CPSC335 – Information Structures II

Assignment 4
Huffman Coding File Format

The Huffman C335 file is a binary compressed Huffman file format. All assignments must compress to and decompress from this format. The C335 file stores integers in little-endian format. This means that bytes of low order are stored first. For more information see http://en.wikipedia.org/wiki/Endianness.

The File is organized in two parts. The first part is a fixed size header of 10 bytes. The second part contains symbol-records followed by a bit field of compressed data:
	HEADER

SIZE=10 BYTE

	DATA RECORDS:

1. SYMBOL LIST

2. COMPRESSED DATA

SIZE=DEPENDS ON HEADER & SYMBOLS

The detailed format description is given below. The format is written in the following form. The heading (i.e. Header:) are labels and is not a file content. Each file content contains three information. First number is the offset in the file. Second is the data record name. This is followed by the data record type and within brackets the size of that type in bytes. The first element “ID” is the file signature which must be C335.

Header:

[0000]
 ID=C335
String(4)

[0004]
nSymbols
short(2)
// number of different symbols

[0006]
nDataBits
int(4)

// compressed data size in BITS
Data:

Symbol 0:

[0010]
Symbol

char(1)

// the symbol. a,b,c,d etc.

[0011]
nBits

unsigned char(1)
// total bits for this symbols

[0012]
bits

BYTE((nBits+7)/8)
…

…

…

Symbol nSymbols-1:

[????]
Symbol

char(1)

// the symbol. a,b,c,d etc.

[????]
nBits

unsigned char(1)
// total bits for this symbols

[????]
bits

BYTE((nBits+7)/8)
Data Bits:

[????]
DataBits
BYTE((nDataBits+7)/8)
// The compressed bitfield

Example: A Compressed file containing the message “Hello\n”

The bit pattern for the symbols are as followed (could be something else but doesn’t matter):

H= 000

e= 001

l= 01

o= 10

\n= 11

“Hello\n” = 000 001 01 01 10 11 (14 bits)

File Content:

ID=C335
nSymbols=5

nDataBits=14

Symbol=’H’

nBits=3

bits=000 00000 (binary)
Symbol=’e’

nBits=3

bits=001 00000 (binary)
Symbol=’l’

nBits=2

bits=01 000000 (binary)
Symbol=’o’

nBits=2

bits=10 000000 (binary)
Symbol=’\n’

nBits=2

bits=11 000000 (binary)
Data= 00000101 01101100 (14 bits packed in 2 bytes remaining bits of second byte is 0)
Final File Content: The following content is an array of 27 bytes. Each element is either written as a character or an ASCII code or an Hex value:

File=[‘C’, ‘3’, ‘3’, ‘5’, 5, 0, 14, 0, 0, 0, ‘H’, 3, 0x00, ‘e’, 3, 0x20, ‘l’, 2, 0x40, ‘o’, 2, 0x80, ‘\n’, 2, 0xC0, 0x05, 0x6C]

How to Read and Write:

The Java class for reading binary file is called DataInputStream and DataOutputStream. However, these classes read and write data in Big Endian format. To aid the implementation of this assignment, a third party set of classes has been posted (LITTLE ENDIAN BINARY FILE IO) at www.cpsc.ucalgary.ca/~apu. Unzip this package and copy the necessary classes into your project. The files you will need are LEDataInputStream.java and LEDataOutputStream.java.

An example of how to read a C335 file is also posted. In addition, an executable decompressor is posted so that you can verify your implementation. Please make sure that your program writes a file that can be successfully decompressed by the decompressor posted.

