
Optimization: Assembly
Optimization
CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Wednesday, March 5, 2025

Copyright © 2025

2

Code Tuning - Assembly

• Assembly language techniques
• Are specific to a CPU architecture

• Thus are not generally portable
• Goal is to minimize the number of clock cycles it takes to execute an

algorithm
• That is, code the algorithm using the fewest number of instructions

possible
• A clever programmer can usually beat the best optimizing compiler

• We’re not always as clever as we think

3

Code Tuning – Assembly - Quantify

• We can quantify execution time precisely, since each instruction takes a
defined number of clock cycles to complete

• A fixed number on a RISC CPU
• E.g. 4 cycles per instruction on SPARC V8

• A variable number on a CISC CPU
• E.g. Intel Core 2

• add: 1 cycle mul: 5 div: 40
• Some assemblers produce output files showing this cycle count

4

Instructions

5

Code Tuning – Assembly - Instructions

• Eliminate instructions where possible
• Sparc example:

• We save register window and create new
• Restore after
• Uses input registers (function inputs)

6

Code Tuning – Assembly - Instructions

• Eliminate instructions where possible
• Sparc example:

• We save register window and create new
• Restore after
• Uses input registers (function inputs)

• Eliminate 2 instructions by converting into a
leaf subroutine:

• We won’t call others (leaf)
• Can only use output registers

Note: this also prevents the triggering of
window overflow/underflow, which is
expensive

7

Pipeline

8

Code Tuning – Assembly - Pipeline

• Reorder instructions to keep the pipeline full or
to avoid pipeline stalls

9

Code Tuning – Assembly - Pipeline

• Reorder instructions to keep the pipeline full or
to avoid pipeline stalls

• E.g. Above code can be changed to:

10

Code Tuning – Assembly - Pipeline

• Reorder instructions to keep the pipeline full or to avoid pipeline stalls

• E.g. Above code can be changed to:

• Eliminates 1 instruction
• retl has to go through CPU 4 cycle (fetch, execute, memory, write) so we

can slide in delay slot so cube is done by time retl gives reaches using it

11

Inline

12

Code Tuning – Assembly - Inline

• Use macros to inline subroutines
• Avoids call/return overhead
• E.g. Calling code before optimization:

• A macro such as:

13

SIMD

14

Code Tuning – Assembly – SIMD

• Use SIMD instructions to move data while calculating
• Single instruction, multiple data
• Motorola DSP56001 example:

Multiply w/o Accumulate (MPY)
Multiple and Accumulate (MAC)
Move data (MOVE)

15

Code Tuning – Assembly – Inline (cont’d)

• In extreme cases, one might inline every subroutine!
• Usually results in a much bigger executable (i.e. more RAM is used)

• We are trading memory for speed
• Note that some compilers allow one to inline assembly code into C or

C++ code
• sdcc example:

16

Code Tuning – Assembly – Inline (cont’d)

• Can be used in calling code:

• gets expanded to

• Eliminates 3 more instructions

17

Code Tuning – Assembly – SIMD

• Use SIMD instructions to move data while calculating
• Single instruction, multiple data
• Motorola DSP56001 example:

• Can be improved to:

18

Code Tuning – Assembly – SIMD (cont’d)

• There are libraries available that use SIMD instructions on vectors of
data (and may exploit the parallelism of multi-core CPUs)

• Intel Vector Math Library (VML)
• Is a C/C++ API for Windows, Linux, OS X
• Part of the Intel Math Kernel Library (MKL)

• Accelerate framework
• Is a C API for OS X

Onward to …
Java optimization.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Optimization: Assembly Optimization
	Code Tuning - Assembly
	Code Tuning – Assembly - Quantify
	Instructions
	Code Tuning – Assembly - Instructions
	Code Tuning – Assembly - Instructions
	Pipeline
	Code Tuning – Assembly - Pipeline
	Code Tuning – Assembly - Pipeline
	Code Tuning – Assembly - Pipeline
	Inline
	Code Tuning – Assembly - Inline
	SIMD
	Code Tuning – Assembly – SIMD
	Code Tuning – Assembly – Inline (cont’d)
	Code Tuning – Assembly – Inline (cont’d)
	Code Tuning – Assembly – SIMD
	Code Tuning – Assembly – SIMD (cont’d)
	Onward to … �Java optimization.

