
Reflection Applied: Aspects
CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Wednesday, March 5, 2025

Copyright © 2025

2

Intercession via aspects

3

Introduction

• What is AspectJ?
• Aspect oriented programming (AOP) extension to Java

• What is an Aspect?
• a particular part or feature of something.

4

History

• Developed at Xerox PARC (Palo Alto RC)
• Launched in 1998
• PARC transferred AspectJ to an openly-developed eclipse.org project in

December of 2002.

For more info: www.eclipse.org/aspectj

5

Introduction

• What are goals of AOP?
1. Separation of concerns
2. Modularity

• No more tangled code
• Simplicity
• Maintainability
• Reusability

3. Aspects
• encapsulate behaviors that affect multiple classes (OO) into

reusable modules.

6

I’m concerned?

7

Cross-Cutting Concern

• What is a cross-cutting concern?

• Behavior that cuts across the typical divisions of responsibility, such as
logging or debugging

• A problem which a program tries to solve.

• Aspects of a program that do not relate to the core concerns directly, but
which proper program execution nevertheless requires.

8

Language: Dynamic VS Static crosscutting

• Dynamic crosscutting
• define additional behavior to run at certain well-defined points in the

execution of the program

• Static crosscutting
• modify the static structure of a program (e.g., adding new methods,

implementing new interfaces, modifying the class hierarchy)

9

We’ll build around this

10

Reference Object Structured for Following

11

Join In

12

Language: Join Points

• Join Points: well-defined points in the execution of a program

• Method call, Method execution
• Constructor call, Constructor execution
• Static initializer execution
• Object pre-initialization, Object initialization
• Field reference, Field set
• Handler execution
• Advice execution

13

Method-call

“Point.incrXY(..)”

Language: Join Points

Method-execution

“Test.main(..)”

Constructor-call

“Point(..)”

14

Language: Join Points
Static initialization

“Point._clinit_”

Pre-initialization

“Point(..)”

Initialization

“Point(..)”

Constructor-execution

“Point(..)”
Field-set

“Point.x”

Field-set

“Point.y”

Method-execution

“Point.incrXY(..)”
Field-set

“Point.y”

Field-set

“Point.x”

15

Cut in

16

Language: Pointcuts

• A set of join point, plus, optionally, some of the values in the execution context
of those join points.

• Can be composed using boolean operators || , &&

• Matched at runtime

17

Matches if the join point is a method call with this signature.

Matches if the join point is a method call to any kind of FigureElement.

Matches any call to setX OR setY

Language
Pointcut examples

18

Language
Pointcut examples

• There is a cross-cutting concern here relating to moving
• We can capture these in our own user defined pointcut

19

When to cut in?

20

Language: Advice

• Method-like mechanism used to declare that certain code should execute at
each of the join points in the pointcut.

• Advice:

• before
• around
• after

• after
• after returning
• after throwing

21

Language: Advice

22

Language: Exposing context

We can also interact with parameters of pointcut

Filling in an applicable pointcut

23

All together now

24

Language: Aspects

• Mix everything we’ve seen up to now and put it one or more modular units
called Aspects.

• Looks a lot like a class!

• Can contain pointcuts, advice declarations, methods, variables ….

• Single instances (default behavior)

25

The methods we weave

26

Implementation

• Aspect weaving: makes sure that applicable advice runs at the appropriate join
points.

• In AspectJ, almost all the weaving is done at compile-time to expose errors and
avoid runtime overhead.

27

Developmental Aspects

• What are some places Aspects can assist developmental processes
• Exist in along-side but apart from existing coding
• Tracing, profiling/logging, pre-post conditions, …

• Enabling tracing as an ‘weaved’ in process that doesn’t exist in production
• Although many sophisticated profiling tools are available, and these can gather a variety of

information and display the results in useful ways, you may sometimes want to profile or
log some very specific behavior.

• "Design by Contract" style where explicit pre-conditions test that callers of a method call it
properly and explicit post-conditions test that methods properly do the work they are
supposed to.

28

Production Aspects

• What are some places Aspects can assist production code
• Expected to be enabled and in operation
• Change monitoring, Context passing, Consistent Behaviour

• Ex. maintain a dirty bit associated with object having moved since last display occurred
• Ex. Bypassing chain of messages by triggers being able to move outside regular class

diagram
• Ex. Making all methods log errors to common output location

29

Optional: Complex Example from
Research

30

My Experience: Advised Multi-Agent System

31

My Experience : Advised Multi-Agent System

32

My Experience: Advised Multi-Agent System

• Advisor monitors each agent when actions happened (collecting histories)
• From histories environment reconstructed, as well as agent behaviour
• Agent behaviour compared to optimal (ish)
• Rules to attempt to make agents act like optimal
• Rules added to agent

33

My Experience: Advised Multi-Agent System

• Aspects:
• Advisor Aspect that hooks onto Agents when actions occur and records them (methods are

called)
• Also is able to notice when simulation runs have finished and do its number crunching to

extract info, optimize, derive rules, and communicate them
• Aspect around each agent to store advisor communicated rules and inter-cede in methods

to change their behaviour decisions based on rules

34

My Experience: Advised Multi-Agent System

1. The MAS designer never had to change his code
2. The distributed aspect concerns related to the advisor were all centralized

into very few classes, despite their interaction with code base being
distributed

3. Could be flagged on and off at runtime

• The negative was a negligible runtime cost of hooking in aspects (the
optimization AI step was much longer)

• Code always had to be run with additional configuration setup than basic Java
code

Onward to …
optimization.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Reflection Applied: Aspects
	Intercession via aspects
	Introduction
	History
	Introduction
	I’m concerned?
	Cross-Cutting Concern
	Language: Dynamic VS Static crosscutting
	We’ll build around this
	Reference Object Structured for Following
	Join In
	Language: Join Points
	Language: Join Points
	Language: Join Points
	Cut in
	Language: Pointcuts
	Language�Pointcut examples
	Language�Pointcut examples
	When to cut in?
	Language: Advice
	Language: Advice
	Language: Exposing context
	All together now
	Language: Aspects
	The methods we weave
	Implementation
	Developmental Aspects
	Production Aspects
	Optional: Complex Example from Research
	My Experience: Advised Multi-Agent System
	My Experience : Advised Multi-Agent System
	My Experience: Advised Multi-Agent System
	My Experience: Advised Multi-Agent System
	My Experience: Advised Multi-Agent System
	Onward to … �optimization.

