Hashing

Searches discussed so far vary in the efficiency with which they can find

the appropriate key.

Obviously, the ideal is to have a way of searching which was always O(1).

While this is rarely possible, there is a method which is O(1) or some multiple

rather than being dependent on the number of data elements.

Hash tables are a way of finding a record using keys which are a part of the

record and which also can be found by using specific algorithms which

operate on the key to determine the location of the information. The

information (records for example) can be stored in the hash table and the

process of determining the location of the information in the hash table uses

a hash function. The process of building or finding information in

the hash table is called hashing.
Hashing is the antithesis of sorting. Sorting arranges the records in some

pattern. Hashing scatters the records throughout the hash table in a

completely random fashion. Therefore, hashing is appropriate for implementing

a specified relationship among elements but it does not lend itself to operations

which attempt to make use of any other relationships among the data. In

implementing the hash table, other relationships may be destroyed. For example

an ordered list can be put into a hash table but since hashing is the antithesis of

sorting, the sorted nature of the data is lost. It is therefore difficult to determine

the fourth item in the ordered sequence. The price you pay for efficient searching

is the loss of relationships which previously existed in the data.

Suppose that a company has 500 employees and that the record

for each employee is to be hashed (placed in the table) by social insurance

number. Using the whole number would require 1 billion storage locations

in order to guarantee that each number would end up in a unique location.

This is an obvious waste of memory and may not be possible. What

is needed is a way to use the social security number with a hashing function

which would determine a unique location for each name and really only use

an array of records which is slightly longer than 500 records.

Hashing, by definition, assumes that there is random access to an element which

contains the key. It therefore assumes that the implementation provide this

(at least initially) and therefore the structure employed is an array. If the

data is composed of records it may be an array of records, or an array of

references may be combined with some structure which can be dynamically

allocated.

Hash Functions

Since hash functions must manipulate the data in some way to find a hash

location, arithmetic and logical process may form some part of any one of the

categories. Further, the language chosen may also affect how a hash function

is actually implemented. The ideal is that the key exists in a form which

would uniquely identify each entity and that if an array were constructed, the

number of elements in the array would be equal to the number of pieces of data.

Since this situation rarely exists, we try to find a way to fit all of the data

into an array of the smallest size that will accommodate all of the data. This

array size is also dependent on how the hashing process is implemented.

Initially, we will assume that the array must be at least equal in size to the

number of pieces of data that will be inserted. Actually, we will choose an array

which has a prime number of elements.

Hashing is the process of chopping up the key and mixing it up in various ways

in order to obtain an index which will be uniformly distributed over the

range of indices -- hence the 'hashing'. There are several common ways of

doing this. Your text categorises these somewhat differently so these notes

and the text should augment one another.

Truncation

This is a method in which parts of the key are ignored and the remaining

portion becomes the index. We take the given key and produce a hash location

by taking portions of the key (truncating the key so that the result

is smaller). For example, if a hash table can hold 1000 entries

and an 8-digit number is used as the key, the third, fifth, and seventh digits

starting from the left of the key could be used to produce the index.

[e.g... key is 62538194 the hash location is 589]. Notice that the range of

possibilities using this hash function is from 0 to 999 which is 1000 different values.

Although this type of function is simple and easy to implement,

it unfortunately often fails to distribute the keys evenly. When keys

fall into groups in the table, clustering is said to occur. By using only

portions of the key, the possibilities are reduced and in many cases (such

as specific digits in social security numbers) many may be the same.

Folding

This process breaks the key into several parts and recombines the parts to

form an index. The parts may be recombined by addition, subtraction,

multiplication, etc and may have to be truncated as well. Such a process

is usually better than truncation by itself since it produces a better

distribution because all of the numbers in the key contribute to the hash

function. [e.g... using a key of 62538194, and breaking it into 3 numbers

using the first 3, the second 3 and the last 2 digits would produce 625, 381,

and 94. These could be added to get 1100 which could be truncated to 100.

They could also be multiplied together and then three digits chosen from the

middle of the number produced]. If the language allows, bit shifting and

exclusive oring are forms of folding. We are really manipulating parts of a

key at the lowest level in order to obtain new combinations to provide an index

to the hash table.

Modular Arithmetic

This process essentially assures that the index produced falls within a specified range.

The key is converted to an integer which is divided by the range of the index with

the resulting function being the value of the remainder. In its simplest form the key

is an integer and the modulus of the key is found directly. In other cases,

converting to an integer may use any number of processes to convert the key to

an integer and also might employ something from the two categories above.

If the value of the modulus is a prime number, the distribution of indices

obtained is quite uniform, in fact, hash tables almost always have a size which is a

prime number. A table whose size is some number which has many prime factors

provides the possibilty of many indices which are the same. You would not

choose a hashsize which is a multiple of 2, for example. Therefore, if a hash table is to be constructed for about 1000 records, the best bet would be to have a table which can hold

at least 1009 records.

Sometimes the hash function is suggested by the structure of the key. In

other cases, the best hash function can only be determined by experimentation.

Perfect minimal hash functions do exist. These are hash functions which will place

every item uniquely in the smallest possible hashsize (ideally equal to the number of items). Generally these hash functions are produced when all of the keys are known in advance. It is

extremely rare to find a perfect hash for an arbitrary number of keys.

Hash functions which use all of the key are almost always better than those

which use only some of the key. When only portions are used, information is

lost and therefore the number of possibilities for the final key are reduced.

Similarly, if we work with only integers or characters, there is a limit to

what can be done. However, if we deal with the integer in its binary form,

then the number of pieces that can be manipulated by the hash function is

greatly increased. This is one of the instances where working at the lowest

level is advantageous. We still abstract the function because the code which

uses the hash function does not need to know how the hash key is obtained, only

its range of values.

It is obvious that no matter what function is used, the possibility exists

that the use of the function will produce an index which is a duplicate of

an index which already exists. This is termed a collision. Therefore,

choosing a hash function which is efficiently calculated and which yields a

good distribution is only solving part of the problems in hashing. The

resolution of collisions must also be addressed.

Collision Resolution

The process of using a hash function to find some initial

location in a hash table is often referred to as open hashing. If the position

obtained is already occupied, then another open position must be found since

there is a collision. Collisions are resolved by a process of rehashing (also called

closed hashing). As an example, we will use the following list of keys in order to show what happens. We will also use

position = key mod hashsize

to determine the position in the hash table of size 11.

Key 23 18 29 28 39 13 16 42 17

Position 1 7 7 6 6 2 5 9 6

There are two major ways of resolving the collisions.

1. Open Addressing

Resolving collisions by open addressing is resolving the problem by taking

the next open space as determined by rehashing the key according to some

algorithm. Since the hash table has enough space to hold all of the records

some space must be open -- thus the 'open addressing'. Some open addressing

procedures are:

 Linear Probing

This process starts with the position at which the collision occurred and does

a sequential search for the next open position. This essentially the function

newposition = (currentposition + 1) MOD hashsize

The results of using linear probing are shown below

[image: image1.png]23 18 29 28 39 13 16 42 17

1.7 7 6 6 2 5 9 6
17 123 |13 16 | 28| 18 (29 |39 |42
o 1 2 3 4 5 86 7 8 9 10

One of the major problems with this approach is that once the table becomes

quite full the length of the search for an open space increases. In practice,

clustering occurs, that is, the used spaces tend to appear in groups

which tend to grow and thus increase the search time to reach an open space.

It does, however, eventually find an open space.

 Incremental Functions

In order to try to avoid clustering, a method which does not look for the first

open space must be used.

Two common methods are used.

Quadratic Probing

If there is a collision at hash address 'h', then the probing begins by adding

1 to the address, then 4, then 9, etc. In general form this can be expressed

as:

new position = first collision position + j2 MOD hashsize

where j is the number of the probe and hashsize is the size of the hash table. The results of using a quadratic probe are shown below.

[image: image2.png]23 18 29 28 39 13 16 42 17
1.7 7 6 6 25 9 6

23 |13 17|16 | 28|18 |29 |42 |39

1.2 3 4 5 6 7 8 9 10

Once again, the best results are obtained when the size of the hash table is

a prime number since numbers which have several divisors would yield a fair

number of duplicate values when the mod function is used. When a prime is

used for hashsize, the number of distinct probes which will be made is

(hashsize + 1) DIV 2. Therefore, not all positions are probed but the results

are generally satisfactory. If the collision cannot be resolved, then

overflow is said to occur.

Key-dependent Increments

An obvious difficulty in the quadratic probe is that overflow may occur when

there is still space in the hash table. While this can be partly rectified

by making a table slightly larger than would be required when all elements are

in the table, this is wasteful, especially for large hash tables. Therefore,

key-dependent increments are used. These increments vary according to the

key used for the hash function. If the original hash function results in

a good distribution, then key-dependent functions work quite well for

rehashing and all locations in the table will eventually be probed for a

place to put the element.

Key-dependent increments are determined by using the key to calculate a new

value and then using this as an increment to determine successive probes.

Some checks should also be done before the increment obtained is used to

search for new positions. For example, since the original hash function was key

MOD 11 we might choose a function of key MOD 7 to find the increment. Thus

the closed hash function becomes

newposition = currentposition + (key DIV 11) MOD 11

The results of using this key dependent increment method is shown below.

[image: image3.png]23 18 29 28 39 13 16 42 17
17 7 6 6 2 5 9 6
2 1 2 2 3 1 1 3 1

23 |13 39 |16 |28 |18 |17 |29 |42

1.2 3 4 5 6 7 8 9 10

This closed hash function works for the data in the example because there are no keys

with a value of less than 11. In all of the closed hash functions it is important to ensure

that an increment of 0 does not arise. If the increment is equal to hashsize the same

position will be probed each time so this value cannot be used.

The increment is now dependent on the key and different increments exist. Generally,

a different number is used to find the modulus and while the open hash function could

be used to find an increment for the closed hash function, this should be avoided if possible.

Another problem exists if the size of the hash table is not a prime. For a number of the

increment values only some of the positions will be probed regardless of the number of

increments.

If we ensure that the hashsize is prime and the divisors for the open and

closed hash are prime, the rehash function does not produce a 0 increment, then

this method will usually access all positions as does the linear probe.

Using a key-dependent method usually result reduces clustering

and therefore searches for an empty position should not be as long as for the

linear method.

Collisions increase the search length to find any key since the search follows the same procedure as doing the original insertion. However, since hash functions are used often in writing efficient programs for a wide variety of applications, there are many modifications and extensions to the information that was presented here.

One of these is a simple coalesced hash table which is an attempt to make the searches shorter. To do this it adds some steps to the process of building the table and it also requires a second vector rather than a single one-dimensional array. The first column/row in the table is the hash table of keys. The second row or column is an indicator of which element to look in if a collision occurs. The table below was built using the simplest collision resolution technique, that ofa linear probe. The complete table is shown below, with a short explanation following.

[image: image4.png]23 18 29 28 39 13 16 42 17
1.7 7 6 6 25 9 6

23 |13 16 | 28 |18 |29 | 39

Notice that 23 and 18 hash into empty positions. However, 29 collides with 18 and so ends up in position 8. In the reference vector, an 8 indicates that a collision at position 7 was initially resolved by going to position 8. 28 hashes to position 6 and is placed there. 39 also hashes to position 6, but there is no previous collision there so we just use the rehash and move one more to position 7. At this point, we see that there was already a collision there and it was necessary to go to position 8, so we move to 8. There have been no previous collisions there so we use the rehash to get to position 9 where 39 can be placed. It is then necessary to go back to position 6 and indicate that the resolution is in location 9. The number of probes that we went through to place 39 is now reduced to only 2. If we put a 9 in the reference vector in position 6, then a search for 39 would go to position 6, and then to position 9, eliminating some of the probes. The next collision occurs when an attempt is made to place 42 which should go in position 9. There is no link to another place so we use the rehash to put 42 in position 10 and set the indicator in 9 to 10. Similarly, 17 eventually ends up in position 0 by starting at 6 and going to 9 and 10, and finally 0. The indicator in 10 is set to 0. Resolving collisions by coalescing the table can reduce the average probes to find a key. It is also slightly easier to just follow the indicator to a new array element than to rehash and then go to the element.

Effect of Deletions

Deletions from a hash table cause considerable problems. Memory space

which comes available because of a deletion should be re-used. If there

have been no collisions at that location resulting from hashing the key,

then the deletion would pose no problem. However, if after inserting the

first element into the location, subsequent hashing has resulted in the same

location and rehashing has been used to place the element in another position,

taking out the first element causes problems. When searching for an element

in a hash table, it is important to note that the searching algorithm is really

the same as the insertion algorithm. Therefore, if there is a collision some

mechanism is available to resolve the problem and place the element. The probe

continues until an open space is found. Removing any element breaks the

search because an open element indicates that an element can be placed, or

conversely, indicates that no more elements hash to that location given the

initial key. In order to cope with this, any deletion must set a key in the

hash table (often called a tombstone) to indicate that the space is now open

for the insertion of a new element if insertion is taking place but that if the

hash table is being searched, there are other elements which follow and the

collision resolution procedures should be used to continue searching the table.

Because deletions cause considerable difficulties and can reduce the

efficiency of using hash tables, they should be avoided whenever possible.

2. Collision Resolution by Chaining

External Chaining

Using arrays for hash tables is reasonable because there is random access

to any element. Thus access can be reduced to O(1), or if collisions occur

some multiple depending on the number of rehashes required before the

collision is resolved. However, arrays can use substantial amounts of

memory and in order to make collision resolution effective it is often

necessary to declare arrays which are larger than are actually filled with

elements (so searches for empty positions do not reach an overflow condition).

An option is to make the hash table an array of pointers to linked lists.

Then when a key is hashed, the position in the table is accessed which

refers to a linked list. Resolution of collisions is simple -- it requires

only that a node be added to a linked list. This insertion is usually as the

first item in the list which is the easiest to accomplish since it does not

require a traversal of the list. Deletions also pose no special

problems. The oringinal data are shown below in a table where collisions are resolved by chaining.

[image: image5.png]23 18 29 28 39 13 16 42 17
1.7 7 6 6 2 5 9 6

23

13

16

17 39 28

29 18

42

oL

As long as the hash function produces a reasonable distribution,

none of the linked lists is likely to be very long. While there may be

elements in the hash table which remain unused, the savings in using dynamic

storage for the information should make up for the few un-used elements.

This is not true when the key and the information each only need one word of

storage space. In this case, for n elements, n words would be required to

store the hash table, n words for the information and n words for the links

in the chain. Using an array implementation which uses the same storage

would result in a table one-third full and an implementation in which all

elements could be accessed randomly. If the table is only one-third full,

there are not likely to be many collisions and therefore the array

implementation with open address collision resolution would likely be the

best.

Analysis of Searching Using Hash Tables

As mentioned, searching follows the same procedure as insertion. When

collisions occur, a method exists for resolving the collisions. When

searching, if the element is not found at the first locations, the rehashing

procedure is used to determine the next position to check until the search

is either successful or not.

With any reasonable size problem, collisions are likely to occur, therefore,

these should be minimized by using functions which produce a uniform

distribution and collision resolution procedures should be efficient (not

access too many positions which are already filled or produce clusters).

In analyzing search efficiency, the average is usually used. Searching with

hash tables is highly dependent on how full the table is since as the table

approaches a full state, more rehashes are necessary. The proportion of

the table which is full is called its load factor. When collisions

are resolved using open addressing the maximum load factor is 1. Using

chaining however, the load factor can be greater than 1 when the table is

full and the linked list attached to each hash address has more than

1 element.

The table below gives the average number of probes for different collision

resolution methods derived from experimentation at various load levels for the

hash table. The values are for large hash tables, in this case larger than 430.

.

Load factor
0.10
 0.50
0.80
 0.90
0.99
 2.00

Successful

Chaining
 1.04
 1.2
1.4
 1.4
 1.5
 2.0

Key-dependent 1.04
 1.5
2.1
 2.7
 5.2

Linear
 1.05 1.6
3.4
 6.2
21.3

Unsuccessful

Chaining
0.11
 0.53
0.78
 0.90
 0.99
2.04

Key-dependent 1.13
 2.2
5.2
 11.9
126

Linear
 1.13 2.7 15.4
 59.8
430
Obviously, chaining consistently requires fewer probes than open addressing.

However, traversal of the linked list is slow and if the records are small

it may be just as well to use open addressing. Chaining is best under two

conditions -- when the number of unsuccessful searches is large or when

the records are large. Open addressing would likely be a reasonable choice

when most searches are likely to be successful, the load factor is

moderate, and the records are relatively small.

In comparison to other methods of search it is important to note that the

number of probes is dependent only on the load factor on the hash table

and not on the absolute number of items in the table. On average, retrieval

from a hash table which contains 20000 items out of a possible 40000 items is

no slower than retrieval from a table of 20 items out of a possible 40.

With sequential search, if the number of items is increased 1000 times, it

would take 1000 times as long to search. If a binary search tree is increased

1000 times, the search would take 10 times as long. Obviously, the price

paid for the efficiency of the hash table is that large amounts of memory

must be available for a large amount of data in order to keep the load factor

moderate. Obviously, if the hash table contains only the keys and a reference

to the actual data, then the use of an array is preferable in most cases.

