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Definition
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Optimization

• Optimization is the process of modifying a program to 
improve its efficiency 

• Increase its speed 
• Reduce its size (memory usage)

• Optimization can often be seen as de-factoring
• Program gets faster but…
• Harder to understand, upkeep, read
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Efficiency

• Efficiency can be viewed in terms of: 
1. Program requirements 

• Does the program really need to run at a certain speed?  Is it worth the 
extra effort

2. Program design 
• If performance is important, design a performance-oriented 

architecture 
• Set resource goals for individual subsystems and classes 

3. Class and routine design 
• Choose efficient algorithms and datatypes 

• E.g.  Quicksort vs. bubble sort 
• E.g.  Binary search vs. linear search
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Efficiency (cont’d)

4. Operating system interactions 
• Working with files, dynamic memory, or I/O devices means using system 

calls 
• May be slow or fast 

5. Code compilation 
• Good compilers produce optimized machine code 

• May have options for different optimization levels
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Efficiency (cont’d)

6. Hardware 
• A hardware upgrade may be the cheapest way to improve a program’s 

performance 
• Not always possible 

7. Code tuning 
• Small-scale changes made to code to make it run more efficiently 

• At the level of a single routine, or a few lines of code 
• Tends to produce hard-to-understand code 

• Obscures design
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Guide to the galaxy of optimization
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General Guidelines

• Don’t optimize as you go 

• Focusing on optimization during initial development detracts from 
achieving correctness, readability, and design quality



9

General Guidelines (cont’d)

• Jackson’s Rules of Optimization: 

• Rule 1. Don’t do it. 

• Rule 2 (for experts only). Don’t do it yet—that is, not until you have a 
perfectly clear and unoptimized solution. 

• Code tuning should be done only as a last step
• Knuth:  Pre-mature optimization is the root of all evil 
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General Guidelines (cont’d)

• Optimize bottlenecks 

• The 80/20 rule: 20% of program’s routines consume 80% of its execution 
time 

• Knuth found 4% of a FORTRAN program accounted for over 50% of its 
run time 

• Spend your time fixing these ‘bottlenecks’
• Don’t waste effort on the other parts
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General Guidelines (cont’d)

• Measure performance when optimizing 
• Use a profiler to find bottlenecks 
• Use timers to measure CPU time 

• Make sure a change actually improves speed 
• May actually make things worse when using a different compiler, OS, 

or processor 

• Run regression tests after each optimization 
• Make sure your program is still correct
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Swipe right
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Profiling

• Profiling 

• Is used to find how much time is spent in each function of a program 

• Helps find bottlenecks 

• Helps you compare the performance of algorithms or programs
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Profiling (cont’d)

• Works by sampling the program counter (PC register) 
• Periodically queries the program, recording the function in which it is 

running 

• Is statistical in nature 
• i.e.  is somewhat inexact, and will vary from run to run

• Also the act of enabling profiling will generally slow down operation of 
code, this slowdown can be different for varying classes
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C++ profiling
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Profilers – gcc

• Available UNIX profilers for programs compiled with gcc: 
• prof (most commonly used) 
• gprof
• pixie
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Profilers – gcc (cont’d)

• Using prof: 
• Compile the program with the -p option 
• E.g.  

gcc -c myprog.c
gcc -o myprog -p myprog.o

• Run the program 
• E.g. 

./myprog
• Produces the file mon.out

• Print the profile report to stdout
• E.g. prof myprog mon.out
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Profilers – gcc (cont’d)

• Example output:
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Timestamp profiling
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Profilers - Timing

• Timing measurements 
• In UNIX, can use the time command to time an entire program 

• E.g. 
time java Test
1.09u   0.12s   0:01.27   95.2%

<user CPU time> <system CPU time> <real_time>
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Profilers – C/C++ clock()

• In C and C++, use the clock() function to measure the CPU time used by a 
function or section of code 

• E.g. 
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Profilers – C/C++ clock() (cont’d)

• If the function takes a fraction of a second, run it in a loop to get a more 
accurate measurement 

• E.g.   
before = clock();   
for (i = 0; i < 1000; i++)         

short_running_function();   
elapsed = (clock() - before) / (double) i;
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Profilers – Java nanoTime()

• In Java, use the nanoTime() method 

• E.g.   
long startTime = System.nanoTime();   
longRunningMethod();  
long elapsedTime = System.nanoTime() - startTime; 

• Note:  result is in nanoseconds (10-9 s)

• Similar timing methods available for Python
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%timeit for one line (%time run once)
%%timeit for multiple lines (%%time run multiple lines once)

Profilers – IPython timeit
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Be wary of stored results in timeit (could use time to only run once, or make sure 
we are sorting random each time)

You can also profile something using prun

I profiled the timeit sort command
It ran 6111 samples

Profilers – IPython prun
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In Pycharm this is as simple as a run option

Profilers – Python cProfile
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Also a run option but will need plugin installed for line_profiler

Profilers – Python line_profiler
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Java profiling
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Profilers – Java

• Standard JVM Profilers
• VisualVM, JProfiler, YourKit and Java Mission Control
• method calls and memory usage
• Pros:

• Great for tracking down memory leaks, standard profilers detail out all 
memory usage by the JVM and which classes/objects are responsible. 

• Good for tracking CPU usage and zero in on hot spots.
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Profilers – Java

• Standard JVM Profilers
• VisualVM, JProfiler, YourKit and Java Mission Control
• method calls and memory usage
• Cons:

• Requires a direct connection to the monitored JVM; this ends up 
limiting usage to development environments in most cases. 

• They slow down your application; a good deal of processing power is 
required for the high level of detail provided.
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Profilers – Java

• Lightweight Java Transaction Profilers
• XRebel and Stackify Prefix
• Aspect Profilers 

• use aspect-oriented programming (AOP) to inject code into the start 
and end of specified methods.

• Java Agent profilers (ex. Netbeans built-in)
• use the Java Instrumentation API to inject code into your application. 

This method has greater access to your application since the code is 
being rewritten at the bytecode level. 
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Profilers – Java

• Lightweight Java Transaction Profilers
• Aspect profilers are pretty easy to setup but are limited in what 

they can monitor and are encumbered by detailing out 
everything you want to be tracked. 

• Java Agents have a big advantage in their tracking depth but are 
much more complicated to write.
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Profilers – Java

• Low Overhead, Java JVM Profiling in Production 
(APM – APplication Monitoring)

• New Relic, AppDynamics, Stackify Retrace, Dynatrace
• how your system performs in production is critical
• Java APM tools typically use the Java Agent profiler method 

• different instrumentation rules to allow them to run without affecting 
performance in productions.
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Algorithm Based Optimization
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Algorithm-Based Optimization 

• Choosing a more efficient algorithm or data structure is often the best way to 
improve program efficiency 

• Look for algorithms that reduce the order of complexity 

• E.g.  Binary search 𝑂𝑂(log𝑛𝑛) vs. linear search 𝑂𝑂(𝑛𝑛)
• E.g.  Merge sort 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛 𝑛𝑛) vs. bubble sort 𝑂𝑂(𝑛𝑛2)
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Algorithm-Based Optimization 

• Do this first before attempting other optimizations 
• Hand tuning an O(n2) algorithm won’t yield near the same gains as using an 

O(n log n) algorithm 

• Beware of worst-case performance 
• Some algorithms may not achieve their average  Big-O performance under 

certain conditions 
• E.g.  The quicksort degenerates to O(n2) with nearly-sorted inputs
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Algorithm-Based Optimization 

• Sometimes an inefficient algorithm is fine for small inputs 

• The overhead of a complicated algorithm may make it slower than a simple one
• And harder to debug and maintain! 

• Measure performance to make sure you’ve made the right choice
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Algorithm-Based Optimization 

• Sometimes an inefficient algorithm is fine for small inputs 

• Java’s own internal Quick Sort uses an Insertion Sort below a specific array size
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Compiler Based Optimization
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Compiler-Level Optimization

• Enabling compiler optimization can improve speed by as much as 2 times 

• Most compilers turn off optimization by default
• Optimized code tends to confuse debuggers 

• Works best with straightforward code 
• Hand tuned code may actually be harder for the compiler to optimize
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Compiler-Level Optimization

• Some compilers optimize better than others 
• E.g.
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Compiler-Level Optimization

• Aggressive optimizers may introduce bugs 
• Rerun regression tests to ensure correctness 

• gcc optimization flags: 
• Optimize:  -O or -O1 
• Optimize even more:  -O2 
• Optimize yet more: -O3 
• Don’t optimize (default):  -O0
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Compiler-Level Optimization

• E.g. gcc -O2 -o myprog myfile.c



Onward to … 
logic optimization.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/
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