TREE TRAVERSAL

Tree traversal is a process of moving through a tree in a specified order to

process each of the nodes. Each of the nodes is processed only once

(although it may be visited more than once). Usually, the traversal process

is used to print out the tree.

Traversal is like searching the tree except that in traversal the goal is to

move through the tree in some particular order. In addition, all nodes are

processed in the traversal but searches cease when the required node is

found.

If the order of traversal is not specified and the tree contains n nodes,

then the number of paths that could be taken through the n nodes would be n

factorial and therefore the information in the tree would be presented in

some format determined by the path. Since there are many different paths,

no real uniformity would exist in the presentation of information.

Therefore, three different orders are specified for tree traversals. These

are called:

 * pre-order

 * in-order

 * post-order

The traversals considered here are for a binary tree or a binary search

tree.

Because the definition of a binary tree is recursive and defined in terms of

the left and right subtrees and the root node, the choices for traversals

can also be defined from this definition. In pre-order traversals, each

node is processed before (pre) either of its sub-trees. In in-order, each

node is processed after all the nodes in its left sub-tree but before any of

the nodes in its right subtree (they are done in order from left to right).

In post-order, each node is processed after (post) all nodes in both of its

sub-trees.

Each order has different applications and yields different results.

Consider the tree shown below (which has a special name - an expression

tree):

 *

 / \

 / \

 / \

 + +

 / \ / \

 / \ / \

 a b c 7

The following would result from each traversal

 * pre-order : *+ab+c7

 * in-order : a+b*c+7

 * post-order: ab+c7+*

Notice that we can get all three common orders from the tree as compared to

using queues and a stack to get from in-fix to post-fix.

Pre-order Traversal

In some ways this is the simplest to understand initially. However, even

though each node is processed before the subtrees, it still requires that

some information be retained while moving down the tree. In the example

above, the * is processed first, then the left sub-tree followed by the

right subtree. Therefore, processing must return to the right sub-tree

after finishing the processing of the left subtree.

In the examples given, suppose the the processing involved in the traversal

is to print out the information stored in each node.

Since movement is down the left side of the tree beginning at the root,

information on what is to the right must be kept in order to complete the

traversal of the right side of any subtree. The obvious ADT for such

information is a stack. Because of its LIFO structure, it will be possible

to get the information about the right subtrees back in the reverse order in

which it was encountered.

The process of doing a pre-order traversal iteratively then has the

following steps (assuming that a stack is available to hold pointers to the

appropriate nodes):

1. push NIL onto the stack

2. start at the root and begin execution

3. write the information in the node

4. if the pointer to the right is not NIL push the pointer onto the stack

5. if the pointer to the left is not NIL move the pointer to the node on the

left

6. if the pointer to the left is NIL pop the stack

7. repeat steps 3 to 7 until no nodes remain

It is likely obvious that the process of dealing with the tree is just the same

as the process of dealing with a root and two nodes. The root is written

and then the left node followed by the right node. Working with the

whole tree the root is written, then the left subtree followed by the right

subtree. Within each subtree the process is the same as the one with a tree

containing only three nodes and the code for this could be written

recursively in a few lines. The critical part is that we process first, then

make a recursive call to the left and then to the right.

In this case, it is not necessary to maintain a stack since this is done by

the system during the recursive calls. It is almost always the case that

traversals are programmed recursively. It could be written iteratively

with a stack, but this underscores that some algorithms are best done

recursively so that the overhead of keeping track of what happens is done by

the system and not the software.

In-order Traversals

This process when implemented iteratively also requires a stack and a

boolean to prevent the execution from traversing any portion of a tree twice.

The general process of in-order traversal follows the following steps:

1. push a NIL onto the stack

2. beginning with the root, proceed down the left side of the tree. As long

as there is another left node following the current node, push the

pointer to the current node

onto the stack and move to the left node which follows it.

3. when there are no more left nodes following the current node, process

the current node.

4. check to see if the last left node has a right node (it obviously doesn't

have a left node).

5. If there is a right node then there is subtree to the right. This

should be processed in following steps 2 to 4.

6. If there is no right node then

pop the last node from the stack(back up one node). Process this node and

since this node has a

left subtree that has already been processed, move to the right of the node

and begin looking for a left and right subtree again.

This iterative solution requires quite a few statements. Recursively, the

processing occurs between the two recursive calls.

Post-order Traversal

This can be done both iteratively and recursively. The iterative solution

would require a modification of the inorder traversal algorithm. In the

recursive solution, the processing is done after the two recursive calls to

the left and right.

Since traversal requires that each node be processed once and only once it

is an O(n) process. In this case, there is little difference between best

case and worst case during actual implementation. It will always be an O(n)

algorithm but the code may be efficient or crude.

Complexity Again

Complexity refers to the magnitude of resource requirements for a given

application. So far we have dealt mostly with computational complexity

which is basically an analysis of the algorithm. As the algorithm increases

in number and complexity of statements, the total complexity also increases.

In addition, we have included the addition of the size of the data and

looked at what happens to the resources required when the data size

increases. Now is a good time to look at another facet of complexity --

space or memory complexity. In general, this is a consideration of the

additional memory which is required beyond that already occupied by the data

structure itself in order for the algorithm to accomplish its task.

Building a binary search tree does not require any additional memory beyond

that required for the tree itself. We generate a new node, find where it

fits, and attach it to the tree. The space complexity here is a constant

amount which just includes the code requirements and the space for the

complete tree and is therefore O(1). However, when traversals are done,

there is another structure which is required in order for the algorithm to

accomplish its task. If the algorithm is written iteratively, then an

explicit stack is required. If it is written recursively, the stack is

still required but it is built implicitly by the operating system. The

problem is to determine what this is. Obviously the size of the stack is

dependent on the size of the tree.

Consider a full binary search tree and a preorder traversal. At each step,

we process the root node of the subtree and then check to see if there is a

right subtree. This will have to be processed after the left subtree so it

must be saved on the stack. When we moved left to process the left subtree

of the root node, we once again must save the root of the right subtree of

of that node. A simple analysis of a full binary search tree with seven

nodes, results in 3 nodes being put on the stack. The critical issue,

however, is how many nodes are on the stack at one time in the worst case.

When the tree is full, an examination of the number of right subtrees as we

move down the left of the tree shows that two nodes have right subtrees when

n = 7 since the far left leaf node has no subtrees. If n = 16, then there

are 3 nodes which have right subtrees as we move down the left side of the

tree. This determines maximum stack size and so for a full tree with n=7

the height is 3 and maximum stack size is 2. For n=15, the height is 4 and

the maximum stack size is 3. For a full tree, maximum stack size is

therefore the height - 1.

Now we must determine the worst case for any binary search tree to see if

this relation still holds. Consider a tree of 15 nodes as shown below:

 o

 / \

 o o

 / \

 o o

 / \

 o o

 / \

 o o

 / \

 o o

 / \

 o o

 / \

 o o

This tree has a height of 8 or (n+1)/2. In this case, the maximum stack

size will be 7 or height -1. On the other hand, if the tree looks like the

one below, the maximum stack size will be 1.

 o

 / \

 o o

 / \

 o o

 / \

 o o

 / \

 o o

 / \

 o o

 / \

 o o

 / \

 o o

Initially, one might have thought that the worst case was a linear tree.

However, analysis of a linear tree where the nodes all go left indicates

that the stack would never be used. If the tree goes to the right the

maximum stack size is 1. This is important because a linear tree is really

a linked list. In a linked list the space complexity is fixed (i.e. O(1)).

That's the same for the degenerate tree.

Thus the best case for a binary search tree with respect to space is O(1)

but this only applies to degenerate trees. The worst case is O(height).

For a well formed tree this is essentially O(log2 n) and for the worst case

(maximum stack size) the height of the tree is (n+1)/2. An important

feature to be emphasized in considering space complexity is that we normally

use a binary search tree which is well formed so that we can capitalize on

the log n features of the structure. In doing so, the price that is paid is

the additional space requirements for some of the processes. When the space

requirements are decreased below some threshold value, then the traversal

does not require much additional space but the other processes in the tree

suffer (for example, searches).

Finding a Node - Searching a Binary Search Tree

The process of inserting nodes into a binary search tree was covered

previously. Essentially, the insertion process was one which started at

the root and determined whether the next move should be left of right

depending on the value of the root. At each node the same decision was

required until the appropriate place was found for the new node and the

process of insertion and setting the pointers was completed.

In the search process, only the location of a given piece of information is

required. Therefore the process is very much the same as the previous

algorithm and the following steps are required:

1. begin at the root and determine whether the key is equal to the root,

and if so the search is already over.

2. if key is not equal to the information contained in the node then determine

whether the key is less than or greater than the information in the current

node.

3. move the appropriate direction and check for equality again. If this isn't

the correct node determine the direction and move that way.

4. repeat steps 2 and 3 until the a node which matches the key is found or

the end of the appropriate path in the tree is reached.

Determining the direction to proceed from each node for a binary search tree

is not difficult because the ordering relationship for the tree determines

the structure mathematically (i.e.. less than or greater than the root or

parent). If however, a search is required on a binary tree, then this could

be potentially more complex. The order relationships are such that

decisions on which way to go from each node can not be made (i.e.. going

left doesn't guarantee that the required information exists in this subtree)

then the search in its worst case would require visiting all nodes and a

traversal would be used. The traversal would cease when the information is

found. The parse tree used as an example for the traversal is an example of

such a situation.

Efficiency of Searches

The efficiency of a search through a binary search tree can be complicated by

the shape of the tree. Therefore, some more terminology.

 * a full binary tree is one in which every level which contains any nodes

contains the maximum number of nodes which can be placed at that level.

 * a minimum height binary tree is one in which it is not possible to reduce

the height given the number of nodes in the tree. It is not however, full

since there are usually some vacancies.

 * a degenerate binary tree is one in which each node has exactly once

child, with the exception of its leaf node. It is sometimes called a linear

tree.

In determining the efficiency of the search in a binary search tree, it is

necessary to determine whether the tree is really just a linked list (linear

or degenerate tree) or whether it is close enough to the full tree so that

the search can be cut in half at each point. Stated another way, in a

degenerate tree, all of the nodes might have to be searched in the worst

case or O(n). In a full tree, the number of potential nodes to be searched is cut

in half when each successive node is considered.

Therefore, the worst case for a degenerate tree is n searches. However, the

minimum height tree and the full tree have a shape where the capability of

cutting the search in half at each node exists and therefore the worst case

is ceil(log2(n+1)) searches. In actual practice, the average search length is

used. The degenerate tree requires 0.5n searches which is what the average

search would be for a linked lists -- half of the time the item searched for

will be in the first half of the list. The average for the two well formed

trees is also at the 50% level. However, because of the structure of the

binary search tree, half of the nodes are in the leaves for these two cases.

Therefore the average number of probes necessary is (log2(n+1)) -1. Since

this is an average it can be expressed as a decimal value or an integer.

(The average score for a test in which all test scores are integers can be

given as a number with decimals or as an integer). The only additional

information which is provided by expressing the average search length as a

decimal is an indication that the tree is minimum height but not full.

