COMPLEX SORTS

Sorts which attempt to do better than the O(n2) barrier that afflicts those

sorts described so far, are more complex to program and tend to involve more

computational overhead at each step. They gain in efficiency, however, by

reducing the number steps and, as a result, the number of swaps and

comparisons which need to be performed.

Quicksort

Like the three sorts just described, quicksort attempts to guarantee that at

each pass through a list of items, one of them will be in its final resting

place. It achieves superior performance over the simple sorts by reducing

the amount of work needed to bring this about. In the simple sorts the

search space for the next item to be sorted is reduced by one for each

pass. Quicksort is able to do better than this by breaking the list into

sublists so that it is not necessary to search the whole list to find the

next item to be sorted.

This is made possible by a technique which not only places one item in its

correct location but also makes sure that all keys less than the sorted item

occur earlier in the array and all keys greater than the sorted item appear

after it. This means that each of the two sublists can be sorted

independently by application of the same algorithm.

Quicksort starts with the lower and upper bound of the array. The first

element is chosen as the one to be placed in its correct position and this

item is called the pivot. Starting from each end of the array, scanning

proceeds up to find an element which is greater or equal to the pivot and

down to find an element less than or equal to the pivot. If two such

elements are found they are exchanged. The scanning continues from this

point and more elements are exchanged if appropriate. When the two scanning

pointers cross over scanning stops.

Once scanning has stopped, the list is partitioned into two sublists, one

with elements all less than or equal to the pivot and the other with

elements greater than or equal to the pivot. The pivot is then placed

between these two lists by exchanging it with the last item in the lower

sublist. Quicksort is then applied recursively to each of these two

sublists.

You will find the code for a version of quicksort and a more detailed example

than the one done in class in your text.

Efficiency of Quicksort

Taking a best case view, if the first key to be sorted is placed in the

middle of the list then the list is partitioned into two halves, each of

which has half the search space of the original. If, in each of these

halves, the sorted item appears in the middle then these lists are again

partitioned into two equal parts each.

That this should result in faster sort times can be seen by realising

that sorting a list of size N in time proportional to N2 takes twice as

long as sorting two lists of length N/2.

Because of this ability to divide the list into two at each step, quicksort

has a potential performance of O(n log2 n). Ideally, the list will be divided

in half each time. This process is repeated log2 n times. Each time the list

is partitioned, a pass must be made through all remaininng items, therefore, the

n log2 n. In the worst case, the pivot value may remain in its original

position and not be moved. When this happens the two sublists formed are one

of length zero and one of length (n-1). If at each call a sublist of length

(n-1) is generated, then quicksort now looks like a simple sort and has

degenerated to a O(n2) algorithm. In fact, in this situation quicksort

would be slower due to the overhead of recursive calls and more complex

operations at each step. Fortunately, for random data quicksort is able to

perform close to its best and so gives very significant speed improvements

over the simple sorts. However, when looking at the number of compares, the

worst case is O(n2) compares and the average and best approach O(n log2 n).

There are no points at which quicksort realizes that a partition is sorted

so there is no reduction in the number of compares. The number of data

moves does vary substantially, When the list is already in order, there are

no data moves even though this is the worst case number of compares. When

the data is in descending order, there will be n/2 data moves and the list

will be in order after the first pass. However, the process will continue

with sorted sublists. On average, the number of data moves will be some

fraction of n log2 n.

The possibility of degraded performance can be reduced if the pivot is

chosen more carefully. It can be seen that worst case will occur if the list

is already sorted (ascending or descending). If instead of choosing the left

hand element, one is chosen from the middle of the list, or, picking the

best of the left, right and middle elements, then the likelihood of making a

bad choice is very small. In practice further gains can be achieved by

recognising that quicksort is poor for short lists and combining it with a

simple sort for sublists below a certain threshold (e.g.. if a sublist is

less than 20 elements long use insertion sort instead of a recursive call to

quicksort).

MERGESORT

Mergesort is another algorithm which can sort a list in time proportional

to n log2 n. It is based on the idea that two already sorted lists can be

merged into one by simply comparing the head of each list and repeatedly

taking the smaller of the two. It can also function with a completely

random list.

Mergesort applies a divide and conquer strategy similar to quicksort but in

reverse. It starts by considering a list to be made up of many sublists each

containing just one element. If pairs of elements are merged the result will

be a sequence of sorted sublists each two elements long. If this process is

repeated on these lists, a set of sorted sublists of four elements each will

be obtained. Continuing in this way, one completely sorted list will result.

The main code of mergesort repeatedly calls the merge subroutine until it

determines that the size of the sublists must be at least equal to the size

of the original list. At this time the sort must be complete.

The merge subroutine has the job of partitioning the list into sublists.

The size of the sublist is determined by the parameter 'segment'. The list

is viewed as a sequence of these sublists which are to be merged in

pairs. Each sublist of a pair has an indicator for its head. A third

indicator keeps track of the new list being built. The heads of the two

lists are compared and the smaller of the two is transferred to the new

list. The head of the list that was used is updated. This continues until

one of the lists is exhausted. At this time the remains of the other list

are transferred. Since this sublist was already sorted and the remaining

elements must be greater than any in exhausted list, this maintains the sort

in the new list.

Once one pair of sublists has been merged the pointers are updated to point

to the next pair and the process is repeated until the entire list has been

processed. After each pass the size of each sorted sublist has been doubled.

Efficiency of Mergesort
The doubling of the sorted list size on each pass results in mergesort being

an O(n log2n) algorithm. Note that the process requires a second array to

receive the sorted elements on each pass. This not only doubles the space

requirement of this algorithm but results in the need to copy the whole list

back into the original array. These copies can be avoided by passing both

arrays as parameters and each successive pass could use the arrays

alternately. Even if this copy is unnecessary, the algorithm must still move

every single item in the list on each pass, hence it is more expensive to

run than quicksort.

If we look at the compares, these can be reduced when the list is already in

order since we would exhaust one list and then just put the other into the

array without doing any comparisons. Therefore, at its best case, the

number of compares will be (n log2 n) / 2. However, the data moves are fixed

regardless of the nature of the data. but they do not exceed n log2 n and

do not degenerate like quicksort can. In general, for random data,

mergesort will not perform as well quicksort but it has the property of

being insensitive to the order of data so that its worst case and best case

are both O(nlog2n). Hence, in certain circumstances it may turn out to be

more useful than quicksort. If the data items are large, merge sort is more

efficient than swapping since there are no temporary storage of items

required. More importantly, mergesort works in such a way that it is

appropriate for use on data which is stored externally. In this case, the

two arrays are replaced by four files. On each pass of the algorithm sorted

sublists from two input files are read in and merged. Alternate sublists are

written to two output files. On the next pass these output files become the

input files and the process is repeated. The efficiency of mergesort is

often improved further by merging more than two files at time.

