Deletions from binary search trees

When deleting a node from a tree it is important that any relationships,

implicit in the tree, be maintained.  The deletion of nodes from a binary

search tree will be considered.  Three distinct cases can be identified: 

 1. Nodes with no children  

    This case is trivial.  Simply set the parent's pointer to the node to be

deleted to nil and delete the node. 

 2. Nodes with one child 

    This case is also easy to deal with. The single child of the node to be

deleted becomes the child of its grandparent through the pointer that

currently points to its parent which is to be deleted. That this preserves

the tree relationships can be seen by examining the relationship between the

grandparent node and its child which is to be deleted. If the node to be

deleted is a left child then it is less than its parent. Whether or not the

child of this node is left or right does not matter since by its place in

the tree as the child of a left child it must  be less than its grandparent

and so can replace its parent in that position.

 3. Nodes with two children 

    This case is a little more difficult since two subtrees need to be

re-attached and both must  maintain the same relation to the parent of the

node being deleted and to each other. This can only be achieved if a new

node is found to replace the deleted node as the root of these two

subtrees.  Whatever node is to become parent to these two hanging subtrees

it must have the property that it is greater than any node in the left

subtree and less than any node in the right subtree. 

    If a binary search tree is examined, it can be seen that there are just

two possible nodes which can satisfy these conditions : the rightmost node

in the left subtree and the leftmost node in the right subtree, hence one of

these must replace the node to be deleted. 

    In order to find this node, move to the left and then keep searching

right until there is a nil pointer.  The node with the nil pointer is the

node to be moved.  The same process can be done by moving to the right of

the node to be deleted and search left until a nil pointer is found.

    Having come to this conclusion the best way to achieve this without

wholesale reassignment of pointers is to copy the contents of the node doing

the replacing into the node to be deleted. This effectively deletes the

specified node and replaces it with an appropriate root for its two

subtrees. All that remains is to delete the extra copy of the replacing

node. This is going to be one of the other two trivial cases and so is

easily handled.   

Efficiency of Deletion 

----------------------

    Ignoring the search required to find the node to be deleted, the

deletion is still O(log2 n) in the worst case due to the search required in

case 3 to find the replacement node ( case 1 & 2 are actually O(1)).  If the

search is considered, then the search is also log2 n so the total algorithm in

its worst case is 2(log2 n) which is still a log2 n algorithm. 

Height Balanced Trees 

    A height balanced tree is one in which the difference in the height of

the two subtrees for any node is less than or equal to some specified

amount.   One type of height balanced tree is the AVL-tree named after its

originators (Adelson-Velskii & Landis). In this tree the  height difference

may be no more than 1.   This definition of a height balanced tree is the

one chosen but obviously it would be possible to define a height balanced

tree in which the height difference may be no more than 2.  As the

difference increases, the amount of height balancing required is reduced but

the definition also allows the tree to be more skewed than the AVL

definition. 

    It can be seen that assuming the balance threshold is small relative to

the number of nodes in the tree then a height balanced tree cannot be

degenerate and the lower the threshold the closer it should come to being

minimum height. In fact for an AVL tree it will never be greater than

1.44log2(n+2). Because of this, the AVL tree provides a method to ensure that

tree searches always stay close to the theoretical minimum of O(log2 n) and

never degenerate to O(n). The cost of this search efficiency is increased

time and complexity for insertion and deletion from these trees since each

time the tree is changed it may go out of balance and have to be rebalanced.

Balance Factor

-------------

    To implement an AVL tree each node must contain a balance factor which

indicates its state of balance relative to its subtrees. If balance is

determined by  

      (height left tree) - (height right tree)

then the balance factors in a balanced tree can only have values of -1, 0,

or 1.

    In order to understand how the balance can be maintained it is necessary

to understand the effects of inserting a new node into a currently balanced

tree and how potential imbalance can be detected.

  1.  adding a new node can change the balance factor of any node by at

most 1. 

  2.  if a node currently has a balance factor of 0 it cannot go out of balance 

  3.  if a node is left high (left subtree 1 level higher than right) and

the insertion is in its left subtree it may go out of balance.( same applies

to right/right)

  4.  if a node is left high and the insertion takes place in its right

subtree then 

      a) it cannot go out of balance

      b) it cannot affect the balance of nodes above it since the balance

         factor of higher nodes is determined by the maximum height of this

         node which will not change.

  5. restoring the balance of a node reduces the maximum height of its

subtrees hence any higher nodes which were also out of balance should also

be restored.

    From these observations, it can be seen that if the balance factor of

each node passed through on the path to an insertion is examined then it

should be possible to predict which nodes could go out of balance and

determine which of these nodes is closest to the insertion point. This node

will be called the  pivot node.  Restoring the balance of the pivot node

restores the balance of the whole sub-tree and potentially all  of the nodes

that were affected by the insertion.  These can be examined by proceeding

toward the root and adjusting for the imbalance at each stage.  Normally,

when the balance is checked at each insertion and fixed if there is an

imbalance, fixing the imbalance at the pivot will restore balance to the

whole tree.  However, if there are multiple insertions before balancing the

tree, the process of fixing the imbalance may have to be applied more than

once, beginning at the lowest imbalance in the tree and working up.

Restoring Balance - Tree Rotation

---------------------------------

    The mechanism of restoring balance to an AVL tree is called rotation

since the affect is seen graphically as rotating one node around another.

Note that the insertion cannot take place at the pivot itself since an

imbalance requires a height difference of 2 between subtrees. The inserted

node must be in one of the subtrees of the pivot. The child of the pivot

which is the root of the subtree which causes the imbalance must, itself, go

out of balance by degree 1 or -1 since only by increasing the overall height

of this subtree can the pivot node be affected. The increase in height may

be caused by insertion into either subtree of this child, hence, when an

imbalance occurs there are two possible situations: 

1. The root of the high subtree is out of balance in the same direction as

its parent.

    This is called a Left-Left or Right-Right imbalance since the insertion

took place in the left/(right) subtree of a node whose parent (the pivot)

was left/(right) high.

2. The root of the high subtree is out of balance in the opposite direction

to its parent.

    This is called a Left-Right or Right-Left imbalance since the insertion

took place in the right /(left) subtree of a node whose parent (the pivot)

was left/(right) high. 

    Correction of the LL or RR imbalance requires only a single rotation

about the pivot node but the second case, LR or RL requires a prior rotation

about the root of the affected subtree then a  rotation about the pivot

node.  The first of the double rotations does not affect the degree of

imbalance but converts it to a simple LL or RR.

A rotation consists of moving the child of the high subtree into the

position occupied by the pivot, and moving the pivot down into the low

subtree.

LL (RR) imbalance

-----------------

    To correct an LL imbalance the high child replaces the pivot and the

pivot moves down to become the root of this child’s right subtree.  The

original right child of this node becomes the left child of the pivot (for

RR exchange left and right in the description). 

LR (RL) imbalance\fP

    To correct an LR imbalance a rotation is first performed about the left

child of the pivot as if it were the pivot for a RR imbalance. This rotation

effectively converts the imbalance of the original pivot to a LL which can

now be corrected as above.

    In both cases (LL & LR) the pivot is replaced by one of the nodes in the

high subtree and it again moves down into the low subtree.  The replacement

node will have a balance factor of zero and all nodes above this point will

be restored to the balance they had before the insertion. This can easily be

seen since the insertion increased the subtree by 1 and the balancing

decreased it by 1. 

Efficiency of AVL trees

-----------------------

    The overhead of calculating balance factors, determining imbalance and

correcting it may be considerable even though these algorithms are still

O(log2 n). In the worst case (imbalance moves up the whole tree) to do all of

the rebalancing when one node goes out of balance since all changes are

restricted to the search path of the node being inserted.  Height balancing

for a single node is still O(1) However, it would be expected that, on the

average, only about half the insertions result in an unbalanced tree.  

    An alternative sometimes chosen is not to attempt to balance the tree

every time but to wait until it reaches some higher degree of imbalance or

to balance after a predetermined number of changes no matter what the

current balance state. This of course will lead to slower balancing since it

may be necessary to scan the whole tree to determine states of

imbalance. Hence it is necessary to choose an appropriate interval for

periodic rebalancing which does not offset the gain in performance from

generally faster insertions and deletions.

