
Reflection Applied: Mocking
CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Wednesday, March 5, 2025

Copyright © 2025

2

Advanced Testing

3

State vs Interaction Testing

• JUnit is designed around state testing
• You run a function and ensure end state matches post-condition of function interface
• You have limited awareness of anything that the function does outside of exposed

behaviour
• Values provided (an accessible information in them that could be modified)
• Returned result

• Interaction testing
• You verify if interactions between functions are as expected
• Mockito (Or similar testing frameworks) let you do this

• Mockito can also assist state testing by allowing intercession
• letting you stub interactions so that a test doesn’t rely on correctness of dependent classes
• helps reduce tests that have grown into integration test back into unit tests

4

Stubs

• Test Stub (old method)
• Hand-coded object for testing, have to sub in fully coded replacement
• Rather time consuming
• Becomes parallel development
• Often requires rewriting existing code so that it is designed around interface that allows

this replacement (rather than copy-paste code back and forth when testing

5

Stubs

• Maybe we want to test code that involves a lookup a book in a storage object by id
• storage.getById(String)
• We aren’t testing the lookup, but only later properties post-retrieval

• Storage could involve something complex like a red-black-tree which could have bugs!

• With a stub we could code a pretend storage object good enough for our limited tests
(maybe using simple if/then)

• if id == lookup_id return new Book(“title”)
• Our test could sub-in this universally non-functional stub in place of the other code, so that

the test can rely on the correct book always being returned

6

Stubs

interface Library {
public Book getById(String name);

}
public StubLibrary implements Library{

public Book getById(String name){
if name.equals(“Book1”)

return new Book(“title1”);
if name.equals(“Book2”)

return new Book(“title2”);
return null;

}
}

public RealLibrary implements Library{
public Book getById(String name){
 //relies on buggy RedBlackTree impl.
}

}

7

Mocking

8

Test Doubles

• Mockito lets you mock (or make a double) for different things

• Mock Object
• Created using Mockito’s framework API

• There are others like EasyMock, Jmocking, etc.
• Has exact same interface as original object

• We don’t need to have made an interface
• Allows us to define all functionality ourselves

• We can do intercession
• Allows us to monitor how the mock object is used

• Framework latches on something like a profiler
• Verify!

9

Usage Pattern

1. Setup mocks for all dependencies you want to replace
1. This can be done setting up the test class
2. Or can be done in the test itself

2. Set-up intercession
1. when() -> do X

1. thenReturn() is most common
3. Call tested logic

4. Verify results
1. Regular unit testing of state
2. Interaction testing using the profiled Mockito

1. verify()

10

Dangers

• Mocking lets us bypass the interface limitations the object provided
• This creates tighter coupling of test code and actual code

• It can be easy to make brittle tests
• Tests that are dependent on how the programmer chose to solve the problem

• Ex. Maybe you verify how many times a sub-api is accessed when the outer function is called
• Some solutions might do it X times and other programmers might to it Y times

• Another Ex.
• Testing the SQL string passed to the DB (there are many equivalent queries that get same results)

• Try to avoid getting to (white box test) implantation specific in the testing

11

Mockito

• Open Source
• Most common mocking framework

• https://site.mockito.org/
• Can add it through Maven

• 5.14.2 is most recent
• MIT license

https://site.mockito.org/

12

Benefits

• No custom stubs
• Simple post-verification setup (others like EasyMock require you to write expected behaviour

first -> a more academic approach)

• Refactoring-safe
• Design means most refactoring triggers will also trigger refactoring in tests

• Supports returns and exceptions
• Flexible parameters setting
• Single jar

• Easy to learn
• Most commonly found Q/A on internet for mocking in Java

13

Intro Examples

14

First Examples
• Imported

import static org.mockito.Mockito.*;
• Mock

List mockedList = mock(List.class);
• Intercession

when(mockedList.get(0)).thenReturn(“first”);
when(mockedList.get(or(eq(1),eq(2))).thenReturn(“more”);
when(mockedList.get(gt(2)).thenThrow(new RuntimeException());

• Others
• anyInt, anyString
• Custom parameter matchers (Hamcrest) https://hamcrest.org/

https://hamcrest.org/

15

First Examples - Verify

• Verify interaction
verify(mockedList).clear();

verify(mockedList).add(“one”);
verify(mockedList).add(anyString());
verify(mockedList, atLeastOnce()).add(“one”);

verify(mockedList, times(3)).add(anyString());

• Others
• never, atMost
• verifyZeroInteractions

16

More Examples

17

Basics

First test is regular JUnit tests
Second test using a mock Calculator

 add() is never actually used

public class Calculator {
 public int add(int a, int b) {
 return a + b;
 }
}

@Test
 public void testAdd1() {
 Calculator calculator = new Calculator();
 int result = calculator.add(2, 3);
 assertEquals(5, result, "2 + 3 should equal 5");
 }

 @Test
 public void testAdd2() {
 Calculator calculator = mock(Calculator.class);
 when(calculator.add(2,3)).thenReturn(5);
 int result = calculator.add(2,3);
 assertEquals(5, result, "2 + 3 should equal 5");
 }

18

Escape Dependency Chain

We have a UserService that relies on UserRepository
Any time we make a test for isUserActive we need
userRepository.findById() to be correct as well!

But we haven’t even completed it yet

public class User {
 private int id;
 private String name;
 private boolean active;
 public User(int id, String name, boolean active) {
 this.id = id;
 this.name = name;
 this.active = active;
 }
 public boolean isActive() {
 return active;
 }
}

public class UserService {
 private UserRepository userRepository;

 public UserService(UserRepository userRepository) {
 this.userRepository = userRepository;
 }

 public boolean isUserActive(int userId) {
 User user = userRepository.findById(userId);
 return user != null && user.isActive();
 }
}

public class UserRepository {
 public User findById(int userId) {
 return null;
 }
}

19

Escape Dependency Chain

We have a UserService that relies on
UserRepository
Any time we make a test for isUserActive
we need userRepository.findById() to be
correct as well!

But we haven’t even completed it yet

@Test
 public void testIsUserActive() {
 // Create a mock UserRepository
 UserRepository userRepository = mock(UserRepository.class);

 // Define the behavior of the mock UserRepository
 User activeUser = new User(1, "John Doe", true);
 when(userRepository.findById(1)).thenReturn(activeUser);

 // Instantiate UserService with the mock UserRepository
 UserService userService = new UserService(userRepository);

 // Test the isUserActive method
 assertTrue(userService.isUserActive(1),
 "User with ID 1 should be active");

 // Verify the mock UserRepository's findById method was called
 //with the correct argument
 verify(userRepository, times(1)).findById(1);
 }

20

Escaping service requirements (online service)

public class Network {

 private URL url;

 public Network(URL url) {
 this.url = url;
 }

 public boolean isUrlAvailable() throws IOException {
 return getResponseCode() ==
 HttpURLConnection.HTTP_OK;
 }

 private int getResponseCode() throws IOException {
 HttpURLConnection con = (HttpURLConnection)
 this.url.openConnection();
 return con.getResponseCode();
 }

 public String getData() throws IOException {
 if(isUrlAvailable()){
 BufferedReader in = new BufferedReader(
 new InputStreamReader(url.openStream()));
 String inputLine;
 StringJoiner sj = new StringJoiner(",");
 while ((inputLine = in.readLine()) != null)
 sj.add(inputLine);
 in.close();
 return sj.toString();
 }
 return null;
 }
}

It can be hard to test code that requires and active
internet connection
Also tests that look like DDoS to a service or
botting will often end up blocked

21

Escaping service requirements (online service)

• We can actually mock the original URL (this allows us to access the
openConnection) to have it return a mocked HttpURLConnection that will give
the response we want

• In this case failure to find the URL (this allows us to see if isUrlAvailable would
give expected response in this scenario (state check after intercession)

@Test
 public void givenMockedUrl_whenRequestSent_thenIsUrlAvailableFalse() throws Exception {
 HttpURLConnection mockHttpURLConnection = mock(HttpURLConnection.class);
 when(mockHttpURLConnection.getResponseCode()).thenReturn(HttpURLConnection.HTTP_NOT_FOUND);

 URL mockURL = mock(URL.class);
 when(mockURL.openConnection()).thenReturn(mockHttpURLConnection);

 Network network = new Network(mockURL);
 assertFalse(network.isUrlAvailable(), "Url should not be available: ");
 }

22

Escaping service requirements (online service)

• Here I use URL mock to make the HTML response from connecting to a website

@Test
 public void givenMockedUrl_whenRequestSent_thenGetDefaultData() throws Exception {
 HttpURLConnection mockHttpURLConnection = mock(HttpURLConnection.class);
 when(mockHttpURLConnection.getResponseCode()).thenReturn(HttpURLConnection.HTTP_OK);
 URL mockURL = mock(URL.class);
 when(mockURL.openConnection()).thenReturn(mockHttpURLConnection);
 String fakeData = "<html>" +
 "<body>Hello</body>" +
 "</html>";
 InputStream is = new ByteArrayInputStream(fakeData.getBytes(StandardCharsets.UTF_8));
 when(mockURL.openStream()).thenReturn(is);

 Network network = new Network(mockURL);
 assertEquals(fakeData, network.getData());
 }

23

Escaping service requirements (database)

• Here I don’t want my unit test to rely on the actual database (or modify it)
• So I’ll want to modify my tests to bypass need for getDBConnection() to have

been executed
public class Database {
 private Connection dbConnection;
 public void getDBConnection() throws SQLException {
 dbConnection = DriverManager.getConnection("jdbc:sqlite:sqlite.db");
 }
 public List<String> getNames(String query) throws SQLException {
 List<String> names = new ArrayList<>();
 ResultSet resultSet = dbConnection.createStatement().executeQuery(query);
 do{
 names.add(resultSet.getString("first_name")+" "+resultSet.getString("last_name"));
 }while(resultSet.next());
 return names;
 }
}

24

Escaping service requirements (database)

• We can mock a private variable by using @InjectMocks for the Class, and then
@Mock for the field to mock inside

• I’ll need to trigger this for each test
@InjectMocks

 private Database database;
 @Mock
 private Connection connection;

 @BeforeEach
 public void setUp() {
 MockitoAnnotations.initMocks(this);
 }
 @Test
 public void testGetNames() throws Exception {
 ResultSet rs = Mockito.mock(ResultSet.class);
 Mockito.when(rs.getString("first_name")).thenReturn("Jonathan");
 Mockito.when(rs.getString("last_name")).thenReturn("Hudson");

Mockito.when(connection.createStatement()).thenReturn(Mockito.mock
(Statement.class));

Mockito.when(connection.createStatement().executeQuery(Mockito.any
())).thenReturn(rs);

 List<String> names = database.getNames("SELECT first_name,
last_name FROM person WHERE height > 1.82;");
 assertEquals(1, names.size());
 assertEquals("Jonathan Hudson", names.getFirst());
 Mockito.verify(connection.createStatement(), Mockito.times(1));
 }

25

Escaping service requirements (database)

• Then I can bypass the need for DBConnection to have been setup
• getNames will now trigger the intercession on executeQuery to return my mock

ResultSet (I need a mock Statement returned by the connection I’ve mocked as well in the injection into
Database class private variable, otherwise createStatement is null)

@Test
 public void testGetNames() throws Exception {
 ResultSet rs = Mockito.mock(ResultSet.class);
 Mockito.when(rs.getString("first_name")).thenReturn("Jonathan");
 Mockito.when(rs.getString("last_name")).thenReturn("Hudson");

 Mockito.when(connection.createStatement()).thenReturn(Mockito.mock(Statement.class));
 Mockito.when(connection.createStatement().executeQuery(Mockito.any())).thenReturn(rs);

 List<String> names = database.getNames("SELECT first_name, last_name FROM person WHERE height > 1.82;");
 assertEquals(1, names.size());
 assertEquals("Jonathan Hudson", names.getFirst());
 Mockito.verify(connection.createStatement(), Mockito.times(1));
 }

Onward to …
aspects.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Reflection Applied: Mocking
	Advanced Testing
	State vs Interaction Testing
	Stubs
	Stubs
	Stubs
	Mocking
	Test Doubles
	Usage Pattern
	Dangers
	Mockito
	Benefits
	Intro Examples
	First Examples
	First Examples - Verify
	More Examples
	Basics
	Escape Dependency Chain
	Escape Dependency Chain
	Escaping service requirements (online service)
	Escaping service requirements (online service)
	Escaping service requirements (online service)
	Escaping service requirements (database)
	Escaping service requirements (database)
	Escaping service requirements (database)
	Onward to … �aspects.

