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Abstract—Virtual Network Embedding (VNE) is an essential
component of network virtualization technology. Prior works
on VNE mainly focused on resource efficiency and did not
address the scalability as a first-grade objective. Consequently,
the ever-increasing demand and size render them less-practical.
The few existing designs for mitigating this problem either do
not extend to multi-resource settings or do not consider the
physical servers and network simultaneously. In this work, we
develop GraphViNE, a parallelizable VNE solution based on
spatial Graph Neural Networks (GNN) that clusters the servers
to guide the embedding process towards an improved runtime
and performance. Our experiments using simulations show that
the parallelism of GraphViNE reduces its runtime by a factor of
8. Also, GraphViNE improves the revenue-to-cost ratio by about
18%, compared to other simulated algorithms.

I. INTRODUCTION

Motivation. Network virtualization is a prominent technology
that provides the needed flexibility and isolation to deploy
the next-generation heterogeneous network-applications in a
shared infrastructure. An essential part of this technology is
the problem of on-demand embedding of Virtual Networks
(VNs) in a Physical Network (PN); which in the most basic
form consists of mapping virtual nodes and links with specific
resource demands to physical servers and paths with limited
capacities. The embedding strategy substantially affects the
utilization of resources, which, in turn, determines the revenue
and cost of the production network. Given the NP-hardness of
the problem [1], the design of efficient embedding algorithms
has been the subject of extensive research [2].

However, in the face of ever-growing network sizes, most
current studies suffer from scalability issues that restrict their
practical usage in modern time-stringent environments. Fur-
thermore, their solutions’ quality drastically drops as the prob-
lem gets large. A promising method to alleviate these issues is
using a pre-processing phase to help the embedding algorithm
complete its task faster and with a higher success rate. As
such, some approaches investigated different strategies, such
as restricting the embedding options to a subset of physical
nodes [3], shrinking the virtual network sizes [4], and rejecting
the hard-to-embed virtual networks without running the actual
embedding algorithm [5].

Although current proposals have demonstrated the effec-
tiveness of the pre-processing technique, most of them fail

to consider crucial aspects of the embedding problem (e.g.,
network topology and multiple resource dimensions) to keep
their computational overhead at a tolerable level. They are
also typically designed based on the traditional model-driven
paradigm that can not consider underlying patterns and hidden
connections that generally are specific to the target system.
Data-driven approaches can detect and exploit these patterns
by applying the machine learning architectures (e.g., convolu-
tional deep neural networks), however, non-Euclidean nature
of network structures (i.e., capacitated graphs) [6] complicates
the design process.

Graph Neural Network [7] is a new machine learning
architecture that can aggregate multiple features across a
graph’s nodes while integrating its topology. Specifically, a
GNN can automatically learn a condensed representation of
each node in the network that incorporates the information
about the node, its neighbors (up to the desired distance), and
their inter-connecting topology. By applying this framework
to a PN, it becomes possible to cluster the physical nodes
(i.e., servers) based on their resource capacities (e.g., CPU and
RAM) and topological positions. Then, the computed clusters
can shrink the search space by eliminating the consideration
of similar options and providing the opportunity of focusing
on the examination of distinct options.

Our objective in this work is to exploit the spatial-based
graph neural networks [8], [9], which provide parallelizable
operations, to reduce the search space of the virtual network
embedding problem in an efficient and meaningful way that
appreciates the server resources and the network’s topology.

Our Work. We present a VNE algorithm that employs
GNNs for acceleration and efficiency. Specifically, we design
an adversarially-regularized variational graph autoencoder to
cluster the physical servers based on resource capacities and
network status. The embedding procedure then uses the com-
puted clusters to efficiently find and investigate the servers
that collectively provide a diverse set of embedding options.
Instead of using spectral-based GNNs (e.g., [6]) that process
the entire graph at once, we employ spatial-based GNNs
that can operate on batches of nodes. Consequently, our
model can take advantage of processing these batches of
nodes in parallel, which significantly improves the scalability.
Moreover, spectral-based approaches rely on a graph Fourier
basis and assume a fixed graph, which drastically limits their978-3-903176-31-7 c© 2020 IFIP



generalization and transferability. Spatial-based GNNs miti-
gate this limitation by performing their convolution operator
locally on each node. Thus, in dynamic environments where
the network capacity changes after each virtual network arrival
or departure, spatial-based GNNs provide better performance
through their generalizability and better scalability through
their local operations. Our main contributions can be sum-
marized as follows:
• We model a physical network with multi-dimension re-

sources (e.g., CPU and GPU) as a graph with node features.
• We improve an existing graph autoencoder to employ

spatial-based GNNs, which can perform the convolution
by aggregating the neighbor’s information. As the result,
our method provides a higher level of parallelizability and
generalizability.

• We define a suitable function that is used by the GNN to
aggregate the information about each physical server, its
neighbors, and their interconnecting network (i.e., topology
and bandwidth). We use the expected diameter of virtual
networks to determine the depth of the information aggre-
gation.

• We use the aggregated information to cluster the servers
based on their embedding capability and find a diverse set
of servers to start an embedding process from. We use the
elbow method [10] to determine the number of clusters.

• We simulate our algorithm to demonstrate its speedup and
performance and compare it with recent VNE algorithms.

A. Paper Organization

The paper is organized as follows. Section II reviews related
works. The problem statement and technical background are
presented, respectively, in Sections III and IV. The design of
our algorithm and its evaluation are presented, respectively, in
Sections V and VI. Section VII concludes the paper.

II. RELATED WORK

We review related works in the literature by categorizing
them into three groups. See [2] for a recent survey.

Generic VNE Algorithms. To handle the problem’s size and
complexity, authors in [11] used dynamic programming prin-
ciples to break down virtual networks to a set of edge-disjoint
path segments and used a multi-layer graph transformation to
embed the obtained segments. Authors in [12] considered a
multi-dimensional setting, where a security feature is asso-
ciated with every physical node and link. They performed a
greedy embedding to allocate the resources while minimizing
the probability of malicious attacks aimed at virtual networks.
Two resource dimensions (e.g., CPU and RAM) are considered
in [13], where the authors employ the ratios (e.g., CPU

RAM ) to
obtain a metric for ranking the nodes for the embedding task.
Authors in [14] considered guaranteeing the end-to-end delays
for virtual links by modeling the latency in the physical links
as random variables with known mean and variance. None of
these works can use machine learning techniques to exploit
the available operational data in the target system.

Learning-based VNE Algorithms. Authors in [6] employed
an asynchronous advantage actor-critic algorithm to automate
the embedding through the exploration-exploitation technique,
where a spectral-based convolutional graph neural network
is used to extract the physical network features that model
the environment. To address the temporal dependency of
physical network state, as it changes after serving requests,
in [15], the node embedding task is formulated as a time-
series problem. A recurrent neural network is then trained
via the seq2seq model to learn the embedding location for
virtual nodes. A method called DeepViNE is proposed in [16]
that encodes the physical and virtual networks as images with
multiple layers. It then feeds the images to a convolutional
deep reinforcement learning agent to learn the embedding
strategy that maximizes the profit. DeepViNE is restricted to
networks with grid topologies. None of these works provide a
mechanism to mitigate the large scale of the problem.

VNE Pre-processors. The method proposed in [3] uses the
size of the virtual network to determine the suitable number of
physical nodes for the embedding task. It then uses a Hopfield
network (a form of recurrent artificial neural network) to select
a subset of nodes with the determined size that maximizes
the probability of a successful embedding. Authors in [5]
used Recurrent Neural Networks to design an admission
control mechanism that predicts whether the available physical
resources are sufficient to embed new virtual network requests
or not. The early rejection of infeasible requests eliminates
the unsuccessful runs of the embedding algorithm and con-
sequently reduces the response time. A network partitioning
algorithm is employed in [4] to reduce the size of the virtual
networks by dividing the virtual nodes into a specific number
of groups (determined based on the physical node and link
resources) that have lightweight connections. Authors in [17]
applied field theory to extract the physical network features
and then performed spectral clustering to aggregate the nodes
with high resource and connectivity similarity into regions
that provide sufficient capacity for the embedding process.
None of these works uses a systematic mechanism, like GNN,
to simultaneously address the servers with multi-dimensional
resources and the network topology.

III. PROBLEM DEFINITION

This section presents the formal description of the virtual
network embedding problem that is considered in this paper.

Physical Network. An un-directed graph Gp = (N p,Lp) is
used to represent a physical network with S physical nodes
(i.e., servers) N p = {np1, . . . , n

p
S} and T physical links Lp =

{`p1, . . . , `
p
T }. Each node has a set of R resources (e.g., CPU

and RAM), where the amount of resource r ∈ R in node npi
is fr(n

p
i ). The bandwidth of link `pi is b(`pi ). Furthermore, we

define Pi,j to be the set of all paths between physical nodes npi
and npj , where each path pi,j ∈ Pi,j is a list of physical links.
Also, Qi denotes the set of all paths that contain the physical
link `pi . We use real numbers to represent physical resources
and bandwidth capacities with respect to a base unit.



Virtual Network. We assume that a virtual network Gt =
(N t,Lt) arrives to the network at the time t ∈ T , where
T is the set of arrival moments. Here, N t = {nt1, . . . , ntU}
and Lt = {`t1, . . . , `tV }, respectively, represent the set of
U virtual nodes and the set of V virtual links. We define
ε(`ti) = {a, b} show the set of two virtual nodes nta and ntb
that form the endpints of the virtual link `ti. Each virtual node
nti requires gr(nti) units of resource r for its operation and each
virtual link `ti consumes d(`ti) units of bandwidth to handle
the communication of its endpoints. Furthermore, we assume
that virtual network Gt finishes its operation after τt time units
and releases its acquired physical resources upon leaving the
network. We use real numbers to represent virtual resource
and bandwidth demands with respect to the base unit.

VNE Problem. Each virtual network, upon arrival at time
t, should explicitly be rejected or accepted. To accept a
virtual network, the virtual nodes and links should be mapped,
respectively, to physical nodes and paths with sufficient re-
source capacities. Let at denote the binary decision variable
that represents the admittance status of Gt. An embedding
algorithm should decide the value of at without the knowledge
of arriving virtual networks after time t. Let xji,t be a binary
decision variable which is equal to 1 if the virtual node nti
is mapped to physical node npj . Similarly, the binary decision
variable yj,ki,t is defined to show whether the virual link `ti is
mapped to the physical path pj,k between the physical nodes
npj and npk or not. A valid virtual network mapping satisfies
the following constraints,

fr(n
p
j ) ≥

∑
t′∈T
t′≤t

∑
nt
′
i
∈Nt′

at′δ
t
t′,τt′

x
j
i,t′gr(n

t′
i ), ∀npj ∈ N

p, r ∈ R (1)

y
j,k
i,t ≤

∑
a,b∈ε(`ti)
a6=b

x
j
a,tx

k
b,t, ∀`ti ∈ Lt, n

p
j , n

p
k ∈ N

p, pj,k ∈ Pi,j (2)

b(`
p
i ) ≥

∑
t′∈T
t′≤t

∑
`t
′
j
∈Lt′

∑
pk,m
`
p
i
∈Qi

at′δ
t
t′,τt′

y
k,m
j,t′ d(`

t′
j ), ∀`pi ∈ L

p (3)

where, δtt′,τt′ is an auxiliary function that determines whether
the virtual network Gt

′
, with the duration of τt′ , is active

at time t or not. The definition of τt′ is for the sake of
formulation and our solution does not need it. Constraint (1)
ensures that the capacity of every type of resources in all
the physical nodes is respected. Constraint (2) guarantees that
each virtual link is mapped to a physical path that connects
the physical nodes that embed the two endpoints of the
virtual link. Constraint (3) enforces the bandwidth capacity
of the physical links. If any of these constraints is violated,
Gt is blocked. In this work, minimizing the virtual network
blocking probability is considered objective, achieved by an
efficient resource allocation strategy. This resource allocation
wastes the minimum amount of physical resources during the
mapping process. Formally, the acceptance ratio is defined by,

lim
|T |→∞

∑
t∈T at

|T |
. (4)

Furthermore, the Revenue and Cost of the algorithm can be
computed as follows:

Revenue =
∑
t∈T

at

{ ∑
nt
i
∈Nt

∑
r∈R

ζrgr(n
t
i) +

∑
`t
i
∈Lt

d(`ti)
}
, (5)

Cost =
∑
t∈T

at

{ ∑
nt
i
∈Nt

∑
r∈R

ξrgr(n
t
i)

+
∑

n
p
i
,n
p
j
∈Np

∑
pi,j∈Pi,j

∑
`t
k
∈Lt

y
i,j
k,td(`

t
i)|pi,j |

}
,

(6)

where, |pi,j | shows the length of the path pi,j and ζr ≥ 0 and
ξr ≥ 0 can be used to adjust the revenue and cost of type-r
resource relative to the revenue and cost of the bandwidth.

IV. GRAPH NEURAL NETWORKS

In this section, we briefly describe the background that
is required in the rest of the paper. For more details and
discussion please refer to [8] and [9].

A. Spatial Graph Neural Networks

Assume that a set of K aggregator functions Ψk(.) are avail-
able that can, with the help of weight matrices W k, aggregate
the information of each node’s depth-K neighborhood in the
graph. The computation of Ψk(.) and W k is explained later.
Let xv denote the feature list of the node v. Also, let hkv
denote the combined information about the node v and its
depth-k neighborhood. Initially, h0v = xv and the information
aggregation happens incrementally and collectively for all
nodes in the network, where, each node uses depth-k aggre-
gated information of its neighbors to obtain its depth-(k + 1)
aggregated information (similar to the backup operations that
lie at the core of reinforcement learning approaches [18]).
Specifically, each node v evaluates the following equations
K times,

ψ ← Ψk({hku : u is a neighbor of v}), (7)

hk+1
v ← α

(
W k+1.hkv _ ψ

)
, (8)

where, ψ is an intermediate placeholder, α(.) is a non-linear
activation function, and _ is the list concatenation opera-
tor. Notice that equation (8) is similar to a fully connected
neural network layer, where W k+1 is the weight matrix.
To control the runtime and memory consumption of this
approach, typically, in each aggregation step, only a fixed-
size random-sample of the neighbors are considered instead of
computing ψ over all neighbors. There are multiple choices for
the aggregator functions, which have to be invariant to their
inputs’ permutations. Mean, LSTM, and Pooling aggregators
are common choices. For example, the Mean aggregator’s
operation is the element-wise mean of the vectors hku in
equation (7). Then, the stochastic gradient descent algorithm
is applied to a graph-based loss function to learn the weight
matrices W k and parameters of Ψk(.). Let zu = hKu , the loss
function for node u is defined as,

− log (s(zᵀuzv))−QEw[log (s(−zᵀuzw))], (9)



where, u is obtained from a fixed-length random walk from
v, Q is the number of samples from the neighbors of u, w is
a sampled neighbor, and s(.) is the logistic sigmoid function.

B. Variational Graph Auto-encoding

In this approach, a node is mapped to distribution rather
than a single representation. Then, a random representation
is taken from the distribution and is used to reconstruct the
original node. Then, by minimizing the reconstruction error, an
optimized representation distribution of the graph is obtained.
Let ZZZ be the matrix of representation vectors zu. A common
approach for designing the encoder is to model the distribution
of ZZZ conditioned on the values of node features XXX and
graph structure AAA (denoted by q(ZZZ|AAA,XXX)) by a Multivariate
Gaussian distribution. Then, two graph neural networks can be
used to learn the parameters of the distribution, i.e., mean µµµ
and logarithm of variance logσσσ2. A simple decoder, denoted
by p(AAA|ZZZ), is defined by s(ZZZZZZᵀ). Then, the reconstruction
error is computed by,

Eq(ZZZ|XXX,AAA)

[
log p(AAA|ZZZ)

]
− KL

(
q(ZZZ|XXX,AAA) ‖ p(ZZZ)

)
, (10)

where, KL(.) is the Kullback-Leibler divergence and p(ZZZ) is a
prior distribution, i.e., the probability of observing ZZZ if µµµ = 0
and σσσ = I (I is the identity matrix).

C. Adversarial Models

It is possible to improve the performance of an auto-encoder
model (i.e., reduce the reconstruction error) by using the
distribution q(ZZZ|AAA,XXX) as a generator model in an adversarial
game. To this end, a a discriminator model (e.g., a multi-layer
perceptron) is used to discriminate the samples of the generator
from the samples of the prior distribution p(ZZZ). The objective
of the game is defined as,

min
G

max
D

EZZZ∼p(ZZZ)

[
logD(ZZZ)

]
− EXXX∼p(XXX)

[
logD(1− G(XXX,AAA))

]
, (11)

where, G and D are, respectively, the generator and discrimi-
nator models. Equation (11) can be used in the training process
of q(ZZZ|AAA,XXX) to ensure that the latent values match the prior
distribution.

V. VNE ALGORITHM

In this section, we present the design of a scalable algorithm
based on the graph autoencoders to solve the network embed-
ding problem (see Section III). We employ an adversarially-
regularized variational graph autoencoder architecture to com-
pute a representation for each physical server that contains
information about: (1) the server’s resource capacity, (2) the
resource capacity of neighboring servers up to the desired
distance, and (3) the inter-connecting network topology and
its bandwidth capacity. Then, we cluster those physical nodes
based on the obtained representations, where the servers in
the same cluster would have a similar resource and bandwidth
capacity. Consequently, the servers in the same cluster would
provide similar qualifications for embedding a virtual network.

...

...

Encoder

Adjacency Matrix (A)

Feature Matrix (X)

Encoded Nodes (Z)

ReLU(x)

...

16 Inputs

16 Outputs

ReLU(x) 16 Inputs 16 Outputs

16 Outputs

Fig. 1: Encoder model with spatial-based GNN layers

Then, we select a random server from each cluster upon which
the virtual network embedding algorithm starts its process, and
the result of the best starting point with the lowest cost is
chosen as the solution. Then, the server representations and
the clustering is updated efficiently.

To increase the scalability, we define a set of criteria for
the clustering, which can control the quality-runtime trade-off.
One criterion is the cluster’s freshness, which allows the clus-
tering to basically re-use the previous clustering and update the
clustering only after a significant change occurs. For example,
when the capacity of a server or a link is changed significantly.
In what follows, we describe the encoder model, discriminator
model, clustering method, and embedding algorithm.

Encoder. The topology of our proposed model for computing
the representation of the physical servers (i.e., the encoder
model) is illustrated in Fig. 1. The encoder gets the server
resource capacity matrix X (e.g., CPU, memory, and GPU)
and the weighted adjacency matrix A of the physical network,
where the weights show the bandwidth, as the input, and
generates a distribution that determines server representations.
Similar to the existing architectures, we use the Multivariate
Gaussian distribution to model the representation distribution.
Remember that computing the representation distribution, in-
stead of directly generating the representation, significantly
improves the generalizability of the model. Thus, when the
available link capacities change, the model still generates an
appropriate representation. Specifically, the encoder is a spatial
neural network with two layers. The second layer is divided
into two parts for computing the mean and the variance of the
representation distribution. The input channel’s size in the first
layer is equal to the number of server resources (i.e., R), and
the size of the output channel is fixed to be 16. Also, the input
and output channels’ sizes in both parts of the second layer
are equal to 16. The aggregator function Ψk(.) is defined as,

W1xxx
k−1(n) +W2.

1

|L(n)|
∑

`∈L(n)

b(`)xxxk−1(m) (12)

where, W1 and W2 are learnable parameter matrices, xxxk−1(n)
is the feature vector of server n after k − 1 round of
aggregation, L(n) is the set of all links that are connected
to server n, and m is the second endpoint of the physical
link `. Note that the initial value of the feature vector, i.e.,



(A,X) Encoder Z ′ ∼ q(Z)

s(O ∗OT) A′

... ...

Dense16 Dense16

Dense32

ReLU(x) ReLU(x)

Prior Sample
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InputZ ′′ ∼ p(Z)
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ReLU(x)
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...

Dense|X|

ReLU(x) ... X ′

Clusters

Fig. 2: Auto-encoder model with fully-connected feed-forward neu-
ral networks as decoder and discriminator

xxx0(n), is set to be the list of resource capacities of server
n, i.e., fff(n). Observe that the bandwidth of the link b(`)
is used to control the effect of the resource availability to
the adjacent servers. The activation function of the first and
second layers, respectively, are ReLU and linear. Finally, the
number of aggregation steps K is chosen to be equal to
the expected diameter of virtual networks. In our considered
random networks in Section VI, this value was slightly more
than 2, and hence the encoder in Fig. 1 has two layers. Note
that the number of layers in the encoder does not limit the
diameter of VNs and thus the method applies to VNs with
arbitrary diameter. The number of layers only affects the depth
from which neighbors’ information is obtained.

Decoder and Discriminator. The topology of the employed
auto-encoder is presented in Fig. 2. After encoder determines
the representation distribution, a sample representation Z ′

is drawn and fed into the decoder, which is a multi-layer
perceptron with two layers. Note that, here, we can not use
a GNN, because the input Z is a graph representation and
not a graph. The second layer of the decoder has two parts,
where one of them reconstructs the adjacency matrix, and
the other layer reconstructs the server resource matrix X .
The outputs are then compared with the original inputs to
compute the reconstruction error and train the encoder with
equation (10). The first layer of the decoder has 16 neurons,
and each part has 8 neurons. Also, Z ′ is fed to a discriminator
model, which is illustrated in the lower tier of Fig. 2. This
model is a 3-layer dense feed-forward neural network with
16, 32, and 16 neurons in each layer. The activation function
in the discriminator layers is ReLU. The discriminator is
trained to distinguish the representative samples of the prior
distribution p(Z) from the representative samples generated
by the encoder. Simultaneously, the encoder is trained (see
equation (11)) to generate samples that follow the prior
distribution. This joint optimization of the encoder and the
discriminator through the adversarial framework ensures that
the encoder follows the selected prior distribution.

Clustering. The representation sample Z ′ generated by the
encoder is used to cluster the physical servers into a set of

Algorithm 1: GraphViNE – Graph Neural Network
Accelerated Virtual Network Embedding

procedure GraphViNE(Gp, Gt, Z, C, M)
1 cost? ←∞
2 sol? ← null
3 for C ∈ C do
4 n← start node(C)
5 cost, sol ← embed(n,Gp, Gt) /* See Alg. 2 */
6 if cost < cost? then
7 cost? ← cost
8 sol? ← sol
9 allocate(Gp, Gt, sol?)

10 if Available resource of a server changed by more than κ1% or
available bandwidth of a link changed by more than κ2%
then

11 Z ← re GNN(M, Gp, sol?)
12 C ← re cluster(Z, sol?)
13 Return sol?, Z, C

groups, where the servers inside a group are similar to each
other and different from the other groups’ servers. Specifically,
the servers inside a group provide similar resource and band-
width capacities up to a specific distance for the embedding
task. Thus, the embedding cost does not change when we
choose two different physical servers in the same group as
the embedding procedure’s starting point. We employ the k-
means algorithm to perform the clustering, where the number
of clusters is determined by using the elbow method [10].
This method evaluates the sum of samples’ squared distances
to their closest cluster center (a.k.a., inertia) for the different
number of cluster centers. It selects the number that has
the most improvement compared to the previous value. In
our considered topologies, the number of clusters is typically
between 4-6.

Embedding. Proposed virtual network embedding method,
called GraphViNE, is outlined in Alg. 1. When the virtual
network Gt arrives at time t, it is passed to GraphViNE
algorithm along with the physical network Gp, the server
representation Z, the cluster of servers C, and the auto-encoder
model M. The for loop in lines 3 to 8 finds and stores the
embedding with the lowest cost. Specifically, GraphViNE
selects a physical server from each cluster in line 4 and passes
it to another subroutine called embed, which is outlined in
Alg. 2. The embed subroutine uses the physical input server
as the starting point of its embedding procedure based on a
breadth-first search mechanism. We defined two thresholds,
α × |N t| and β, to limit the total number of inspected
servers and the maximum search depth, respectively. We omit
the detailed description of embed subroutine for the sake of
space and brevity. After finding the best solution, GraphViNE
applies it to the physical network in line 9. Then, GraphViNE
checks the change in the available resources and bandwidth.
When either of these items change by, respectively, more than
κ1% or κ2%, the representation matrix Z and the clustering C
are updated to be used in the next embedding round in lines 11
and 12. These criteria allow GraphViNE to re-compute the
clustering when it makes a practical difference and avoid
unnecessary calculations that might limit the scalability. Note
that, in spatial GNNs, the representations are computed locally
for each node, which is a highly parallelizable procedure. For



Algorithm 2: Embedding Subroutine
procedure embed(n, Gp(N p,Lp), Gt(N t,Lt), α, β)

1 qp ← queue(n)
2 qt ← prio queue(N t) /* Prioritizes virtual nodes with higher CPU demand */
3 while True do
4 np ← qp.pop()
5 Mark np visited
6 while True do
7 nt ← qt.pop()
8 if ggg(nt) > fff(np) then
9 Break /* Not enough resource */

10 if @ path to connect nt to its neighbors then
11 Break /* Not enough bandwidth */
12 Embed nt in np and store the decision in sol
13 if dist(np, n) = β then
14 continue
15 counter ← 0

16 for n′ ∈ neighbor(np) and counter ≤ (α× |N t|)
1
β do

17 if n′ is not visited then
18 qp.push(n′)
19 counter ← counter +1
20 cost ← Calculate the cost with Eq. (6)
21 Return cost, sol

example, libraries such as PyTorch Scatter [19] can be used
to accelerate the update of the auto-encoder modelM and the
representation matrix Z.

VI. EVALUATION

We conduct extensive simulations to demonstrate our pro-
posed approach’s performance in terms of VN acceptance
ratio, revenue, cost, and utilization against other algorithms.
We use the random graph model [20] to construct physical and
virtual networks. All algorithms are implemented in Python
3.6.9. Computations are carried out on a computer with
an Intel R© CoreTM i5 − 9500T processor at 2.2 − 3.7 GHz
and 8 GB of RAM. For examining parallelizability of our
algorithm, we used Google Colaboratory GPU notebook [21]
which uses two Intel R© Xeon R© processors at 2.0 GHz, 13 GB
of RAM, and an Nvidia R© Tesla R© P4 GPU.

A. Simulation Parameters

In this subsection, we define and explain the parameters that
we used throughout the evaluation.

Physical Network. To model the physical network, we con-
sider a typical real-world configuration that consists of 1.2
terabytes of RAM and one hundred processing and graphics
cores similar to, respectively, DellTM PowerEdgeTM R910,
two Intel R© Xeon R© Scalable processors after Hyperthreading,
and one Nvidia R© GeForce R© GT 330. Then, we apply the
normal distribution to introduce diversity and heterogeneity.
Consequently, we consider a network of 100 servers with a
40% probability of a direct physical link between each server
pair. Each physical link is characterized by its bandwidth (in
Mbps), which is randomly selected from the normal distribu-
tions N (100, 400). Each physical node is characterized by its
CPU power (number of cores), memory capacity (in GBytes),
and GPU power (number of cores). These values are selected
from the normal distributionsN (100, 400),N (1200, 300), and
N (100, 400), respectively.
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Virtual Networks. The Number of virtual nodes in each VNR
is randomly selected from the interval [4, 10]. The probability
of having a virtual link between two virtual nodes is 0.7. Band-
width demand of virtual links follows the normal distributions
N (10, 4). The CPU, memory, and GPU demand of each virtual
node come from the normal distributions N (10, 4), N (30, 9),
and N (10, 4), respectively. Each VN has a lifetime that is also
selected randomly from a normal distribution of N (100, 900).
VNs arrive according to the arrival rate and remain in the
physical network for the duration of their lifetime. The VN
arrival rate is set to 2 per unit of time and the simulation is
conducted for 2000 units of time.

Comparing Algorithms. In addition to GraphViNE, we have
implemented the following algorithms for comparison.

• FirstFit: an algorithm that embeds virtual nodes in the first
physical node with sufficient capacity.

• BestFit: an algorithm that selects the physical node with
maximum CPU capacity and fills it with the virtual node
demands.

• GRC [22]: a node-ranking based algorithm.
• NeuroViNE [3]: an algorithm based on a search space

reduction mechanism. This algorithm extracts relevant sub-
graphs by a Hopefield network. Then, it uses GRC to embed
VN in candidate subgraphs.

Since GRC and NeuroViNE can only consider one server re-
source (i.e., CPU), we employ them to evaluate the scalability
and single-resource embedding performance of our method.
Then, in a separate benchmark, we use another variations of
Best Fit and First Fit algorithms to investigate the general
setting. Parameters α, β, κ1, and κ2 are set to 30, 3, 10, and
10, respectively.

B. Benchmarks

Parallelizability. First, we examine the parallelizability of
GraphViNE provided by the spatial GNN architecture, where
the operations are local to the individual nodes. To this end, we
increased the physical network size from 100 servers to 1500
servers and measured the runtime on both CPU and GPU.
Figure 3 reveals a significant difference between the CPU and
GPU results, where the former runtime grows exponentially
while the latter runtime is relatively constant. Specifically,
the parallelism has improved the runtime by about 8 times
on average and 20 times in the best case. Furthermore, we
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Fig. 6: Maximum utilization of servers and links throughout the
simulation

investigated the sensitivity of GraphViNE to the virtual net-
work size by increasing it up to 50% of the physical network
(i.e., 50 nodes) and observed only a 3 seconds increase in
the embedding runtime. Thus, we conclude that the physical
network size is the major factor that limits scalability. It is
worth mentioning that neither GRC nor NeuroViNE provides
a native mechanism to exploit available parallel processing
capabilities.

Acceptance Ratio. A long-term acceptance ratio is an impor-
tant metric that affects the system’s profit. Figure 4 shows the
acceptance ratio of different algorithms in a long simulation
of about 2000 episodes. Note that during this period, the
acceptance ratios reach a steady-state and remain constant due
to a stationary virtual network arrival process. The First Fit
algorithm fragments the resources too much and experiences
a significant drop in its capacity for accepting new virtual
networks. GraphViNE increases the acceptance ratio by about
20%, 25%, and 100% compared to the NeuroViNE, GRC, and
First Fit algorithms, respectively. The performance of GRC
and Best Fit are similar.

Revenue and Cost. Figures 5a and 5b, respectively, compare
the cost and revenue of different algorithms. Computations
are based on the equations (5) and (6), where ζr = 1 and
ξr = 1. Therefore, the effect of server resources is the same
as the link bandwidth. Since GraphViNE embeds more VNs
during the same period, its revenue is also higher. Despite a
higher revenue, our proposed algorithm incurs a lower cost
than First Fit and Best Fit methods. Since GRC optimizes
the fraction of revenue to cost, it has a lower cost than First
Fit and Best Fit algorithms while providing almost the same
revenue. NeuroViNE achieves a low cost because it typically
embeds smaller virtual networks. Consequently, it can not
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Fig. 7: Comparison with different virtual network arrival rates

achieve a high revenue. Moreover, GraphViNE achieves the
highest revenue-to-cost-ratio (i.e., 1.87), while NeuroViNE,
GRC, Best Fit, and First Fit, respectively, achieve 1.57, 1.37,
1.25, and 1.08 ratios. NeuroViNE strictly limits the embedding
to a relatively small set of servers, which results to a poor
revenue. This is an issue of all the pre-processing mechanisms
that eliminate servers. GraphViNE, on the other hand, guides
the embedding algorithm by introducing a diverse set of
starting points, but allows it to use all the reachable servers.

Utilization. Box plots in Fig. 6 show the distribution of the
maximum server and link utilization throughout the simula-
tion. Figure 6a shows that GraphViNE packs active servers
with virtual nodes and only leaves few servers under-utilized.
Moreover, GraphViNE keeps bandwidth utilization at a mod-
erate level to maintain the connectivity (see Fig. 6b). Best Fit
and NeuroViNE methods demonstrate a high level of CPU
load-balancing to retain the ability of serving future demands.
However, they exhibit a lower performance at bandwidth
utilization, which can be attributed to not considering servers
and the network simultaneously. Similarly, GRC and First Fit
methods have a high server and link utilization, which limits
their ability to embed virtual networks.

Arrival Rate. To further measure the scalability and per-
formance, we compared GraphViNE with other algorithms
under different virtual network arrival rates. Specifically, we
examined different arrival rates between 1.2 and 4.4 and
presented the results in Fig. 7. Evident from Fig. 7a, as the
arrival rate increases, the acceptance rate decreases. Never-
theless, the acceptance rate achieved by GraphViNE remains
consistently higher compared to other algorithms. We observe
that NeuroViNE exhibits better scalability, but its performance
is still about 18 percent lower than our method. NeuroViNE
has a low revenue and cost that reveals its higher acceptance
ratio stems from its ability to embed smaller VNs that pro-
vide less revenue. Although the acceptance ratio decreases,
GraphViNE manages to increase the number of embedded
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Fig. 9: The testing results of algorithms with GPU and memory as extra node resources

virtual networks, which results in higher revenue and cost (see
Figs. 7b and 7c). However, other algorithms are already at their
limits with 2 virtual networks per unit of time, and thus their
revenue and cost do not change significantly.

Virtual Link Demand. In this experiment, we investigate
the effect of the virtual link demand on different algorithms’
performance. Thus, we change the variance of the virtual link
demands, which is a normal distribution with mean 4, from
10 to 90 and present the results in Fig. 8. We observe that
GraphViNE manages to embed the more extensive virtual
links inside the physical servers, and thus its acceptance
ratio does not change, which leads to an increase of the
revenue (see 8b). This trend also happens for NeuroViNE,
Best Fit, and GRC algorithms, which shows that they also
acknowledge the importance of embedding large virtual links
inside physical servers. However, the Firs Fit algorithm suffers
from higher virtual link demands, which significantly reduces
its acceptance ratio.

Multi-dimensional Resources. GraphViNE seamlessly sup-
ports virtual network embedding in multi-dimensional re-
source settings. In this experiment, we investigate the perfor-
mance of GraphViNEwhile considering two extra resources
(i.e., GPU and memory). Since GRC and NeuroViNE do not
support multi-dimensional resource allocation, we omit them
here. We changed the First Fit to choose the first physical
server with sufficient capacity for every resource type. Best
Fit is also modified to choose the server that its summation
of remaining resource capacities is maximum. Figure 9 shows
that GraphViNE outperforms other algorithms in every met-

ric. Specifically, GraphViNE accepts about 70% more virtual
networks and improves the revenue by about 3 folds. From
Fig. 9b, notice that GraphViNE embeds a significant number
of large virtual links inside the physical servers and thus
does not pay for their embedding in the physical network.
Consequently, GraphViNE achieves a lower cost than its
revenue, which is the ideal scenario. However, Best Fit and
First Fit map many virtual links to multiple physical links,
and thus their cost exceeds their revenue. This conclusion
is further verified in Fig. 9c where GraphViNE produces
a higher resource utilization and a lower network utilization
compared to other methods.

VII. CONCLUSION

This work presented the design and evaluation of
GraphViNE, a VNE algorithm based on an adversarially-
regularized variational autoencoder with a spatial-based GNN.
GraphViNE uses a server representation that is computed
by the GNN to cluster the servers and efficiently detect dis-
tinct embedding options. We demonstrated that the employed
spatial-based GNN model provides a level of parallelism,
which significantly increases the scalability of our approach.
We extensively evaluated the proposed algorithm by compar-
ing it with several existing algorithms and demonstrated its
performance and speedup. An attractive extension of this work
is adding edge features to the GNN model for constraints such
as link delay. Also, analyzing the trade-off between scalability
and efficiency by investigating a finer-grained control over the
number of clusters instead of computing it with the elbow
method is interesting.
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