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Abstract—In this paper, we develop and evaluate a distributed
algorithm to efficiently balance the trade-off between network
throughput and energy consumption in a heterogeneous cellular
network. We formulate the problem as a joint optimization of
base station activation, power control and user association. To
solve the problem, which is a non-convex optimization problem,
we design a self-optimizing algorithm based on Gibbs sampling in
which each base station individually optimizes its configuration
without the involvement of any central controller. In our algo-
rithm, base stations only need to exchange information in a locally
defined neighborhood, yet the network state eventually converges
to the global optimal. Simulation results are also provided, which
show that, i) the proposed algorithm indeed converges to a
state that is close to optimal, and ii) by dynamically activating
base stations, we see about 10% reduction in network energy
consumption without penalizing the network throughput.

I. INTRODUCTION

A. Motivation

Heterogeneous cellular networks (HetNets) are introduced

as a solution to cope with the ever-rising data demand, which

is expected to increase by tenfold from 2014 to 2019 [1],

[2]. In HetNets, in addition to the traditional macrocells, a

large number of low-power small-cells, such as picocells, are

deployed in geographic areas characterized by high traffic

or poor coverage [3]. The increased capacity brought about

by HetNets relies on the deployment of more base stations

(BSs), specifically a large number of small-cells, which creates

several problems for network operators. First, it increases

the network management complexity. With many more base

stations to manage [4], it is cumbersome and inefficient to

manually set up and optimize the network. Automatic and in-

telligent mechanisms are needed to control network operations

such as interference coordination and power control in a self-

optimizing manner [5].

Second, deploying many small-cells imposes higher capital

and operational expenditure on mobile network operators. In

particular, increasing the number of base stations, increases the

network energy consumption. As reported in [6] and [7], base

stations account for 60-80% of the total network energy con-

sumption. Current base stations are not energy-proportional

and consume about 50-90% of their peak energy even in idle or

low traffic state [8]. A notable observation is that while mobile

traffic exhibits periodic behavior, the energy consumption of

a cellular network remains approximately the same [9]. This

can be attributed to the fact that cellular operators often deploy

as many base stations as necessary to satisfy the peak traffic

demand. Powering off underutilized base stations when their

traffic load could be handled by nearby base stations can help

in reducing the network energy consumption.

Third, when deploying both macrocells and small-cells, the

strong signals from adjacent macrocells may overpower small-

cell signals. In order for macro and small cells to coexist

peacefully, some form of interference coordination [10] is

required to protect small-cell users from high power macrocell

transmissions. To this end, the concept of Almost Blank Sub-

frames (ABS) is introduced in LTE-Advanced networks [11].

The idea of ABS subframes is to dedicate a portion of

each radio frame for small-cell transmissions, and have the

macrocells fully (or partially) restrained from transmitting data

signals during those subframes to reduce the interference on

small-cell users.

B. Our Work

In this paper, we consider a HetNet composed of macro-

cells and picocells. Picocells are small-cells typically with

ranges from a few hundred meters to two kilometers [3].

Pico base stations are capable of entering the sleep mode in

which they consume very little energy [12]. In active mode,

pico base stations transmit at their maximum power, while in

sleep mode they do not serve any user. Macro base stations,

on the other hand, are always active to provide some level

of coverage in the network even in areas where picocells are

switched to sleep mode. However, they are capable of transmit-

ting at various power levels (by means of ABS subframes) to

mitigate the interference on other cells and lower their energy

consumption [10].

We consider a generalized network model in which base

station configurations, namely the operating mode of pico-BSs

(i.e., active or sleep) and ABS configuration for macro-BSs, in

addition to user association and scheduling is considered. The

resulting problem is non-convex due to combinatorial nature

of BS activation and user association as well as complex

interaction of interfering BS transmissions. Thus, it does not

conform to conventional duality methods used typically to

devise distributed algorithms for networking problems [13].

Therefore, to tackle the problem, we utilize Markov Chain

Monte Carlo (MCMC) methods [14]. These methods are

attractive as they are not limited to convex problems. In

addition, convergence to the optimal solution is guaranteed

if the algorithm runs for a sufficiently long time. Furthermore,

we use an MCMC method known as Gibbs Sampling [14] that
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allows implementing the solution in a fully distributed manner.

To the best of our knowledge, this is the first work that uses

Gibbs Sampling to dynamically control HetNets.

The main advantage of our algorithm is that it works in a

distributed self-optimizing fashion. That is, base stations work

independently from each other while continuously optimize

their configurations without the involvement of a central

controller. Consequently, every base station decides on its own

configuration, which could be different from that of other base

stations (as opposed to some existing work, e.g., [15], that

force a uniform configuration for all base stations). In our

algorithm, base stations exchange information with each other

only in a local neighborhood, and yet the system is guaranteed

to achieve global optimality [14] (in LTE networks, the X2

interface is introduced in base stations to allow them exchange

messages with each other directly [16]).

C. Related Work

While the literature on energy management in cellular

networks is vast, the following works are more closely related

to HetNets, which are the focus on this work.

User Association and Power Control: The problem of

user association and power control in HetNets has been

somewhat studied in the literature (e.g., see [17]–[22], and

references therein). This problem is generally non-convex and

involves solving an NP-hard integer program, which is difficult

to efficiently solve except for very small networks [22]. Thus,

one has to rely on approximations and heuristic techniques to

obtain solutions that can be applied to networks of practical

size.

Interference Coordination: A few works have recently

considered the problem of interference coordination in Het-

Nets [23]–[25]. In particular, the work in [23] is a simulation-

based study of the problem. Using stochastic geometry tech-

niques, [24] develops a model to determine the optimal number

of ABS sunfarmes. The authors in [25] formulate the problem

as a non-linear optimization problem and then develop a two-

step greedy algorithm based on integer relaxation and rounding

to solve the problem. These works neither consider dynamic

base station activation nor distributed solutions.

Base Station Activation: Using measurement studies, it

has been shown that 23 − 53% energy saving is achievable

via dynamic base station activation in cellular networks [9].

Dynamic base station activation in homogeneous cellular

networks is considered in [26]–[28]. The problem of base

station activation and interference coordination in a HetNet

is considered in [15]. However, the solution proposed in [15]

relies on a central controller, while our goal is to develop a

distributed solution that does not need such a controller.

Gibbs Sampling: Designing distributed algorithms using

Gibbs sampling has been recently investigated in wireless lit-

erature [29]. Self-optimization techniques for user association

and power control based on this approach are discussed in [30]

and [20]. The algorithm in [31] uses Gibbs Sampling to find

the optimal location for deployment of small cells in HetNets.

From a methodological point of view, the work in [32] is the

closets to our work. This paper investigates dynamic activation

of base stations to reduce energy consumption in traditional

homogeneous cellular networks using a solution based on

Gibbs sampling. Our work, on the other hand, considers a

HetNet with ABS-based interference coordination, which is

quite different from the problem considered in [32].

II. SYSTEM MODEL

We consider the donwlink of an OFDM-based HetNet [11].

For ease of exposition, we consider only one channel though

our model can be extended to multiple channels by simply

replicating all variables for every channel. The system works

in discrete time where time is divided into frames of equal

length. Each frame is further divided into smaller subframes.

A. Network Model

We consider a HetNet with a set of base stations B consist-

ing of macro-BSs B(M) and pico-BSs B(P). Each base station

b ∈ B has a maximum transmit power PMax
b , and periodically

transmits a reference signal at this power. We denote by U
the set of user devices of the network. The strength of the

reference signal received by user u from base station b is given

by

P
(R)
u,b = PMax

b Hb,u, (1)

where Hb,u denotes the channel gain between BS b and user

u, which includes all propagation impairments such as path

loss and fading. Each user u receives reference signals from

possibly several base stations. Typically, a receiver has a

sensitivity threshold θ and cannot detect signals that are too

weak [18], [25]. Let Bu denote the set of base stations that

can serve or impact the rate of user u,

Bu = {b ∈ B|P
(R)
u,b ≥ θ} . (2)

We assume that the base stations are deployed in such a way

that Bu is non-empty for every user. Similarly, define Ub for

b ∈ B as the set of users that can be served by base station

b at the minimum power threshold θ. In practice, a user u is

served by the base station bu that can provide the strongest

signal to u, that is,

bu = argmax
b∈Bu

P
(R)
u,b , (3)

where bu can be either a macro-BS or a pico-BS.

B. Macro Base Stations

The number of macro base stations is usually much lower

than the number of pico base stations. Each macro-BS has

a high transmission power and covers a large area. In our

model, we always keep the macro base stations on to ensure

that every user in the system has at least a minimum signal

reception quality. For each macro-BS b ∈ B(M), let xb denote

the fraction of ABS subframes in a frame. The variable xb

takes its value from a discrete set X of candidate fractions,

X = {X0, X1, . . . , X|X |−1}, (4)

where |X | is the cardinality of X , and Xis are real numbers

between 0 and 1. This set always includes zero as its first



element X0. This is to ensure that ABS subframes can be

disabled for a macro-BS if it is not required, e.g., when there

is no pico-BS operating close to the macro-BS. The sequence

of Xis forms an increasing series, that is,

∀Xi, Xj ∈ X : i < j ⇒ Xi < Xj. (5)

The difference between ABS and regular subframes lies

in the amount of transmission power allocated to them. In

regular subframes, each macro-BS b transmits data signals to

its associated users at its maximum available power PMax
b . In

ABS subframes however, macro-BSs use a lower power level

to mitigate the interference on picocells. For a macro-BS b,
this reduced power level is represented by a real number yb
that is used to scale the transmission power of the base station

b as,

Pb = yb · P
Max
b . (6)

Similar to xb variables, ybs are also selected from a discrete

set Y of candidate power level ratios,

Y = {Y0, Y1, . . . , Y|Y|−1}, (7)

where, Yis are real numbers between 0 and 1, and zero is

included as Y0 to be able to have zero-power ABS subframes

when it is necessary to mute all data transmissions from a

macro-BS during ABS subframes. The sequence of Yis forms

an increasing sequence, that is,

∀Yi, Yj ∈ Y : i < j ⇒ Yi < Yj . (8)

The variables xb and yb are assigned per macro-BS and

may differ from one BS to another. This adds another degree

of freedom to our model, compared to the approaches with a

network-wide fraction of ABS subframes, as in [15].

C. Pico Base Stations

Pico base stations are less expensive and have lower transmit

powers compared to macro ones, and are situated in coverage

holes or densely populated areas. In our model, pico base

stations can be in one of two modes. If having a pico-BS

in active mode is not advantageous, we switch it to standby

(sleep) mode. In standby mode, a pico-BS is almost shutdown,

except for a small processor and accessories that allow it to

contact other base stations and see whether it should wake up

or not. The energy cost of switching a pico-BS on or off is

negligible and not considered in our model (as in [17], [33]).

If, on the other hand, the density of users close to a pico-BS

is high, it is powered on. In this mode, in contrast with macro

base stations, a pico-BS b always transmits at its maximum

power level PMax
b and does not have ABS subframes. We

denote by a binary variable zb the state of a pico-BS b:

zb∈B(P) =

{

1 b is in active mode,

0 b is in standby mode .
(9)

III. PROBLEM FORMULATION

A. Interference Characterization

The amount of interference on a user depends on the status

of its neighboring base stations and varies even during one

frame. For instance, a user of a macrocell suffers from less

interference when a neighboring pico-BS is powered off.

Moreover, because different macro-BSs may have different

fractions and powers for ABS subframes, the amount of

interference changes within a single frame. We denote by Ti

the sequence of subframes between two consecutive candidate

ABS fractions Xi and Xi+1, where 0 ≤ i < |X |. The

interference on a user does not change within the subframes of

Ti, however, it is likely to change from Ti to Ti+1. A user may

experience a maximum of |X | different interference levels.

To formulate the total interference on user u, we first define

P i
b as the transmit power level of BS b during period Ti. One

can simply observe that for a pico-BS, this value only depends

on whether it is on or off. Therefore,

P i
b∈B(P) =

{

PMax
b zb = 1,

0 zb = 0 .
(10)

For a macro-BS, P i
b depends on the ratio of ABS subframes

xb and transmit power of the BS during ABS and regular

subframes,

P i
b∈B(M) =

{

PMax
b xb ≤ Xi,

yb · PMax
b xb > Xi .

(11)

Using the above notations, we can calculate the total interfer-

ence on user u during each period Ti as follows,

Intiu =
∑

b6=bu

P i
bHb,u . (12)

Note that, the amount of interference increases from the

beginning of the frame towards the end, that is,

Int0u ≤ Int1u ≤ Int2u ≤ · · · . (13)

This happens because as time passes within a frame, more

neighboring macro-BSs make a transition from ABS sub-

frames to regular subframes.

B. Achievable User Rates

Because of the difference in both interference and signal

power, the signal to interference and noise ratio (SINR) of

each user u varies in different periods Ti of a frame, and can

be expressed as,

SINRi
u =

P i
bu

Intiu +N0
. (14)

As a result, base stations schedule each period separately. Each

user gets a portion of subframes of each period. We denote by

wi
u the fraction of subframes of a frame that BS b allocates

to user u ∈ Ub during period Ti,

∀b ∈ B, 0 ≤ i < |X | :
∑

u∈Ub

wi
u = Xi+1 −Xi . (15)

The right-hand side of the above equation is the ratio of

duration of Ti to the frame length. The following equation

is derived from the definition of wi
u variables,

∀b ∈ B :

|X |−1
∑

i=0

∑

u∈Ub

wi
u = 1 . (16)



To map SINRs to transmission rates, we use the Shannon

capacity formula as follows,

ciu = B log2(1 + SINRi
u), (17)

where ciu is the total rate that can be achieved by user u during

Ti if all subframes in Ti are allocated to u. The parameter B is

the bandwidth of the channel. Thus, the rate of user u during

the time period Ti can be obtained by the following formula,

riu = wi
uc

i
u . (18)

Finally, the average rate of user u during a frame can be written

as the sum of the rates over all the periods in the frame,

Ru =

|X |−1
∑

i=0

riu . (19)

C. Base Station Power Consumption

For the energy consumption of base stations, we follow

the model proposed in [34] and adopted by [17] and [33].

According to this model, the energy consumption of a BS is

given by:

W =

{

NTX(P0 +∆P · PTX) PTX > 0,

NTX · Pidle PTX = 0,
(20)

where NTX is the number of antennas, P0 is the power

consumption at zero RF output power, PTX is the RF output

power, Pidle is the power consumption of the base station in

standby mode, and ∆P is the slope of the load-dependent

power consumption.

For simplicity, we assume the number of antennas NTX

equals 1. Note that P0, Pidle and ∆P are predefined parame-

ters. For a pico-BS b, RF output power is either zero or PMax
b .

So we have

Wb∈B(P) =

{

P0 +∆P · PMax
b zb = 1,

Pidle zb = 0 .
(21)

Macro-BSs have different RF powers during a frame. Thus,

we calculate the average RF power in a frame in order to find

the energy consumption of a macro-BS. We have,

PTX = xb · (yb · P
Max
b ) + (1− xb) · P

Max
b . (22)

By substituting (22) in (20), it is obtained that,

Wb∈B(M) = P0 +∆P · PMax
b

(

xb · yb + 1− xb

)

. (23)

D. Optimization Objective

We define a utility function U(·) over user rates, and a cost

function C(·) over power consumption of base stations. Any

continuously differentiable concave function is suitable as the

utility function. A commonly used utility function that results

in proportionally fair user rates is the logarithmic function,

that is,

U(R) =
∑

u∈U

log(Ru), (24)

where R = [Ru]1×|U| is the vector of transmission rates of

all users. For the power cost function, we simply add up the

energy consumed by all the base stations:

C(W) =
∑

b∈B

Wb, (25)

where W = [Wb]1×|B| denotes the vector of BS energy con-

sumptions. Finally, usong the weight factor λ, the optimization

objective is expressed as,

F (R,W) = U(R)− λ · C(W), (26)

which is to be maximized. A larger value of λ increases

the negative impact of energy consumption on the objective

function, and favors low-throughput and low-energy states

over high-throughput and high-energy states.

We summarize the optimization objective and the con-

straints in (27):

maximize
xb,yb,zb,wi

u

F (R,W)

subject to xb ∈ X , ∀b ∈ B(M)

yb ∈ Y, ∀b ∈ B(M)

zb ∈ {0, 1}, ∀b ∈ B(P)

∑

u∈Ub

wi
u = Xi+1 −Xi, ∀b ∈ B

wi
u ∈ [0, 1], ∀u ∈ U , 0 ≤ i < |X | .

(27)

The objective of the problem (27) is non-convex. To solve the

problem, we employ an MCMC method called Gibbs sampling

to be described in the following section.

IV. SOLUTION METHOD

A. Overview

The optimization problem in (27) contains a mixture of real

variables wi
u, discrete variables xb and yb, and binary variables

zb. Here we use an optimization technique known as meta-

optimization, in which one optimization problem is solved

and the results are fed into another one. In our case, each

base station locally solves a convex optimization problem, and

uses its solution in a larger-scale distributed algorithm in order

to optimize the global objective function as defined in (26).

We begin by breaking the global utility and cost functions

for the network into the sum of local utility and cost functions

for each BS. According to (25), the local cost function can be

easily written for each BS. Let Cb denote the cost of base

station b. We have,

Cb = Wb . (28)

The global utility function (24) is defined over user rates.

We know that each user is associated to one base station, which

is the one with the strongest received signal. Thus, if we write

the local utility function for each base station as a function

of the rates of the users associated to it, we obtain the global

utility function as the sum of local ones over the base stations.

Let Ub denote the local utility of base station b. We have,

Ub =
∑

u∈Ub

log(Ru) . (29)



Therefore, the local objective function can be written as,

Fb = Ub − λ · Cb, (30)

where Fb denotes the local objective function at base station

b. Now the global objective function can be written as the sum

of local ones, that is,

F (R,W) =
∑

b∈B

Fb. (31)

B. Gibbs Sampler

Consider a graph G that represents the system, where the

nodes of G are the set of base stations B, both macro-BSs and

pico-BSs. In this graph, two base stations are adjacent if they

have at least one common user in their range. In line with the

literature, we refer to this graph as the Interference Graph,

since connected base stations in this graph directly interfere

with each other’s users. The set of the neighbors of node b in

this graph is denoted by Nb.

For each node b of the graph, define the state variable

sb. Macro-BSs and pico-BSs have different state spaces. For

macro-BSs, the states are ordered pairs of the form (xb, yb),
whereas for pico-BSs the state only contains the on/off state

(zb). Thus, the state spaces are given by,

Sb =

{

X × Y b ∈ B(M),

{0, 1} b ∈ B(P) .
(32)

To calculate the local objective function Fb, each base sta-

tion only needs to know its own state, and the state of its

neighbors. Using this information, the only missing variables

to calculate the local objective function of base station b in

(30) are the shares wi
u, u ∈ Ub of each user associated to b.

To find the user shares, each base station b should solve the

following optimization problem locally,

max
wi

u

Fb, (33)

given the values of variables zb, xb, and yb for b and its

neighbors, and the last two constraints in the main optimization

problem (27). It is straightforward to verify that the problem in

(33) is a convex optimization problem. Thus, standard methods

in the field of convex optimization can be used to solve the

problem efficiently.

Next, to compute the value of the local objective function

of each node b in graph G (that is, Fb), the following values

are used as input:

• states zb, xb, and yb of b and its neighbors in Nb,

• the optimal solution of (33).

We define the local energy of each state sb ∈ Sb, denoted by

εb(sb), as follows,

εb(sb) =
∑

b′∈N+
b

Fb′ , (34)

where N+
b denotes the set containing b and its neighbors,

N+
b = Nb ∪ {b}. (35)

To find the local energy, each node b needs to calculate its

own local objective function and those of its neighbors Nb.

To find the latter, a node needs to have the states of its two-

tier neighbors. We construct the graph G′, which we call the

two-tier neighborhood graph. Then each node b obtains the

states of its neighbors in G′ denoted by N 2
b via communication

among neighboring nodes, as described next.

C. Distributed Algorithm

We break the algorithm into two phases, as described next.
1) Initialization Phase: Initially, all the picocells are on and

all macro-BSs are in full power mode. Users connect to the

BS with the highest received reference signal power. Each BS

b requests each of its users u to report the list of all BSs they

can hear (denoted by Bu), and their channel gains (denoted

by Hb,u). Then each BS sends the information gathered from

its users to each of the neighboring BSs that it has identified

so far. Next, they exchange their maximum RF output power

PMax
b , their initial state, and their neighbor list with their

immediate neighbors Nb. By processing these received lists,

BSs can construct their two-tier neighborhood list N 2
b .

2) Iterative Update Process: In this phase, each BS is

updated independently of the other BSs. At the start of this

phase, each BS b randomly chooses a timeout between 0 and τ ,

and triggers an update when the timeout expires. In an update

process, a BS b selects a new state s ∈ Sb from its state space,

independent of its current state.

To select a new state, BS b computes the local energy

εb(s
′) for each potential next state s′ ∈ Sb by calculating

the local objective function Fb′ of every BS b′ ∈ N+
b (b and

its neighbors) given the state s′. Then it chooses its new state

according to the following probability distribution, which is

known as the Gibbs distribution [14],

P {sb = s} =
e

1
T
εb(s)

∑

s′∈Sb
e

1
T
εb(s′)

. (36)

The variable T is a free parameter called the temperature,

and is a decreasing function of the time t elapsed from

the beginning of the iterative phase. An example of the

temperature function is the following quadratic function with

zero temperature at time t = tend,

T (t) = T0 × (1 +
t− 1

1− tend
)2 . (37)

By repeating this process until convergence, the system

reaches the optimal global state where each BS selects the

same state at each update.

V. SIMULATION RESULTS

A. Simulation Environment

We simulate a heterogeneous network to study the perfor-

mance and utility of our algorithm. Since macro-BSs have a

large state space of the size |X ×Y| and all of the base stations

are simulated on one machine (contrary to the reality where

each BS has its own processor), we limit the number of cells

to 19. It should be noted that this network size is adequate for

prototyping purposes, and much smaller networks have been

studied in the literature, for example in [31]. We have also

simulated larger networks consisting of 400 picocells, and the



TABLE I: Default Simulation parameters.

Parameter Value

Pico-BS Macro-BS

N0 (dBm) −120
θ (dBm) −90

B (Hz) 5 × 103

PMax (W) 0.5 20
Pidle (W) 4.3 75
P0 (W) 6.8 130
∆P 4 4.7
T0 5
τ 10

tend 103

results are consistent with (or, in some cases, outperform) the

ones presented here [35]. Due to space limitation, only the

results for the 19 cell network are presented here.

As depicted in Fig. 1, the network is composed of 7 macro-

BSs located on a hexagonal layout and 12 pico-BSs located

on cell edges. As in LTE networks, the frequency reuse factor

is 1, i.e., all BSs and users operate on the same frequency.

One hundred users are spread over the network using a

Poisson Point Process (which is widely used for modeling

user locations [24]). We make sure that all users are in the

covered area and receive a signal above the threshold θ from

at least one macro or pico base station. The choice of models

for user locations, channel gains, etc. have no effect on our

model.

B. Simulation Parameters

For algorithm-independent parameters, we have used the

fixed values reported in Table I throughout the simulations.

To estimate the channel gains, we used a standard distance-

dependent path loss model with the path-loss exponent γ =
3.5 [36]. The parameters in Table I are similar to the ones

used in [33] and mostly aligned with HetNet specific param-

eters considered in [37]. To deal with numerical issues when

computing the objective function, we use a scaling factor as

follows,

Fb = 10−4(Ub − λ · Cb),

where, 10−4 is the scaling factor and λ = 200 is chosen to

balance the throughput and energy consumption. The set of

ABS duration and power ratios are set to X = {0, 1
10 ,

2
10 ,

3
10}

and Y = {0, 14 ,
1
2 ,

3
4}, respectively.

C. Converged Network State

Fig. 1 illustrates the state of the network after the conver-

gence of the algorithm. For the sake of reporting, we number

the cells as follows. The macrocell in the area i of the Fig. 1

is referred to as Mi. The picocell that is encompassed by Mi

is called Pi. Also, the picocell that overlaps Mi and Mj is

referred to as Pij.

Table II reports the final values of the performance measures

after the convergence of the system. Table III shows the

breakdown of measures and state of macro-BSs. Table IV

reports the statistics of the pico-BSs, except for the ones that

are in sleep mode after convergence.

The energy saving (of about 10%) in Table II comes from

both macro-BSs and pico-BSs. All macro-BSs have chosen to

×10
4

0 0.5 1 1.5 2 2.5 3

×10
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Fig. 1: The network after convergence. Lines indicate associations.
Dotted picocells are in sleep mode.

TABLE II: Global performance measures.

Total Throughput 866705

Total energy consumption 1519.7

Energy saving 153.9
Global objective 56.3

have ABS duration ratio of 1/3 (the largest value allowed).

Macro-BS M7 is consuming less energy compared to the

other ones, because it remains fully silent during the ABS

subframes, while others have decided to transmit at quarter or

half the maximum power. The reason could be the fact that

M7 is interfering with more picocell users compared to other

macro-BSs. Six of the pico-BSs are in standby mode. P1, P4

and P56 have no user in their coverage, and there is no reason

for them to stay on. P3, P5 and P6 are in sleep mode because

the users in their range can get a much better throughput from

macro-BSs. Other pico-BSs are operating because the users

they are serving are either not covered by macro-BSs, or are

very close to macrocell edges.

TABLE III: Statistics of macro-BSs.

M1 M2 M3 M4 M5 M6 M7

ABS time 1/3 1/3 1/3 1/3 1/3 1/3 1/0
ABS power 1/4 1/4 1/2 1/2 1/2 1/2 0

Tput (×102) 963.8 829.2 1395.6 1010.3 953.3 1170.1 529.2

Energy 202.9 202.9 209.9 209.9 209.9 209.9 195.8

Objective 5.6 4.2 9.8 5.9 5.3 7.5 1.4

TABLE IV: Statistics of pico-BSs.

P16 P45 P34 P23 P12 P2

Throughput 24273.8 79093.2 25484.6 31992.1 13669.4 7036.9

Energy 8.8 8.8 8.8 8.8 8.8 8.8

Objective 2.3 7.7 2.4 3 1.2 0.5

VI. CONCLUSION

In this work, we developed a distributed self-optimizing

algorithm based on Gibbs sampling to balance the trade-

off between energy consumption and user rates in a het-

erogeneous cellular network. Our algorithm achieves this by

putting underutilized pico base stations in standby mode and

adjusting the ratio of almost blank subframes in individual

macro base stations. The simulation results show that enabling

ABS subframes and deactivating underutilized picocells can

reduce the network energy consumption by almost 10% with-

out penalizing user rates.



REFERENCES

[1] Cisco Visual Networking Index, “Global mobile data traffic forecast up-
date, 2014–2019,” 2015. [Online]. Available: http://www.cisco.com/c/en/
us/solutions/service-provider/visual-networking-index-vni/index.html

[2] “Ericsson mobility report: On the pulse of the networked society,”
Ericsson, Tech. Rep., 2015. [Online]. Available: http://www.ericsson.
com/res/docs/2015/ericsson-mobility-report-june-2015.pdf

[3] “Femtocell and microcells,” May 2016. [Online]. Available: https:
//www.repeaterstore.com/pages/femtocell-and-microcell

[4] M. Bilgic, “Who needs LTE small cells first?” EXFO, Tech. Rep.,
2013. [Online]. Available: http://www.exfo.com/corporate/blog/2013/
needs-lte-small-cells

[5] O. Østerbø and O. Grøndalen, “Benefits of self-organizing networks
(SON) for mobile operators,” Computer Networks and Communications,
2012.

[6] M. A. Marsan, L. Chiaraviglio, D. Ciullo, and M. Meo, “Optimal energy
savings in cellular access networks,” in IEEE ICC Workshops, Jun. 2009.

[7] Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green cellular net-
works: A survey, some research issues and challenges,” IEEE Commun.

Surveys Tuts., vol. 13, no. 14, 2011.
[8] M. A. Marsan and M. Meo, “Green wireless networking: Three ques-

tions,” in IFIP Med-Hoc-Net, Jun. 2011.
[9] C. Peng, S.-B. Lee, S. Lu, H. Luo, and H. Li, “Traffic-driven power

saving in operational 3G cellular networks,” in ACM MobiCom, Sep.
2011.

[10] D. Lopez-Perez et al., “Enhanced intercell interference coordination
challenges in heterogeneous networks,” IEEE Wireless Commun. Mag.,
vol. 19, no. 3, 2011.

[11] J. Wannstrom and K. Mallinson, “Heterogeneous networks in LTE,”
May 2016. [Online]. Available: http://www.3gpp.org/technologies/
keywords-acronyms/1576-hetnet

[12] I. Ashraf, F. Boccardi, and L. Ho, “Sleep mode techniques for small cell
deployments,” IEEE Communications Magazine, vol. 49, no. 8, 2011.

[13] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE J. Sel. Areas Commun., vol. 24,
no. 8, 2006.

[14] P. Brémaud, Markov chains: Gibbs fields, Monte Carlo simulation, and

queues. Springer Science & Business Media, 1999.
[15] Q. Ye, M. Al-Shalashy, C. Caramanis, and J. G. Andrews, “On/off

macrocells and load balancing in heterogeneous cellular networks,” in
IEEE Globecom, Dec. 2013.

[16] 3GPP, “UTRAN Iub interface Node B Application Part (NBAP)
signalling,” 3rd Generation Partnership Project (3GPP), TS 25.433,
06 2011. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/
25433.htm

[17] C. Bottai, C. Cicconetti, A. Morelli, M. Rosellini, and C. Vitale,
“Energy-efficient user association in extremely dense small cells,” in
European Conference on Networks and Communications, Jun. 2014.

[18] R. Madan, J. Borran, A. Sampath, N. Bhushan, A. Khandekar, and T. Ji,
“Cell association and interference coordination in heterogeneous LTE-A
cellular networks,” IEEE J. Sel. Areas Commun., vol. 28, no. 9, 2010.

[19] V. N. Ha and L. B. Le, “Distributed base station association and power
control for heterogeneous cellular networks,” IEEE Trans. Veh. Technol.,
vol. 63, no. 1, 2014.

[20] C. S. Chen and F. Baccelli, “Self-optimization in mobile cellular
networks: Power control and user association,” in IEEE ICC, May 2010.

[21] J. Ghimire and C. Rosenberg, “Resource allocation, transmission coor-
dination and user association in heterogeneous networks: A flow-based
unified approach,” IEEE Trans. Wireless Commun., vol. 12, no. 3, 2013.

[22] D. Fooladivanda and C. Rosenberg, “Joint resource allocation and user
association for heterogeneous wireless cellular networks,” IEEE Trans.

Wireless Commun., vol. 12, no. 1, 2013.
[23] M. I. Kamel and K. Elsayed, “Performance evaluation of a coordinated

time-domain eICIC framework based on ABSF in heterogeneous LTE-
advanced networks,” in IEEE Globecome, Dec. 2012.

[24] M. Cierny, H. Wang, R. Wichman, Z. Ding, and C. Wijting, “On number
of almost blank subframes in heterogeneous cellular networks,” IEEE

Trans. Wireless Commun., vol. 12, no. 10, 2013.
[25] S. Deb, P. Monogioudis, J. Miernik, and J. P. Seymour, “Algorithms for

enhanced inter-cell interference coordination (eICIC) in LTE HetNets,”
IEEE/ACM Trans. Netw., vol. 22, no. 1, 2014.

[26] E. Oh and B. Krishnamachari, “Energy savings through dynamic base
station switching in cellular wireless access networks,” in IEEE Globe-

come, Dec. 2010.
[27] K. Son, H. Kim, Y. Yi, and B. Krishnamachari, “Base station operation

and user association mechanisms for energy-delay tradeoffs in green
cellular network,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, 2011.

[28] A. Abbasi and M. Ghaderi, “Energy cost reduction in cellular networks
through dynamic base station activation,” in IEEE Secon, Jul. 2014.

[29] S. C. Borst, M. G. Markakis, and I. Saniee, “Nonconcave utility
maximization in locally coupled systems, with applications to wireless
and wireline networks,” IEEE/ACM Trans. Netw., vol. 22, no. 2, 2014.

[30] B. Kauffmann, F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagiannaki,
and C. Diot, “Measurement-based self organization of interfering 802.11
wireless access networks,” in IEEE Infocom, May 2007.

[31] X. Li, X. Tang, C.-C. Wang, and X. Lin, “Gibbs-sampling-based
optimization for the deployment of small cells in 3g heterogeneous
networks,” in IEEE WiOpt, May 2013.

[32] A. Abbasi and M. Ghaderi, “Online algorithms for energy cost mini-
mization in cellular networks,” in IEEE IWQoS, May 2014.

[33] A. Prasad, A. Maeder, and C. Ng, “Energy efficient small cell activation
mechanism for heterogeneous networks,” in IEEE Globecom Workshops,
Dec. 2013.

[34] M. Imran et al., “Energy efficiency analysis of the reference systems,
areas of improvements and target breakdown,” Tech. Rep. ICT-EARTH
deliverable, Tech. Rep., 2011.

[35] M. Naghibi, “Distributed energy minimization in heterogeneous cellular
networks.” [Online]. Available: http://www.ucalgary.ca/~mghaderi/docs/
naghibi.pdf

[36] A. Goldsmith, Wireless Communications. Cambridge University Press,
2005.

[37] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA);
Mobility enhancements in heterogeneous networks,” 3rd Generation
Partnership Project (3GPP), TR 36.839, 06 2011. [Online]. Available:
http://www.3gpp.org/ftp/Specs/html-info/36839.htm


