
1

http://pages.cpsc.ucalgary.ca/~tnjarada

UNIVERSITY OF CALGARY

DEPARTMENT OF COMPUTER SCIENCE

WINTER 2013

CPSC 319: Data Structures, Algorithms and Their Applications

TA: Tamer N. Jarada

Tutorial #13
(March 14th, 2013)

Objectives:

 Do a recursive depth-first traversal of a tree.

 Do a breadth-first traversal of a tree.

Introduction:

An important class of algorithms is to traverse an entire data structure – visit every element in some fixed order

For trees there are two types of traversals, each with their variations:

 Depth first traversal (Go as deep as possible before going along a level): pre-order, in-order, post-order –

each going clockwise or anticlockwise around the tree.

 Breadth first traversal (Level by level): Left to right across a level, or, right to left across a level.

Recursive depth-first traversal of a tree:

Depth First search of binary trees has three variations based on the order of visiting the root node relative to

visiting the sub-tree nodes. These orders are:

 Pre-order: in pre-order, the root node is visited first prior to visiting the nodes of the sub-trees.

 In-order: in in-order, the root node is visited between visits to nodes of the left and right sub-trees.

 Post-order: in post-order, the root node is visited last after visiting the nodes of the sub-trees.

Example:

 Traverse the tree shown in Figure (1) by using pre-order, in-order and post-order depth-first algorithms.

Figure (1)

 Pre-order: EBADCFH

 In-order: ABCDEFH

 Post-order: ACDBHFE

 We also have another 3 orderings by going clockwise around the tree.

2

http://pages.cpsc.ucalgary.ca/~tnjarada

Code

protected void preorder(BSTNode n) {

 if (n != null) {

 visit(n);

 preorder(n.left);

 preorder(n.right);

 }

 }

protected void inorder(BSTNode n) {

 if (n != null) {

 inorder(n.left);

 visit(n);

 inorder(n.right);

 }

 }

protected void postorder(BSTNode n) {

 if (n != null) {

 postorder(n.left);

 postorder(n.right);

 visit(n);

 }

 }

Figure (2): Example of applying depth-first traversal in-order

3

http://pages.cpsc.ucalgary.ca/~tnjarada

Breadth-first traversal of a tree:

A breadth-first search explores nodes nearest the root before exploring nodes further away.

Example:

 Traverse the tree shown in Figure (1) by using breadth-first algorithm.

E B F A D H C or E F B H D A C

Below the Top-down, left-to-right, breadth-first traversal implementation:

Code

public void breadthFirst () {

 BSTNode n = root;

 Queue queue = new Queue();

 if (n != null) {

 queue.enqueue(n);

 while (!queue.isempty()) {

 n = (BSTNode) queue.dequeue();

 visit(n);

 if (n.left != null) {

 queue.enqueue(n.left);

 }

 if (n.right != null) {

 queue.enqueue(n.right);

 }

 }

 }

}

