SORTING

For many applications it is necessary to arrange data in some form of sorted

order. This is a common requirement in all areas of computing. If the

number of items to be sorted is relatively small then several very simple

algorithms are available. If, however, the number of data items involved is

often extremely large, it becomes very important to establish relatively

efficient approaches to this problem.

In some instances there is too much data for it all to fit into RAM at one

time. Under these circumstances, different techniques are required for

sorting data on disk or tape files. This leads to two general

classifications of sorting algorithms: internal and external. As in

searching, the focus will be on internal sorts, i.e.. those in which all the

data is in main RAM.

Simple Sorts

Simple sorts are those algorithms which are relatively simple to program.

In general, these algorithms also tend be be the least efficient and are

suitable only for small amounts of data.

Selection Sort

The basic idea of the selection sort is to scan a list of items to find the

smallest and bring it to the front of the list. Having done that, scan again

starting at the second element to find the next smallest element and bring

it to the second position when it has been found. Continue in this way down

the list to the end. All items will then be in order from smallest to

largest. The body of the function which does a selection sort appears below.

int list[MAX], i, n, small, tmp ;

n = MAX - 1;

for (int k = 0; k < (n); k++)

{ small = k;

 for (int j = k + 1; j < MAX; j++)

 if (list[j] < list[small])

 small = j;

 if (small != k)

 { tmp = list[k];

 list[k] = list[small];

 list[small] = tmp;

 }

}

The algorithm above achieves a sort on the basis of these ideas. Note that a

list with only one item is not sorted and that if all but the last item are

in the correct place then the last must be also. The function shown here

also requires that we know the size of the array to be sorted at the outset.

Using a while loop which starts at the end of the array and looks for the

largest element would be another way to do approach this problem. Either

way, the number of items to be sorted must be known.

Efficiency of Selection Sort

There are two loops in the selection sort: the outer loop iterates (n-1)

times while the inner loop iterates a maximum of (n-1) and a average of n/2

times. This makes the overall algorithm O(n2). For comparison with other

algorithms with the same order we will look at the high cost items, namely

comparisons and swaps. The number of comparisons remains fixed (n/2) * (n-1)

because the algorithm does not stop (or sense) if the list or portions of

the list are already in order. The difference is in the number of swaps

that occur. In the worst case,(n-1) swaps occur. In this case the data is

in ascending order with the exception of the first element, which is the

largest. We can also expect that some random sequences would approach the

worst case. In the best case, there are no swaps since the list is already

in order. The algorithm does not sense this so the number of compares are

the same as the worst case. Therefore, in the average case, we would expect

that the number of swaps is n/2 (i.e. half of the time a swap is required).

This would be the case when the data are in descending order. There are

data orders which result in swaps being closer to n (e.g. 6,5,4,1,2,3).

However, the algorithm never approaches n squared even though this is the

order of the algorithm.

Bubble (Exchange) Sort

The idea of the bubble sort is to compare adjacent items in a list and if

they are out of order to exchange them. This of course will guarantee that

after the first pass, the largest element will end up at the end. At the

same time each of the smaller elements will have moved one step closer to

the front. On the second pass it will not be necessary to examine the last

element in the list since it will be the largest. In this way one less item

is examined on each pass. The body of the sort is given below.

int list[MAX], i, n, sorted, k, tmp;

n = MAX - 1;

k = n; sorted=0;

while ((k > 0) && (sorted == 0))

 { sorted= 1;

 for (int j = 0;j < k; j++)

 { if(list[j] > list[j+1])

 { tmp = list[j];

 list[j] = list[j+1];

 list[j+1] = tmp;

 sorted=0;

 }

 }

 k--;

 }

Note that if it is possible to pass through the list of unsorted items and

not make an exchange then the list must be completely sorted and processing

can cease. Of course, if no check is kept to see if there are any swaps,

then the algorithm will go through the whole sequence even if the list is

sorted.

Efficiency of Bubble Sort

Once again there are two loops. The while executes a maximum of (n-1) times

and the interior loop executes a a maximum of (n-1) times. Therefore, the

algorithm is O(n2). Looking at the location of the swaps and comparisons,

both are located within the inner loop. In the best case, the list is in

ascending order (already sorted). Then (n-1) compares are done, no swaps

are required, and the processing ceases. In the worst case, the list is in

descending order and there will be (n/2) * (n-1) comparisons and swaps. On

the average, the list will be sorted after half of the list has been

processed, so the number of comparisons and swaps will be (n/4) * (n-1).

Because of the high number of swaps in comparison to selection sort, bubble

sort may be expected to perform more poorly. However, because the sort stops

when the data is in order, data with partially sorted sequences, or data close

to sorted order will be sorted most efficiently with the bubble sort.

Insertion Sort

In an insertion sort the list is built from one end. At any time, a partial

list in which each item is in relative order will exist. Starting with

just one item in the list, this item is obviously in order. The second item

is taken and placed in position relative to the first, that is, exchange

first and second if necessary. Then the third item is placed relative to

the first two. Progressing through the original unsorted list taking each

item and placing it relative to the preceding items results in a sorted

list. The body of the sort is given below.

int list[MAX], i, n, k, j, save, done;

n = MAX - 1;

for (i = 1; i < MAX; i++)

 { if (list[i] < list[i-1])

 {save = list[i];

 for (j = i-1; j >=0; j--)

 {list[j+1] = list[j];

 if (j == 0 || list[j-1] <= save)

 break;

 }

 list[j] = save;

 }

 }

Note that placing an item in its appropriate position involves scanning the

sorted portion of the list for the position of the new item and moving as

many items as necessary to make room. This is done by scanning from the top

of the sorted list and shifting down the list each item passed over until

the point of insertion is reached. When the required position is found, the

saved value is placed into that location.

Efficiency of Insertion Sort

Again the operation of this algorithm is very similar to the preceding

two. There are a pair of nested loops in which the outer loop iterates (n-1)

times and the inner one iterates one more element each time through. In the

other two sorts the inner loop started with N-1 items and examined one less

each time. Again, this is an O(n2) algorithm. Comparisons and data moves

exist in the same loop. In the best case, the data is already in ascending

order so there will be (n -1) comparisons and no data moves. In the worst

case, when the data is in descending order there will be ((n - 1) * n)/2

compares and the same number of data moves. On average, only half of the

elements will be compared at any pass and only half of the elements moved on

any pass so comparisons and swaps will be (n/4) * (n-1). Data moves are

not as expensive as swaps since data is not exchanged but simply moved from

one location to another. Because of this insertion sort will tend to be

faster than bubble sort but slower than the selection sort in the worst

case. Insertion sort does have one advantage over selection sort in that if

the list is sorted or if the current element is already in place then very

little work is done.

Effects of the nature the list being sorted

Up to this point, the nature of the list being sorted has not been

considered. Several features of the list may influence algorithm

performance:

 - small key with large records - selection sort will tend to perform best

since it has fewer data moves than bubble or insertion sorts

 - small records with large keys - insertion sort will do better since it

tends to have a shorter search length than selection or bubble sorts and the

small records won't unduly degrade performance. An example of large keys is

a 30 character alphabetic key.

 - array vs. linked list - while access to a linked list has a higher

overhead than an array, these algorithms can take advantage of the links to

avoid data moves. This is particularly beneficial to insertion sort where

insertion no longer requires movement of items to make room for the new

one. The swaps performed by the other two algorithms would only benefit if

the size of data being swapped was sufficiently large to offset the extra

pointer manipulations.

 - pointer sorting - if, instead of sorting the actual data, an array of

pointers is sorted, the size of the data becomes irrelevant and attention

can be focused on the costs of key comparisons. Again insertion sort would

show the greatest benefit from this due to its ability to terminate a scan

of the unsorted list when the position for the next item is found.

In summary, although the simple sorts are all O(n2) they are not equal in

power when looking at the details of their operation. Which one to choose

should be determined by examination of the actual problem to be solved. In

general, the choice is between selection and insertion techniques. Just as

with searching techniques the slow sorting algorithms still have a place in

significant programs due to their simplicity which allows for efficient

operation on small lists and keeps code simple.

