GRAPHS

This abstract data type is the most general of all those considered thus

far.  It is really a generalization of a hierarchical structure which is

itself a generalization of a linear structure .  A graph is a way of

specifying relationships by using predecessor AND successor. 

A  graph  consists of  nodes  which are the basic components containing some

information and  edges  which connect two nodes and therefore show

relationships between nodes.   If a graph is used to specify membership in a

group, then those which belong to each of the groups can be shown using

edges to connect those nodes which belong to the same group.  For example,

if the relationship among several elements is one determined by size (like

small, medium, and large), then all of the elements in the group designated

by large can be specified by showing nodes which have edges in which all

those belonging to the large group are connected by edges to the largest in

that group.  Therefore, the relationship to be shown by the graph must be

specified.  If the elements of the graph show a relationship among members

in which several edges are connected to the same node, then this can also be

shown.  For example, students can be in several of the same classes as

another student.   These relationships could be shown on a graph in which

each node (representing a student) is connected to each other node in which

both are in the same class.  Relationships may or may not specify a

direction.   To begin with non-directional relationships will be examined.

A  path  is a sequence of nodes connected by edges.  If a path is a  simple

path , then each of the nodes occurs only once in the sequence.  If the path

is simple except for starting and ending at the same node then this is

called a  cycle.  If a path exists from one node to every other node (either

directly or through several other nodes) then the graph is said to be

connected.  

Two nodes are  adjacent  if an edge connects them.  The  neighbors of  a

node are the nodes which are connected to the node ( in other words are

adjacent). 

Operations Defining Graphs 

The operations which define this ADT are:

1. Create  - set up an empty graph

2. Clear  - remove contents of graph

3. Insert node  - inserts a node into the graph

4. Insert edge  - links node to other relevant nodes

5. Delete node  - deletes a node from the graph

6. Delete edge  - deletes relationships between nodes

7. Retrieve  - obtains information stored in a node

8. Update  - changes the information in a specified node

9. Traverse  - process each node in the graph according to specified

a. traversal procedures

10. Find node  - search for a specified node

11. Find edge  - search for a specified relationship between nodes

Representation 






Obviously, the nodes and edges can be shown pictorially but representing the

information in a computer is not the same.  There are two methods by which

a graph can be represented -- an adjacency matrix and an a adjacency list.

A graph is shown below:

This can be represented as an  adjacency matrix  which has the same number

of rows and columns as there are nodes in the graph.  If there is a

relationship between the nodes then the row and column designating the nodes

would indicate that a relationship exists.  A '1' represents that a

relationship exists and a '0' represents no relationship, then the matrix

below would represent the graph. 

   ON TW TH FO FI SI

ON  0  1  1  0  0  0

TW  1  0  1  0  0  0

TH  1  1  0  1  0  0

FO  0  0  1  0  0  0

FI  0  0  0  0  0  1

SI  0  0  0  0  1  0

As the name suggests, the adjacency matrix shows adjacent nodes or neighbors.

All of the information in the original graph is shown in the matrix.  This is

an array implementation of the graph.

The adjacency list representation of a graph is a linked list implementation.

One list is the graph node list in which each of the graph nodes is placed.  

Another list is the edge list in which the edges are placed.  Each edge can be

represented by two edge nodes ( one for each of the graph nodes that the edge

connects).  This makes determining neighbors simple and therefore makes 

traversals simpler to code but the number of edge nodes is twice the number

of graph nodes.  One other commonly used method is to combine arrays and

linked lists.  Usually, the node list is represented with an array so that

there is random access to a particular node.  This makes traversals and

other processes easier.
















In this graph, the nodes ON, TW, TH, and FO are a subset of the graph and

are called a  subgraph .  The subgraph is connected and contains a cycle.

If the whole graph is considered, it is not connected because two nodes have

no paths to the other nodes in the graph. 

Traversals 

Traversals are an important graph operation.  Traversals of trees provided

information about the tree and the associations of information contained in 

the tree.  Traversals of graphs also provide this information.  In graphs,

how and if  the nodes are connected is important, as is the length of the

path between two nodes.  These can be determined by traversals as well.

There are two main types of graph traversals.  These are:

1. breadth first 

2. depth first 

Breadth First  

The effect of this traversal is that a node is processed first.  This is

followed by processing ALL of the neighbors of that node.  Then the

neighbors of the neighbors are all processed.  If the graph looked like a

tree, then this traversal would essentially process the root node, then

process all nodes at the level below the root, then all the nodes at the

next level, etc. The traversal therefore moves across the breadth of the

graph and gets increasingly deeper into the graph as it does the processing. 

In order to process each node in a breadth first traversal, a queue is

required.  The process adds the first graph node to the queue.  When this

node is served, it is processed and all of its neighbors are added to the

queue.  As each node is served from the queue, it is processed and any of

its neighbors which have not yet been visited are added to the queue.  This

process continues until the queue is empty and no nodes remain which have

not been visited.  Notice that the graph nodes are the object of the

traversal.   However, the edges are used to determine the neighbors

(i.e.. the relationships among the graph nodes).  Since a node can be

connected to several different nodes and traversals only process each node

once, it is necessary to keep track of the status of each node.  This can be

done by putting a status field into each node.  This field should make it

possible to determine whether the node has not yet been accessed as a

neighbor, if it is waiting in the queue, or whether it has been processed. 

The traversal can be accomplished with either the array or linked list

implementation.  However, the linked list removes some of the options if the

edges are singly linked to the node.  Processing then only moves from the

node through the edge list in one direction.  With the array, the column

could be searched from left to right or from right to left.  This would mean

that the nodes specified as neighbors could be entered in different orders

depending on which direction the column was searched.  In order to ensure

that the actual sequence in a breadth first traversal is the same, the

direction would have to be specified.  Whether the nodes are added by

scanning in one direction or the other may change the output order the

relationships in the graph (i.e.. the depth of a group of nodes) are still

maintained.   For the graph given previously, the breadth first traversal

would result in ON, TW, TH, FO, FI, SI.  This is based on adding nodes to

the queue by scanning from left to right.  If the adjacency matrix were used

and the scanning was right to left, the result of the traversal would be ON,

TH, TW, FO, FI, SI.  The TW and TH are switched in the two traversals but

the information provided is the same.  This can be best explained by

re-drawing the diagram.

         









>From this it can be seen that the breadth first traversal moves across each

level.  The relationships in either graph are the same.

Depth First 

In a depth first traversal, one node is processed, then one of its neighbors

is processed and the rest retained.  At each step a neighbor is processed

after the node is processed.  When no neighbors exist, then the next

neighbor of the previous node is processed using the same procedure.

Essentially, this is analogous to the pre-order traversal of a binary tree.

If the graph looked like a tree, then the root would be processed, then the

leftmost node at the next level down, and the leftmost node at the next

level down,  etc., until the deepest level is reached.  Then the traversal

returns to the level above and looks at the next node to the right

of the one already processed and begins working down the tree again.  Thus

this traversal works down the graph successively as opposed to the other

where it works across the graph. 

The depth first traversal uses as stack instead of a queue.  A status

indicator in each node is still required.  The process consists of pushing

the first node onto the stack.  This is then popped, processed, and any

neighbor that has not been visited is put on the stack.  The stack is popped

for the next node and the process repeated until nothing remains in the

stack and all nodes have been visited. 

For the graph given previously a depth first traversal would result in

ON, TH, FO, TW, FI, SI.

Again, for any given node, the order of specification of the neighbors

determines the final outcome in the  traversal.  If the neighbors are

determined by reading the list or array from left to right, then the

traversal will produce a different result than if the neighbors are

determined by reading the edge list from right to left.  It must be noted

that the traversals of trees specify right and left -- something that is not

done for the more general ADT, a graph.  Also, a traversal of a graph can

begin at any node since there is no root node specified.  The traversal

results therefore depend on the order specified for determining neighbors

and also the starting node used for the traversal. 

 Complexity of Traversals 

 ------------------------

The number of operations required for a traversal of a graph is dependent on

the representation used.  If an adjacency list is used, then if a graph

contains n nodes it will contain ne edges where e is the number of edge

nodes used to represent an edge.  Thus, if only one edge is required to

represent the edge between two nodes then e is one, if two edge nodes are

needed (which is the implementation usually used here) then e is 2.   In the

traversal, each node must be visited (n operations) and each edge node must

also be visited.  Since the number of nodes for each edge is ne, the total

operation requires n + ne operations.  If the edge nodes have two fields to

indicate that the two nodes that are connected by the edge, then only e

operations are required and the total operations is n + e. 

When an adjacency matrix is used, assuming a rectangular matrix, the

traversal requires that each element be accessed.  Therefore, if there are n

nodes then there are n squared edges or elements.  Thus this is an n squared

process.  Considering the two implementations, if the number of edges

connecting the nodes is small, the adjacency matrix will consist of mostly

falses (0).  This results in much wasted space and considerable increases in

the number of elements which must be accessed to provide traversal

information.  In this case the best option is the adjacency list which 

requires less storage and fewer operations.  If the graph is highly

interconnected, then the adjacency matrix will be dense (few 0's or falses).

In this case, the adjacency list may require more storage, the order is n2,

and the matrix implementation may be preferable.

 Relationship of Graphs and Trees 

A  tree  is a special case of a graph that has three features:

· it is connected

· it has no cycles

· a node is designated as the root.  

If we create a tree from a graph it is called a spanning tree.  However, all of the 

information in the original graph is not included in the spanning tree unless the 

original graph contained no cycles.  Note also that the tree is a general tree and 

not a binary tree.

NETWORKS

To this point, the discussion of graphs has focused on the relationships

among nodes with no emphasis on the degree of the relationship indicated by

any given edge which connects two nodes.  However, if there is some value

specified for the edge, then the edge indicates some degree of association

between the nodes which the edge connects.  For example, if the nodes

represent cities which contain branch offices in a company, the edges could

contain numbers indicating the distance between the two cities.  In this

case, when the edges have values associated with them, the graph is called a

weighted graph .  Weighted graphs are given a special name --  networks. 

The connected graph used previously can be shown as a network if weights

are given to the edges as shown below




                                4                      3                    5                   7                   6

                                                8


The adjacency matrix representation of the graph is then:

   ON TW TH FO FI SI

ON  0  4  3  0  0  0

TW  4  0  8  0  0  0

TH  3  8  0  5  7  0

FO  0  0  5  0  0  0

FI  0  0  7  0  0  6

SI  0  0  0  0  6  0
The edges not only show relationship between nodes, they are now showing

some degree of magnitude of the relationship.  Since this graph has a cycle

in it, it cannot be represented as a spanning tree unless the cycle is

removed.  The adjacency matrix for a network is usually either of type real

or integer.  In applications of graphs, one of the structures which can be

useful is a  minimum spanning tree .  A minimum spanning tree is obviously s

spanning tree, but the sum of the weights is the minimum possible for the

graph.  Any cycles in the graph are also removed in the process of building

the minimum spanning tree. 

The simplest procedure for constructing a minimum spanning tree from a weighted

connected graph or network essentially consists of the following steps 

(assuming the adjacency matrix implementation for the connected graph above).

* A root is chosen for the tree.  In this case consider that ON is chosen

as the root.  It is added to the tree and is marked as included.

* The row ON is scanned to find the lowest non-zero value which is 3.

This is the weight between node ON and TH.  TH is therefore added to the

tree and then TH is marked as included in the tree.

* Scanning then moves to row TW and only those nodes which are marked as

included are scanned for the lowest weight.  Therefore, columns ON and TH

are scanned for the lowest weight, in this case, 4.  Then TW is added to the

tree, connected to ON and is marked as included.

* Scanning of row TH in columns ON, TW and TH provides no further link.

* Row FO is scanned in columns ON, TW, and TH where a 5 is found in TH.

FO is therefore connected to TH in the tree and marked as included.

* Columns ON, TW, TH, and FO as scanned in row FI resulting in the

inclusion of the link between TH and FI.

* Scan of the final row results in the inclusion of SI.

The resulting minimum spanning tree has a minimum weight for the sum of the

paths.  However, since this is a simple and greedy algorithm, it does not always 

guarantee that the tree is a minimum spanning tree, but it will be close.  In order

to be sure that you have the minimum spanning tree, you need to create the tree with 

all of the different nodes as root.  We will consider other algorithms which will always

return a minimum spanning tree.

A minimum spanning tree does not mean that the distance from any specified node to

another in the original graph is the shortest path, although it might be.

Because cycles are removed, the shortest path between two specified nodes

may also have been removed in order to minimize the total weight.  This is

once again a greedy algorithm.  
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