
Optimization: Java
Optimization
CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Wednesday, March 5, 2025

Copyright © 2025

2

Java Specific Optimizations

3

Code Tuning – Java

• Java is an object oriented language
• That runs in a virtual machine
• There are more inefficiencies that can be improved than we’ve covered for a

language like c++

4

Strings

5

Code Tuning – Strings

• Not null terminated
• char[] and length are both stored

• Immutable
• Any change attempt (making new string)

• char[] is better for secure data than String

• Also UTF-16 (uses two bytes for all)
• if you want UTF-32 there’s a lot of management steps

6

Code Tuning – Strings

• String pool
• Java has a special memory location (PermGen Space)

• Usually for things like class desc, and metadata (exist longterm)
• If a new String literal (“hello”) is made matching existing Java will attempt to

point at same data
• No NEW object

• new String(“hello”) by-passes this
• Also dynamic strings like one created at runtime from input won’t be

associated

7

Code Tuning – Strings

• String pool
• Java has a special memory location (PermGen Space)

• Usually for things like class desc, and metadata (exist longterm)

• 366712642
• 366712642
• 1829164700

8

Code Tuning – Strings

• 1442407170
• 1442407170
• 1028566121
• hello
• 1118140819

9

Code Tuning – Strings

• String pool

• Java has a special memory location (PermGen Space)
• Usually for things like class desc, and metadata (exist longterm)

• USE .equals()
• To get consistent String comparisons on .equals() compares contents, ==

will give you differing behaviour whether or not the String Pool has
been used

10

Code Tuning – Strings

• String pool

• USE .equals()
• To get consistent String comparisons on .equals() compares contents, ==

will give you differing behaviour whether or not the String Pool has
been used

• Example: Junit Testing
• Setup will contain string literals String pool which re-use memory, thus

== will work
• however during operation == may fail
• Strings during operation often collected via input steps

11

Code Tuning – Strings

• StringBuilder and StringBuffer
• StringBuilder not thread-safe

• Let you compile a list of Strings which you can convert to a final String once
• Much better than repetitive +, += operations

• Can even set expected capacity needed (like ArrayList) so that hidden array
doesn’t need to expand

12

Maps

13

• When you want to iterate through a Map, and you need both keys and values,
instead of the following:

• .. To this:

Code Tuning – Maps

14

Code Tuning – hashCode()/equals()

• Optimise your hashCode() and equals() methods

• A good hashCode() method is essential because it will prevent further calls to
the much more expensive equals()

• Can store a calculated hashCode once in object (only update on modified
object, when sets are called)

15

Primitives

16

Code Tuning – Primitives

• Reverse of refactoring
• Sometimes code tuning is called ‘defactoring’
• Use double instead of Double, int instead of Integer
• Java can store values on stack, instead of heap

17

Code Tuning – Primitives

• Try to avoid BigInteger and BigDecimal, similarly
• Only if you really need to exceed long, or need precision
• int > Integer > BigItenger double > Double > BigDecimal

• Integer is not a primitive (it is Object and is immutable)

• x = new Integer(1) , x = x + new Integer(2), x = new Integer(3)
• 1,2,3 are all individual objects and x is ‘pointed’ towards a new one

• x = 1 , x = x + 2, x = 3 , the memory spot x points to is changed from 1 to 3

18

Logging

19

Code Tuning – Logging

• Strings take a lot of time to create (program-wise)
• Check the current log level first before making log string

// don’t do this
log.debug(“User [” + userName + “] called method X with [” + i + “]”);

// or this
log.debug(String.format(“User [%s] called method X with [%d]”,
userName, i));

// do this
if (log.isDebugEnabled()) {
log.debug(“User [” + userName + “] called method X with [” + i + “]”);
}

20

Libraries

21

Code Tuning – Libraries

• Use Apache Commons StringUtils.replace instead of String.replace
• Java 9 improved String replace but if on Java 8

// replace this
test.replace(“test”, “simple test”);

// with this
StringUtils.replace(test, “test”, “simple test”);

22

Code Tuning – Libraries

• Avoid regular expressions and instead use Apache Commons Lang.

23

Simple Recursion

24

Code Tuning – Recursion

• Recursion is great for design of algorithms but not great for optimization

• Stay away from recursion.
• Recursion is very resource intensive!

• Very beneficial to code tune algorithms to be loops instead of recursive calls
• Replace program stack with self-managed stack structure for data that

would normally be passed in recursive call

25

Code Tuning – Recursion

26

Code Tuning – Recursion

27

Code Tuning – Recursion

28

Caching

29

Code Tuning – Hidden Caching/Pooling

• A typical example is caching database connections in a pool.
• The creation of a new connection takes time, which you can avoid if you

reuse an existing connection.

• You can also find other examples in the Java language itself.
• The valueOf method of the Integer class, for example, caches the values

between -128 and 127.

30

Iterators

31

Code Tuning – Iterators

• Common now to use Java iterators
• Is a good refactoring, but depending…
• for (String value: strings) { // Do something useful here }

• a new iterator instance will be created
int size = strings.size();
for (int i = 0; i < size; i++) {

String value: strings.get(i);
// Do something useful here

}

32

Memory

33

Code Tuning – Memory Leaks

• Java is stuck with garbage collection
• We can stop point at things but not delete them
• If your program naively leaves created objects connected to current code (heap

will continue to grow)
• You can generally see this via Profiling and heap dumps

34

Code Tuning – Heap Structure

• The young generation is
actually garbage collected
quicker than the older
generation

• Lots of new objects, or
aggressive GC in young
generation slows down
program

35

Code Tuning – Garbage Collectors

• Serial Collector
• Both Young and Old collections are done serially, using a single CPU and in a

stop-the-world fashion.
• Best client-side

36

Code Tuning – Garbage Collectors

• Serial Collector
• Both Young and Old collections are done

serially, using a single CPU and in a stop-the-
world fashion.

• Best client-side
• Parallel Collector(throughput collector)

• Designed to take advantage of available CPU
cores. Both Young and Old collections are
done using multiple Gcthreads.

37

Code Tuning – Garbage Collectors

• Mostly concurrent collectors (low-latency
collectors)

• Designed to minimize impact on
application response time associated with
Old generation stop-the-world
collections.

• Most of the collection of the old
generation using the CMS collector is
done concurrently with the execution of
the application.

38

Code Tuning – Garbage Collectors

• Choose wisely between 32-bit or 64-bit VMs

• going from a 32-bit to a 64-bit machine increases heap requirement for an
existing Java application by up to 1.5 times (bigger ordinary object pointers)

• -XX:+UseCompressedOops in Java version prior to 1.7 (which is now default)
• This tuning argument greatly alleviates the performance penalty associated

with a 64-bit JVM.

39

Code Tuning – Garbage Collectors

• Large heap not always better

• Profile your application for possible memory leaks using tools such as Java
VisualVM or Plumbr (Java memory leak detector).

• Focus your analysis on the biggest Java object accumulation points

• Reducing your application memory footprint will translate in improved
performance due to reduced GC activity.

40

Threads

41

Code Tuning – Thread-Lock/Contention

• Thread lock contention is by far the most common Java concurrency problem

42

Code Tuning – Thread-Lock/Contention

• True Java-level deadlocks, while less common, are triggered when two or more
threads are blocked forever, waiting for each other.

43

Code Tuning – Thread-Lock/Contention

• Clock Time and CPU Burn
• Ex. worker not doing anything, just spinning in a loop

44

Timeout Management

45

Code Tuning – Timeout Management

• Lack of proper HTTP/HTTPS/TCP IP timeouts between your Java application and
external systems

• lead to severe performance degradation and outage due to middleware and
JVM threads depletion (blocking IO calls).

• Proper timeout implementation will prevent Java threads from waiting for too
long in the event of major slowdown of your external service providers.

Onward to …
python optimization.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Optimization: Java Optimization
	Java Specific Optimizations
	Code Tuning – Java
	Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Code Tuning – Strings
	Maps
	Code Tuning – Maps
	Code Tuning – hashCode()/equals()
	Primitives
	Code Tuning – Primitives
	Code Tuning – Primitives
	Logging
	Code Tuning – Logging
	Libraries
	Code Tuning – Libraries
	Code Tuning – Libraries
	Simple Recursion
	Code Tuning – Recursion
	Code Tuning – Recursion
	Code Tuning – Recursion
	Code Tuning – Recursion
	Caching
	Code Tuning – Hidden Caching/Pooling
	Iterators
	Code Tuning – Iterators
	Memory
	Code Tuning – Memory Leaks
	Code Tuning – Heap Structure
	Code Tuning – Garbage Collectors
	Code Tuning – Garbage Collectors
	Code Tuning – Garbage Collectors
	Code Tuning – Garbage Collectors
	Code Tuning – Garbage Collectors
	Threads
	Code Tuning – Thread-Lock/Contention
	Code Tuning – Thread-Lock/Contention
	Code Tuning – Thread-Lock/Contention
	Timeout Management
	Code Tuning – Timeout Management
	Onward to … �python optimization.

