Machine Learing: Neural
Networks: MNIST

CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D

Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Friday, February 21, 2025

Copyright © 2025
=z# UNIVERSITY OF

) CALGARY

MNIST Database

* Each image is a 28x28 array, flattened out to be a 1-d tensor of size 784

AN[E
N,

Q—ONMI™ e frye s
O—bmTI WS Moo
O~ @ > 0N\ —0 o
Ol >rNDG A <
V=N CIF e g
Q~—xNPLLO N~AQ T
C=NOYT LW o
Q~ XIS rw J”
O —CgmT— NS INoo g
O~ T WO 0o
QT N o~
Q- (oINS hoa o
Q=g mMm>'\~-8 Mreos
D —(F™Mm J DD Do o~
QO —c3 T \nY - N
D — e F oo N
O—deN TS s O~
O~ Nw N N
O~ TP O NG &

) UNIVERSITY OF
¥) CALGARY

Design

1. Study the problem you are trying to solve (What?)

2. Choose a model class, hyperparameters (How?)
1. Neural networks
1. Layers? Structure? Drop-out?
2. Loss function: MSE? Other?
3. Optimizer: Adam? Adam-like?

3. Prepare data (Do.)
4. Run learning algorithm to train the model (Do.)
5. Evaluate trained model (Did it work?)

3l UNIVERSITY OF

¥ CALGARY

Model

Input to model

* X:image of a handwritten digit

Y: the digit value

Goal: trained model that recognizes the digit in the image

= UNIVERSITY OF

¥) CALGARY

Model

* Inference: Y_predicted = softmax(X * w + b)
* We want network that predicts 10 digits
* We also want the sum of our probabilities across output layer to be 1
* Sigmoid activation would give use between 0 and 1
* Softmax goes step further and makes sure sum of the 10 probabilities are 1 in total

el UNIVERSITY OF

%) CALGARY

Model

* Cross entropy loss: -log(Y_predicted)
* Made for measuring performance of models where outputisOto 1

Log Loss when true label = 1

log loss

0.0 0.2 0.4 0.6 0.8 1.0
predicted probability

UL UNIVERSITY OF

¥) CALGARY

Variants of Cross entropy loss

BinaryCrossentropy:
* only two label classes (0 and 1)
CategoricalCrossentropy:

* 2 or more labels in one-hot encoding 0 =[1,0,0,0] 1=[0,1,0,0] 2=[0,0,1,0],
3=[OIOI011]

SparseCategoricalCrossentropy:

* can use regular integer labels, 1,2,3,4

LN UNIVERSITY OF

W) CALGARY

Process data

#TF2 Includes MINIST data already (mostly for learning purposes)

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
#We need to level color data to O to 1 range
X_train, x_test = x_train / 255.0, x_test / 255.0

#We are classifying digits 0 to 9
class_names = list(range(10))

II:‘:;I UNIVERSITY OF

W) CALGARY

Phase 1: Assemble our graph

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(10, activation='softmax')

)

Two layers
1. First we flatten image 2d array to a 1d tensor input

2. Then we make a connection from every image spot to every 0-9 integer
output spot

= UNIVERSITY OF

¥) CALGARY

10

Specify loss function

model.compile(
optimizer=sgd’,
loss="sparse_categorical_crossentropy’,
metrics=['accuracy’])

Use ‘sgd’ optimizer

We’ll discuss the loss function later in slides

= UNIVERSITY OF

¥) CALGARY

11

Train our model and evaluate it’s quality

model.fit(x_train, y_train, epochs=5)

model_loss, model_acc = model.evaluate(x_test, y test, verbose=2)

print(f"Model Loss: {model_loss*100:.1f}%")
print(f"Model Accuray:{model_acc*100:.1f}%")

3l UNIVERSITY OF

¥ CALGARY

12

Train our model and evaluate it’s quality

700%) SEERERERE

LN UNIVERSITY OF

¥ CALGARY

13

Train our model and evaluate it’s quality

il

6100%(5) = — T r1r rr 1 2 60% (3)

0 43% (4) LIL 2 50% (6)

01234567829

llll!l
01234567829

01234567829

UNIVERSITY OF

¥ CALGARY

14

Save/Load our model

model.save(‘MINST.keras’)

new_model = tf.keras.models.load _model('MINST. keras’)

Can use this model exactly the same way we were the one we made and trained

How most apps works. Make model on the development end, spend a bunch of
time testing it in dev, once the accuracy is good see if size/speed can be
optimized, dump into production as finished product

= UNIVERSITY OF

¥) CALGARY

15

Splitting data?

* Why did we do this
(x_train, y_train), (x_test, y_test) = mnist.load_data()

* In some cases a neural network (other other model) might learn exactly what
input maps to what output. Which would mean 100% performance on existing
data.

* But in reality we generally want to predict things we don’t have input for. 100%
on known data, can sometimes result in algorithm that is much lower 66%! on
new data. This is because the model didn’t learn generalize patterns, but
instead a mapping.

* Here we loaded a input set of data to train on, and a set to test on from MNIST.
(x_train, x_test, y_train, y_test) = train_test_split(X,y, random_state=0, train_size=0.5)

* Used to split any data into parts (here a 50% split)

= UNIVERSITY OF

¥) CALGARY

16

Cross-validation

If we have split data one technique to compare proposed models is cross-
validation

Split 50/50 then run two tests, each where data is input and other output, then
reverse

Often then combine the two measures to judge the model (average)

X-fold validation is when you split data into more groups, where each sub-
group takes turn as test data,

* sklearn has cross_val score(model, X, y, cv=5) that will do this (here 5-fold)

= UNIVERSITY OF

¥) CALGARY

Trade-offs

* Bias-Variance -> A more general model (like a single line of best fit, or a more
varied model like a polynomial line), one might fit better but is realistically not
a real model of data

* As model complexity increases it often gets easier to get a high training score,
but often at a certain point the cross-validation score begins to decrease

 Larger data often helps us, more data will help a polynomial line from getting
overfit as there may be enough data to keep it smoother and more realistic

LN UNIVERSITY OF

W) CALGARY

17

18

Challenges

Not enough data - easy for model to overfit and not generalize

* “Unreasonable Effectiveness of Data” in many situations companies can often make their
model better, less through design, and more through collecting more data (as often simple
models are best anyway)

Non-representative training data =- if your model has holes it will predict right
over them. If you sample larger data (too little -> sample noise, too much ->
sample bias)

Poor-quality data - garbage in -> garbage out

Irrelevant features — if you have bunch of features which are the same thing,
the model will bias towards just them, can limit features, create new ones, or
gather data with better features

 QOverfitting/Underfitting - next

LN UNIVERSITY OF

W) CALGARY

Overfit/Underfit

* An example of overfit is the polynomial model that can perfectly match data,
but forgoes actually trying to be a model that data fits in

* |.e. given enough time many neural networks can learn data perfectly
(especially low input quantity data)

* Underfit is when your model is too simple — this is less a problem with neural
networks (unless not given enough training time due to data being too large),
however an example is trying to fit non-linear data to a linear model

= UNIVERSITY OF

¥) CALGARY

19

Dropout

* During training, some number of layer outputs are randomly ignored or
“dropped out.”

* the layer look-like and be treated-like a layer with a different number of nodes
and connectivity to the prior layer

* |n effect, each update to a layer during training is performed with a different
“view” of the configured layer.

= UNIVERSITY OF

¥) CALGARY

20

Dropout

* Dropout has the effect of making the training process noisy, forcing nodes
within a layer to probabilistically take on more or less responsibility for the

inputs.

* Makes it hard for network to overfit, it can’t focus on creating singular paths for
singular inputs to the trained output, has to try and represent the pattern

LN UNIVERSITY OF

W) CALGARY

21

22

Dropout

* One gain is that each training step is faster

* Generally takes longer to train as less error updating is done (some nodes are
idle each execution)

* Sometimes you need bigger network than you had previously

* Often larger dropout rates earlier (in CNN think of this is that we want to ignore
little tiny features earlier on)

* Often lower dropout rates later (in CNN think of this as that we’ve made more
complex ideas, they are less likely to be overfitted)

LN UNIVERSITY OF

W) CALGARY

23

Learning Rate

* Neural networks update their weights between neuron during backpropogation
* How large this update can be is dependant on the learning rate

* A high learning rate means they update the value by a large amount, a low
learning rate means a small adjustment

= UNIVERSITY OF

¥) CALGARY

24

Learning Rate

1(8)

Too low

)(6)

Just right

1(6)

Too high

—#”’F’,,.—-ﬂ""'

A small learning rate
requires many updates
before reaching the
minimum point

The optimal learning

rate swiftly reaches the

minimum point

Too large of a learning rate
causes drastic updates

which lead to divergent
behaviors

= UNIVERSITY OF

&% CALGARY

25

Learning Rate Decay

 Start with large learning rate and then reduce it over time

initial_learning_rate=0.1

Ir_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay steps=100000,
decay_rate=0.96,

staircase=True)

LN UNIVERSITY OF

W) CALGARY

26

Learning Rate Decay

 Start with large learning rate and then reduce it over time

model.compile(
optimizer=tf.keras.optimizers.SGD(learning_rate=Ir_schedule),
loss="'sparse_categorical crossentropy/,
metrics=['accuracy'])

model.fit(data, labels, epochs=5)

= UNIVERSITY OF

¥) CALGARY

27

Keras Optimizers

SGD - stochastic gradient descent

* variants include Adagrad, Adadelta
RMSprop — SGD with moving average of square of gradients

Adam - RMSprop with momentum

* Variants- Adamax, Nadam, and more

JEETY UNIVERSITY OF

W) CALGARY

28

Keras loss functions — predict value

2
MeanSquaredError: (Ve — Vprea)
Huber: variant of MSE

MeanSquaredLogarithmicError: (log(ymw) — log(ypred))z
MeanAbsoluteError: |y_true — y_pred|

|Yerue—Ypred|

MeanAbsolutePercentageError : 100 *

Ytrue

Many more: Poisson, KLDivergence (Kullback-Leibler),

CosineSimilarity, Hinge, SquaredHinge, CategoricalHinge

= UNIVERSITY OF

¥) CALGARY

Discussion

""""""""""""""

7 CALGARY

30

Discussion

* Decentralized knowledge representation
& possibility to parallelize (GPUs!)

* Can find pattern outside of human understanding
e Currently best way to deal with sensory data

— Network structure determines what can be learned
® must be provided by user

— Represented knowledge not understandable by humans
— Learning can take very long

— Too many learning procedures: when to choose which?

LN UNIVERSITY OF

¥ CALGARY

NN Bonus! -> Subgraphs Let us use Compute Units

£(3,4) = 42

Possible to break graphs into several
chunks and run them parallelly across
multiple CPUs, GPUs, TPUs, or other
devices

Grdph from Hands-On Machine Learning with Scikit-Learn and TensorFlow

Why graphs

1.Save computation. Only run subgraphs that lead to the
values you want to fetch.

2.Break computation into small, differential pieces to
facilitate auto-differentiation

3.Facilitate distributed computation, spread the work
across multiple CPUs, GPUs, TPUs, or other devices

4.Many common machine learning models are taught
and visualized as directed graphs

32

Figure 3: This image captures how
multiple sigmoid units are stacked on
the right, all of which receive the same
input x.

LN UNIVERSITY OF

W) CALGARY

Onward to ... Convolutional
Neural Networks

onathan Hudson AN
‘whudson@ucal #m UNIVERSITY OF

: >~
httpli:/S/c:)r;gei?:pii.rt\:ccaagarv.ca/'”iwhudson/ w CALGARY

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Machine Learing: Neural Networks: MNIST
	MNIST Database
	Design
	Model
	Model
	Model
	Variants of Cross entropy loss
	Process data
	Phase 1: Assemble our graph
	Specify loss function
	Train our model and evaluate it’s quality
	Train our model and evaluate it’s quality
	Train our model and evaluate it’s quality
	Save/Load our model
	Splitting data?
	Cross-validation
	Trade-offs
	Challenges
	Overfit/Underfit
	Dropout
	Dropout
	Dropout
	Learning Rate
	Learning Rate
	Learning Rate Decay
	Learning Rate Decay
	Keras Optimizers
	Keras loss functions – predict value
	Discussion
	Discussion
	NN Bonus! -> Subgraphs Let us use Compute Units
	Why graphs
	Onward to … Convolutional Neural Networks �

