
Optimization: Introduction
CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Wednesday, March 5, 2025

Copyright © 2025

2

Definition

3

Optimization

• Optimization is the process of modifying a program to
improve its efficiency

• Increase its speed
• Reduce its size (memory usage)

• Optimization can often be seen as de-factoring
• Program gets faster but…
• Harder to understand, upkeep, read

4

Efficiency

• Efficiency can be viewed in terms of:
1. Program requirements

• Does the program really need to run at a certain speed? Is it worth the
extra effort

2. Program design
• If performance is important, design a performance-oriented

architecture
• Set resource goals for individual subsystems and classes

3. Class and routine design
• Choose efficient algorithms and datatypes

• E.g. Quicksort vs. bubble sort
• E.g. Binary search vs. linear search

5

Efficiency (cont’d)

4. Operating system interactions
• Working with files, dynamic memory, or I/O devices means using system

calls
• May be slow or fast

5. Code compilation
• Good compilers produce optimized machine code

• May have options for different optimization levels

6

Efficiency (cont’d)

6. Hardware
• A hardware upgrade may be the cheapest way to improve a program’s

performance
• Not always possible

7. Code tuning
• Small-scale changes made to code to make it run more efficiently

• At the level of a single routine, or a few lines of code
• Tends to produce hard-to-understand code

• Obscures design

7

Guide to the galaxy of optimization

8

General Guidelines

• Don’t optimize as you go

• Focusing on optimization during initial development detracts from
achieving correctness, readability, and design quality

9

General Guidelines (cont’d)

• Jackson’s Rules of Optimization:

• Rule 1. Don’t do it.

• Rule 2 (for experts only). Don’t do it yet—that is, not until you have a
perfectly clear and unoptimized solution.

• Code tuning should be done only as a last step
• Knuth: Pre-mature optimization is the root of all evil

10

General Guidelines (cont’d)

• Optimize bottlenecks

• The 80/20 rule: 20% of program’s routines consume 80% of its execution
time

• Knuth found 4% of a FORTRAN program accounted for over 50% of its
run time

• Spend your time fixing these ‘bottlenecks’
• Don’t waste effort on the other parts

11

General Guidelines (cont’d)

• Measure performance when optimizing
• Use a profiler to find bottlenecks
• Use timers to measure CPU time

• Make sure a change actually improves speed
• May actually make things worse when using a different compiler, OS,

or processor

• Run regression tests after each optimization
• Make sure your program is still correct

12

Swipe right

13

Profiling

• Profiling

• Is used to find how much time is spent in each function of a program

• Helps find bottlenecks

• Helps you compare the performance of algorithms or programs

14

Profiling (cont’d)

• Works by sampling the program counter (PC register)
• Periodically queries the program, recording the function in which it is

running

• Is statistical in nature
• i.e. is somewhat inexact, and will vary from run to run

• Also the act of enabling profiling will generally slow down operation of
code, this slowdown can be different for varying classes

15

C++ profiling

16

Profilers – gcc

• Available UNIX profilers for programs compiled with gcc:
• prof (most commonly used)
• gprof
• pixie

17

Profilers – gcc (cont’d)

• Using prof:
• Compile the program with the -p option
• E.g.

gcc -c myprog.c
gcc -o myprog -p myprog.o

• Run the program
• E.g.

./myprog
• Produces the file mon.out

• Print the profile report to stdout
• E.g. prof myprog mon.out

18

Profilers – gcc (cont’d)

• Example output:

19

Timestamp profiling

20

Profilers - Timing

• Timing measurements
• In UNIX, can use the time command to time an entire program

• E.g.
time java Test
1.09u 0.12s 0:01.27 95.2%

<user CPU time> <system CPU time> <real_time>

21

Profilers – C/C++ clock()

• In C and C++, use the clock() function to measure the CPU time used by a
function or section of code

• E.g.

22

Profilers – C/C++ clock() (cont’d)

• If the function takes a fraction of a second, run it in a loop to get a more
accurate measurement

• E.g.
before = clock();
for (i = 0; i < 1000; i++)

short_running_function();
elapsed = (clock() - before) / (double) i;

23

Profilers – Java nanoTime()

• In Java, use the nanoTime() method

• E.g.
long startTime = System.nanoTime();
longRunningMethod();
long elapsedTime = System.nanoTime() - startTime;

• Note: result is in nanoseconds (10-9 s)

• Similar timing methods available for Python

24

%timeit for one line (%time run once)
%%timeit for multiple lines (%%time run multiple lines once)

Profilers – IPython timeit

25

Be wary of stored results in timeit (could use time to only run once, or make sure
we are sorting random each time)

You can also profile something using prun

I profiled the timeit sort command
It ran 6111 samples

Profilers – IPython prun

26

In Pycharm this is as simple as a run option

Profilers – Python cProfile

27

Also a run option but will need plugin installed for line_profiler

Profilers – Python line_profiler

28

Java profiling

29

Profilers – Java

• Standard JVM Profilers
• VisualVM, JProfiler, YourKit and Java Mission Control
• method calls and memory usage
• Pros:

• Great for tracking down memory leaks, standard profilers detail out all
memory usage by the JVM and which classes/objects are responsible.

• Good for tracking CPU usage and zero in on hot spots.

30

Profilers – Java

• Standard JVM Profilers
• VisualVM, JProfiler, YourKit and Java Mission Control
• method calls and memory usage
• Cons:

• Requires a direct connection to the monitored JVM; this ends up
limiting usage to development environments in most cases.

• They slow down your application; a good deal of processing power is
required for the high level of detail provided.

31

Profilers – Java

• Lightweight Java Transaction Profilers
• XRebel and Stackify Prefix
• Aspect Profilers

• use aspect-oriented programming (AOP) to inject code into the start
and end of specified methods.

• Java Agent profilers (ex. Netbeans built-in)
• use the Java Instrumentation API to inject code into your application.

This method has greater access to your application since the code is
being rewritten at the bytecode level.

32

Profilers – Java

• Lightweight Java Transaction Profilers
• Aspect profilers are pretty easy to setup but are limited in what

they can monitor and are encumbered by detailing out
everything you want to be tracked.

• Java Agents have a big advantage in their tracking depth but are
much more complicated to write.

33

Profilers – Java

• Low Overhead, Java JVM Profiling in Production
(APM – APplication Monitoring)

• New Relic, AppDynamics, Stackify Retrace, Dynatrace
• how your system performs in production is critical
• Java APM tools typically use the Java Agent profiler method

• different instrumentation rules to allow them to run without affecting
performance in productions.

34

Algorithm Based Optimization

35

Algorithm-Based Optimization

• Choosing a more efficient algorithm or data structure is often the best way to
improve program efficiency

• Look for algorithms that reduce the order of complexity

• E.g. Binary search 𝑂𝑂(log𝑛𝑛) vs. linear search 𝑂𝑂(𝑛𝑛)
• E.g. Merge sort 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛 𝑛𝑛) vs. bubble sort 𝑂𝑂(𝑛𝑛2)

36

Algorithm-Based Optimization

• Do this first before attempting other optimizations
• Hand tuning an O(n2) algorithm won’t yield near the same gains as using an

O(n log n) algorithm

• Beware of worst-case performance
• Some algorithms may not achieve their average Big-O performance under

certain conditions
• E.g. The quicksort degenerates to O(n2) with nearly-sorted inputs

37

Algorithm-Based Optimization

• Sometimes an inefficient algorithm is fine for small inputs

• The overhead of a complicated algorithm may make it slower than a simple one
• And harder to debug and maintain!

• Measure performance to make sure you’ve made the right choice

38

Algorithm-Based Optimization

• Sometimes an inefficient algorithm is fine for small inputs

• Java’s own internal Quick Sort uses an Insertion Sort below a specific array size

39

Compiler Based Optimization

40

Compiler-Level Optimization

• Enabling compiler optimization can improve speed by as much as 2 times

• Most compilers turn off optimization by default
• Optimized code tends to confuse debuggers

• Works best with straightforward code
• Hand tuned code may actually be harder for the compiler to optimize

41

Compiler-Level Optimization

• Some compilers optimize better than others
• E.g.

42

Compiler-Level Optimization

• Aggressive optimizers may introduce bugs
• Rerun regression tests to ensure correctness

• gcc optimization flags:
• Optimize: -O or -O1
• Optimize even more: -O2
• Optimize yet more: -O3
• Don’t optimize (default): -O0

43

Compiler-Level Optimization

• E.g. gcc -O2 -o myprog myfile.c

Onward to …
logic optimization.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Optimization: Introduction
	Definition
	Optimization
	Efficiency
	Efficiency (cont’d)
	Efficiency (cont’d)
	Guide to the galaxy of optimization
	General Guidelines
	General Guidelines (cont’d)
	General Guidelines (cont’d)
	General Guidelines (cont’d)
	Swipe right
	Profiling
	Profiling (cont’d)
	C++ profiling
	Profilers – gcc	
	Profilers – gcc	 (cont’d)
	Profilers – gcc	 (cont’d)
	Timestamp profiling
	Profilers - Timing
	Profilers – C/C++ clock()
	Profilers – C/C++ clock() (cont’d)
	Profilers – Java nanoTime()
	Profilers – IPython timeit
	Profilers – IPython prun
	Profilers – Python cProfile
	Profilers – Python line_profiler
	Java profiling
	Profilers – Java
	Profilers – Java
	Profilers – Java
	Profilers – Java
	Profilers – Java
	Algorithm Based Optimization
	Algorithm-Based Optimization
	Algorithm-Based Optimization
	Algorithm-Based Optimization
	Algorithm-Based Optimization
	Compiler Based Optimization
	Compiler-Level Optimization
	Compiler-Level Optimization
	Compiler-Level Optimization
	Compiler-Level Optimization
	Onward to … �logic optimization.

