HEAPS

A heap is a special version of a tree.  Normally, when we refer to a heap we 

refer to a binary maxheap which is a binary tree in which the following

relationships hold:  

     * the tree is complete - it is of minimum height and leaf nodes occupy

the leftmost positions  

     * a parent node is greater than or equal to either of its two children

which are themselves heaps  

If we change the second part of the definition, we can produce a binary

minheap (usually called a minheap).  The definition is changed so that the

parent is less than or equal to either of its two children which are

themselves minheaps. We will use heap to refer to a binary maxheap.

Algorithms which deal with this can be readily changed to minheap by

changing the comparisons in the algorithm (i.e. < to > or > to <). 

An array is an efficient representation of a complete tree since it is

guaranteed that all the nodes of the tree can be represented by contiguous

array elements and for any node in the tree at element I its children, if

they exist, will be at 2I and 2I + 1. This means that an array can be viewed

as a complete binary tree and if we have the relationships:

    a[I] > a [2I]   and   a[I] > a[2I+1]

the array is also a heap.

1. Building the heap 

Since a heap is a minimum height tree, it can be built in time proportional

to n log2 n.  

Starting with an unordered array, this can be viewed as a complete binary

tree in which the leaves are heaps. This means that at the start, at least

half the tree satisfies the requirements for a heap. All that is needed is

an algorithm which can take each of the remaining nodes, one at a time, and

add them to the existing heap.   

Starting at the lowest nodes in the tree the parent of two leaves is taken

and exchanged with the greater of its children if it is not already larger

than both. This guarantees that this set of three nodes will form a

heap. This process continues up the tree.   Sometimes as a parent is

exchanged with one of its children the exchange results in a parent for a

subheap that is less than one of its children.  In that case the process

must move down the subheap to make all of these heaps again.  

The algorithm to achieve this starts about halfway through the array and

works up towards the front one element at a time (the latter half of the

array represents the leaves of the tree). As each element is encountered a

function is called to place this element in an appropriate place within the

heap. When the first element of the array has been processed, the whole

array will be a heap.  

Suppose that the following information exists in an array, which is the

common form used for heaps.

4  3  1  6  9  2  8  3  7  5

Shown as a heap it would look like the tree below.  However, we have not yet

begun to produce the heap for the data so the building process has yet to

occur.  

                   4

                /     \

              /         \

            /             \

          3                1

        /  \             /  \

      /      \         /     \

     6        9       2       8

   /  \      /

  3    7    5

Generally, the algorithm would start with the integer value of the total

number of elements +1  divided by 2 in order to ensure that all internal

nodes are represented.  In this case we can start at position 5 and not 6

since the node in position 6 does not have any children and is therefore

already a heap.  Starting with 9, we look at its children.  It has only one

and it is less than 9 so this is already a heap.

Now we can look back one at the node with a 6 and its two children.  We find

the largest child, which is 7 and since it is greater than 6 we swap the 7

and 6 in order to make a heap.

4  3  1  7  9  2  8  3  6  5

                   4

                /     \

              /         \

            /             \

          3                1

        /  \             /  \

      /      \         /     \

     7        9       2       8

   /  \      /

  3    6    5

Now we can do the same with the node in position 3.  In this case the 8 is

the largest child and it should be swapped with the 1

4  3  8  7  9  2  1  3  6  5

                   4

                /     \

              /         \

            /             \

          3                8

        /  \             /  \

      /      \         /     \

     7        9       2       1

   /  \      /

  3    6    5

Now we look at the node in position 2.  The largest child is the 9 and it

gets swapped with the 3.

4  9  8  7  3  2  1  3  6  5

                   4

                /     \

              /         \

            /             \

         9                8

        /  \             /  \

      /      \         /     \

     7        3       2       1

   /  \      /

  3    6    5

However, the node in position 5 is now not a heap and this must be fixed.

4  9  8  7  5  2  1  3  6  3

                   4

                /     \

              /         \

            /             \

         9                8

        /  \             /  \

      /      \         /     \

     7        5       2       1

   /  \      /

  3    6    3

Now we can look at the root node and swap the 9 and the 4

9  4  8  7  5  2  1  3  6  3

                   9

                /     \

              /         \

            /             \

         4                8

        /  \             /  \

      /      \         /     \

     7        5       2       1

   /  \      /

  3    6    3

Now the node in position 2 is not a heap so we redo that one and swap the 7

and 4.

9  7  8  4  5  2  1  3  6  3

                   9

                /     \

              /         \

            /             \

         7                8

        /  \             /  \

      /      \         /     \

     4        5       2       1

   /  \      /

  3    6    3

This process must move down to the node at position 4 and swap the 4 and 6.

9  7  8  6  5  2  1  3  4  3

                   9

                /     \

              /         \

            /             \

         7                8

        /  \             /  \

      /      \         /     \

     6        5       2       1

   /  \      /

  3    4    3

Now the heap is complete.

Efficiency of Building the Heap.

Building the original heap takes time proportional to n/2 (log2 n) due to only

processing half the array (only half are parents).   Each element may have

to be moved through the height of the tree which in its worst case is log2 n.

It is therefore a  O(n log2 n) process. 

A priority Queue as a Heap 

==========================

Suppose that three priority levels A, B, and C exist with A as the highest

priority.  When processes are submitted, they are given an ID number for

identification using the following: 

Priority A : 100 to 71

Priority B : 70 to 41

Priority C : 40 to 1

Suppose that the following sequence of jobs are submitted.

             Priority  ID

             ------------

             B         70

             B         69

             C         40

             B         68

             C         39

             A        100

             A         99

Since the heap is an array implementation, each of these ID's can be placed

in the array in the order of submission.  Therefore, the array will look

like:  

70  69  40  68  39  100  99

Doing it this way means that all enqueues are O(1) because each is inserted

at the end of the queue regardless of priority.  This means that enqueues do

not degenerate into O(n) data moves like they could if the array was being

used to represent a linked list structure.  When the next element is to be

served the heap is built from the array as it exists at the time the serve

call is made.  Therefore, assume that after the 7 items are enqueued, a

serve call is made.   If we consider the array to be a binary tree, then the

tree for the array above would look like:

                            70


                    69             40


               68       39     100     99
In a complete binary tree, half of the nodes are leaves so half of the nodes

are also already heaps.  Therefore, we consider whether the third element in

the array is connected to nodes which also form a heap.  We look at the two

children of element 3 which appear in element 6 and 7. Since the value in 6

is bigger than that in element 7, we use element 6 for the next comparison.

We then compare element 3 with element 6.  Since element 6 is bigger than

element 3 we swap the values in elements 6 and 3.  Element 3 is now the top

of a small heap.  Since the children of element 3 are leaves, we do not have

to check if each of these are at the top of a heap because they are by

definition already heaps.  The array now looks like: 

70  69  100  68  39  40  99

Now we look at element 2 to see if it is the top of a heap.  Since it is the

array remains unchanged.  Now we examine element 1.  Its two children are

elements 2 and 3 and 3 is the bigger of the two so it is compared to element

1.  Since 3 is bigger than 1 we swap the two so the array now looks like:  

100  69  70  68  39  40  99

We now have to check the children of 1 to see that they are still heaps. 

However, since we didn't do anything to element 2, that side of the tree

does not need to be checked.  On checking element 3 we find that this heap

must be rebuilt and element 3 and 7 swapped.  The array then looks like:  

100 69  99   68  39  40  70

The total tree is now a heap and the process with ID 100 is served.

Suppose we compare this priority queue implementation with a linked list

implementation in an array.  Assume that there is only one indicator for the

front of the queue and one for the back (i.e. there is not a tail pointer

for each priority).  Further, assume that the queue is kept in sorted order

by ID number.  That means that the array must be manipulated at each

enqueue.  We will do this by starting at the back and doing the compares and

moves until the appropriate place is reached -- a process like that used in

the insertion sort algorithm considered in class.  In actual fact the number

of array moves will be the same as if there were tail pointers for each

priority.  Analysis of the heap for comparisons and swaps results in no

compares and no swaps to enqueue the 7 processes.  When the serve call is

made, building the heap will require 8 compares and 3 swaps.  For the linear

queue, building the queue is descending order will require 16 compares and

11 swaps but the serve will be O(1).  The building of the heap will be n/2

log2 n.  This is essential the complexity of the serve since the enqueue is

O(1).   For the linear structure, the worst case for enqueue is O(n) for

each item and therefore n squared for n items.  If the linear queue is

ordered and no more items are enqueued, then no further work is required. 

For the heap, the rebuilding is still required for each serve call.  The

best case for the heap is one in which all of the items which are enqueued

appear with ID's from biggest to smallest. In this case, the algorithm still

checks to see if a heap exists but no swaps are required.  It will therefore

execute faster but will still be of the same order of magnitude. 

Other Heaps 

It is also possible to define other heaps.  In all cases the definition has

to state the maximum number of children and the relationship of the parent

to the children.   The heap is always complete with leaf nodes occupying the

far left positions.   We could therefore define a ternary heap as one in

which the parent can have a maximum of 3 children.  In this heap the

magnitude of the parent is greater than or equal to the value of any of the

three children (i.e. a ternary maxheap).  Again this can be represented in

an array, but the relationships which are required to find the child of a

parent must be changed.  The children of a parent at position n are at 3n-1,

3n, and 3n+1.  Using the same data as the previous heap, the heap when shown

as a tree will look like  

                          70

                        / | \                      

                     69   40  68

                   /  | \

                 39  100  99

This is now a ternary tree (each parent may have 0, 1, 2, or 3 children.

Obviously, the heap must be rebuilt because the correct relationships do not

exist for each ternary heap.  Note that the number of leaves is 2/3 of the

total n, rather than 1/2 as was the case for the binary heap.  Otherwise the

algorithm is similar.  We start with node 3, and recognize this as a heap.

We then move to node 2 and find the largest of the three children.  This is

100 which is swapped with the 69 to produce a heap.  Then we move to node 1

and make a heap using the same process.  Notice that we do one more compare

with each parent since there are three children not two.  However, we only

have to do this log3 times at the maximum rather than log2.  In other words,

the heap is more compact and the maximum distance for trickledown is

reduced.  The number of operations to build the ternary heap is n/3 (log3 n) which 

is O(n log3 n). 

