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Code Tuning - Assembly

• Assembly language techniques 
• Are specific to a CPU architecture 

• Thus are not generally portable 
• Goal is to minimize the number of clock cycles it takes to execute an 

algorithm 
• That is, code the algorithm using the fewest number of instructions 

possible 
• A clever programmer can usually beat the best optimizing compiler

• We’re not always as clever as we think
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Code Tuning – Assembly - Quantify

• We can quantify execution time precisely, since each instruction takes a 
defined number of clock cycles to complete 

• A fixed number on a RISC CPU 
• E.g.  4 cycles per instruction on SPARC V8 

• A variable number on a CISC CPU 
• E.g.  Intel Core 2 

• add: 1 cycle     mul: 5      div: 40 
• Some assemblers produce output files showing this cycle count
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Instructions
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Code Tuning – Assembly - Instructions

• Eliminate instructions where possible 
• Sparc example: 

• We save register window and create new
• Restore after
• Uses input registers (function inputs)
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Code Tuning – Assembly - Instructions

• Eliminate instructions where possible 
• Sparc example: 

• We save register window and create new
• Restore after
• Uses input registers (function inputs)

• Eliminate 2 instructions by converting into a 
leaf subroutine: 

• We won’t call others (leaf)
• Can only use output registers

Note: this also prevents the triggering of 
window overflow/underflow, which is 
expensive
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Pipeline
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Code Tuning – Assembly - Pipeline

• Reorder instructions to keep the pipeline full or 
to avoid pipeline stalls
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Code Tuning – Assembly - Pipeline

• Reorder instructions to keep the pipeline full or 
to avoid pipeline stalls 

• E.g.  Above code can be changed to:
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Code Tuning – Assembly - Pipeline

• Reorder instructions to keep the pipeline full or to avoid pipeline stalls 

• E.g.  Above code can be changed to:

• Eliminates 1 instruction
• retl has to go through CPU 4 cycle (fetch, execute, memory, write) so we 

can slide in delay slot so cube is done by time retl gives reaches using it
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Inline
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Code Tuning – Assembly - Inline

• Use macros to inline subroutines 
• Avoids call/return overhead 
• E.g.  Calling code before optimization:

• A macro such as:
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SIMD
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Code Tuning – Assembly – SIMD

• Use SIMD instructions to move data while calculating 
• Single instruction, multiple data 
• Motorola DSP56001 example:

Multiply w/o Accumulate (MPY)
Multiple and Accumulate (MAC)
Move data (MOVE)
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Code Tuning – Assembly – Inline (cont’d)

• In extreme cases, one might inline every subroutine!
• Usually results in a much bigger executable (i.e. more RAM is used) 

• We are trading memory for speed 
• Note that some compilers allow one to inline assembly code into C or 

C++ code 
• sdcc example:
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Code Tuning – Assembly – Inline (cont’d)

• Can be used in calling code:

• gets expanded to

• Eliminates 3 more instructions
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Code Tuning – Assembly – SIMD

• Use SIMD instructions to move data while calculating 
• Single instruction, multiple data 
• Motorola DSP56001 example:

• Can be improved to:
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Code Tuning – Assembly – SIMD (cont’d)

• There are libraries available that use SIMD instructions on vectors of 
data (and may exploit the parallelism of multi-core CPUs)

• Intel Vector Math Library (VML) 
• Is a C/C++ API for Windows, Linux, OS X 
• Part of the Intel Math Kernel Library (MKL) 

• Accelerate framework
• Is a C API for OS X



Onward to … 
Java optimization.
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