switch.
https://github.com/p4lang/behavioral-model, Accessed September 20,
2023.

[14] Advait Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella.
On the impact of packet spraying in datacenter networks. In Proc. IEEE
INFOCOM, April 2013.

[15] Sally Floyd and Van Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on networking, 1(4),
1993.

[16] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia
Ratnasamy, and Scott Shenker. pHost: Distributed near-optimal datacen-
ter transport over commodity network fabric. In Proc. ACM CoNEXT,
December 2015.

[17] Dan Gibson, Hema Hariharan, Eric Lance, Moray McLaren, Behnam
Montazeri, Arjun Singh, Stephen Wang, Hassan MG Wassel, Zhehua
Wu, Sunghwan Yoo, et al. Aquila: A unified, low-latency fabric for
datacenter networks. In Proc. USENIX NSDI, April 2022.

[18] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and
Sudipta Sengupta. VL2: A scalable and flexible datacenter network. In
Proc. ACM SIGCOMM, August 2009.

[19] The P4.org Architecture Working Group. P4 portable switch architec-
ture. Technical report, 2022.

[20] Mark Handley et al. Re-architecting datacenter networks and stacks for
low latency and high performance. In Proc. ACM SIGCOMM, August
2017.

[21] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W Moore, Gianni Antichi, and Marcin Wójcik. Re-architecting
datacenter networks and stacks for low latency and high performance.
In Proc. ACM SIGCOMM, August 2017.

[22] Christian Hopps. Analysis of an equal-cost multi-path algorithm.
Technical report, 2000.

[23] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang, Baochen Qiao, Kai
Chen, Kun Tan, and Yi Wang. Aeolus: A building block for proactive
transport in datacenters. In Proc. ACM SIGCOMM, July 2020.

[24] Nan Jiang, John Kim, and William J. Dally. Indirect adaptive routing
on large scale interconnection networks. In Proc. ACM Annual Interna-
tional Symposium on Computer Architecture (ISCA), June 2009.

[25] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. Hula: Scalable load balancing using programmable
data planes. In Proce. ACM SOSR, March 2016.

[26] Qingkai Meng and Fengyuan Ren. Lightning: A practical building block
for rdma transport control. In Proc. IEEE/ACM IWQOS, June 2021.

[27] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. Homa: A receiver-driven low-latency transport protocol using
network priorities. In Proc. ACM SIGCOMM, August 2018.

[28] Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep Chinchali,
Mohammad Alizadeh, and Sachin Katti. NUMFabric: Fast and flexible
bandwidth allocation in datacenters. In Proc. ACM SIGCOMM, August
2016.

[29] John Ousterhout. A Linux kernel implementation of the homa transport
protocol. In Proc. USENIX ATC, July 2021.

[30] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu,
Gautam Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David
Wetherall, and Abdul Kabbani. PLB: Congestion signals are simple and
effective for network load balancing. In Proc. ACM SIGCOMM, August
2022.

[31] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C
Snoeren. Inside the social network’s (datacenter) network. In Proc.ACM
CSIGCOMM, August 2015.

[32] A. Singh. Load-Balanced Routing in Interconnection Networks. PhD
thesis, Stanford University, 2005.

[33] L. G. Valian. A scheme for fast parallelcommunication. SIAM Journal
on Computing, 11(2), 1982.

[34] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom
Edsall. Let it flow: Resilient asymmetric load balancing with flowlet
switching. In Proce. USENIX NSDI, March 2017.

[35] Kyriakos Zarifis, Rui Miao, Matt Calder, Ethan Katz-Bassett, Minlan Yu,
and Jitendra Padhye. Dibs: Just-in-time congestion mitigation for data
centers. In Proceedings of the Ninth European Conference on Computer
Systems, pages 1–14, 2014.

[36] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy.
High-resolution measurement of datacenter microbursts. In Proc. ACM
IMC, November 2017.

[37] Xiaoquan Zhang, Lin Cui, Kaimin Wei, Fung Po Tso, Yangyang Ji, and
Weijia Jia. A survey on stateful data plane in software defined networks.
Computer Networks, 184, 2021.

[38] Yibo Zhu et al. Congestion control for large-scale RDMA deployments.
In Proc. ACM SIGCOMM, October 2015.

2024 IFIP Networking Conference (IFIP Networking)

239

