
Machine Learing: Neural 
Networks: MNIST
CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Friday, February 21, 2025

Copyright © 2025



2

MNIST Database

• Each image is a 28x28 array, flattened out to be a 1-d tensor of size 784



3

Design

1. Study the problem you are trying to solve (What?)
2. Choose a model class, hyperparameters (How?)

1. Neural networks
1. Layers? Structure? Drop-out?
2. Loss function: MSE? Other?
3. Optimizer: Adam? Adam-like?

3. Prepare data (Do.)
4. Run learning algorithm to train the model (Do.)
5. Evaluate trained model (Did it work?)



4

Model

• Input to model
• X: image of a handwritten digit
• Y: the digit value

• Goal: trained model that recognizes the digit in the image



5

Model

• Inference: Y_predicted = softmax(X * w + b)
• We want network that predicts 10 digits
• We also want the sum of our probabilities across output layer to be 1
• Sigmoid activation would give use between 0 and 1
• Softmax goes step further and makes sure sum of the 10 probabilities are 1 in total



6

Model

• Cross entropy loss: -log(Y_predicted)
• Made for measuring performance of models where output is 0 to 1



7

Variants of Cross entropy loss

BinaryCrossentropy: 
• only two label classes (0 and 1)
CategoricalCrossentropy:
• 2 or more labels in one-hot encoding 0 = [1,0,0,0] 1= [0,1,0,0] 2=[0,0,1,0], 

3=[0,0,0,1]
SparseCategoricalCrossentropy: 
• can use regular integer labels, 1,2,3,4



8

Process data

#TF2 Includes MNIST data already (mostly for learning purposes)
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
#We need to level color data to 0 to 1 range
x_train, x_test = x_train / 255.0, x_test / 255.0

#We are classifying digits 0 to 9
class_names = list(range(10))



9

Phase 1: Assemble our graph

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)), 
tf.keras.layers.Dense(10, activation='softmax')

])

Two layers
1. First we flatten image 2d array to a 1d tensor input
2. Then we make a connection from every image spot to every 0-9 integer 

output spot



10

Specify loss function

model.compile(
optimizer=sgd’,
loss='sparse_categorical_crossentropy’,
metrics=['accuracy’])

Use ‘sgd’ optimizer
We’ll discuss the loss function later in slides



11

Train our model and evaluate it’s quality

model.fit(x_train, y_train, epochs=5)

model_loss, model_acc = model.evaluate(x_test, y_test, verbose=2)

print(f"Model Loss: {model_loss*100:.1f}%")
print(f"Model Accuray:{model_acc*100:.1f}%")



12

Train our model and evaluate it’s quality



13

Train our model and evaluate it’s quality



14

Save/Load our model

model.save(‘MINST.keras’)

new_model = tf.keras.models.load_model('MINST. keras’)

Can use this model exactly the same way we were the one we made and trained

How most apps works. Make model on the development end, spend a bunch of 
time testing it in dev, once the accuracy is good see if size/speed can be 
optimized, dump into production as finished product



15

Splitting data?

• Why did we do this
 (x_train, y_train), (x_test, y_test) = mnist.load_data()
• In some cases a neural network (other other model) might learn exactly what 

input maps to what output. Which would mean 100% performance on existing 
data. 

• But in reality we generally want to predict things we don’t have input for. 100% 
on known data, can sometimes result in algorithm that is much lower 66%! on 
new data. This is because the model didn’t learn generalize patterns, but 
instead a mapping.

• Here we loaded a input set of data to train on, and a set to test on from MNIST.
(x_train, x_test,  y_train, y_test) = train_test_split(X,y, random_state=0, train_size=0.5)

• Used to split any data into parts (here a 50% split)



16

Cross-validation

• If we have split data one technique to compare proposed models is cross-
validation

• Split 50/50 then run two tests, each where data is input and other output, then 
reverse

• Often then combine the two measures to judge the model (average)
• X-fold validation is when you split data into more groups, where each sub-

group takes turn as test data, 
• sklearn has cross_val_score(model, X, y, cv=5) that will do this (here 5-fold)



17

Trade-offs

• Bias-Variance -> A more general model (like a single line of best fit, or a more 
varied model like a polynomial line), one might fit better but is realistically not 
a real model of data

• As model complexity increases it often gets easier to get a high training score, 
but often at a certain point the cross-validation score begins to decrease

• Larger data often helps us, more data will help a polynomial line from getting 
overfit as there may be enough data to keep it smoother and more realistic



18

Challenges

• Not enough data - easy for model to overfit and not generalize
• “Unreasonable Effectiveness of Data” in many situations companies can often make their 

model better, less through design, and more through collecting more data (as often simple 
models are best anyway)

• Non-representative training data =- if your model has holes it will predict right 
over them. If you sample larger data  (too little -> sample noise, too much  -> 
sample bias)

• Poor-quality data - garbage in -> garbage out 
• Irrelevant features – if you have bunch of features which are the same thing, 

the model will bias towards just them, can limit features, create new ones, or 
gather data with better features

• Overfitting/Underfitting - next



19

Overfit/Underfit

• An example of overfit is the polynomial model that can perfectly match data, 
but forgoes actually trying to be a model that data fits in

• I.e. given enough time many neural networks can learn data perfectly 
(especially low input quantity data)

• Underfit is when your model is too simple – this is less a problem with neural 
networks (unless not given enough training time due to data being too large), 
however an example is trying to fit  non-linear data to a linear model



20

Dropout

• During training, some number of layer outputs are randomly ignored or 
“dropped out.” 

• the layer look-like and be treated-like a layer with a different number of nodes 
and connectivity to the prior layer

• In effect, each update to a layer during training is performed with a different 
“view” of the configured layer.



21

Dropout

• Dropout has the effect of making the training process noisy, forcing nodes 
within a layer to probabilistically take on more or less responsibility for the 
inputs.

• Makes it hard for network to overfit, it can’t focus on creating singular paths for 
singular inputs to the trained output, has to try and represent the pattern



22

Dropout

• One gain is that each training step is faster
• Generally takes longer to train as less error updating is done (some nodes are 

idle each execution)
• Sometimes you need bigger network than you had previously

• Often larger dropout rates earlier (in CNN think of this is that we want to ignore 
little tiny features earlier on)

• Often lower dropout rates later (in CNN think of this as that we’ve made more 
complex ideas, they are less likely to be overfitted)



23

Learning Rate

• Neural networks update their weights between neuron during backpropogation
• How large this update can be is dependant on the learning rate
• A high learning rate means they update the value by a large amount, a low 

learning rate means a small adjustment



24

Learning Rate



25

Learning Rate Decay

• Start with large learning rate and then reduce it over time

initial_learning_rate = 0.1
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate,
    decay_steps=100000,
    decay_rate=0.96,
    staircase=True)



26

Learning Rate Decay

• Start with large learning rate and then reduce it over time

model.compile(
 optimizer=tf.keras.optimizers.SGD(learning_rate=lr_schedule),
 loss='sparse_categorical_crossentropy’,
 metrics=['accuracy'])
model.fit(data, labels, epochs=5)



27

Keras Optimizers

SGD - stochastic gradient descent
• variants include Adagrad, Adadelta

RMSprop – SGD with moving average of square of gradients

Adam - RMSprop with momentum
• Variants- Adamax, Nadam, and more



28

Keras loss functions – predict value

MeanSquaredError: 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2

Huber: variant of MSE

MeanSquaredLogarithmicError: log 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − log 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
2

MeanAbsoluteError: |𝑦𝑦_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑦𝑦_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|

MeanAbsolutePercentageError : 100 ∗ |𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|
𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Many more: Poisson, KLDivergence (Kullback-Leibler),
CosineSimilarity, Hinge, SquaredHinge, CategoricalHinge



29

Discussion



30

Discussion

• Decentralized knowledge representation
 possibility to parallelize (GPUs!)

• Can find pattern outside of human understanding
• Currently best way to deal with sensory data
− Network structure determines what can be learned
 must be provided by user

− Represented knowledge not understandable by humans
− Learning can take very long
− Too many learning procedures: when to choose which?



31

NN Bonus! -> Subgraphs Let us use Compute Units

Possible to break graphs into several 
chunks and run them parallelly across 
multiple CPUs, GPUs, TPUs, or other 
devices

31Graph from Hands-On Machine Learning with Scikit-Learn and TensorFlow



32

Why graphs

1.Save computation. Only run subgraphs that lead to the 
values you want to fetch.

2.Break computation into small, differential pieces to 
facilitate auto-differentiation

3.Facilitate distributed computation, spread the work 
across multiple CPUs, GPUs, TPUs, or other devices

4.Many common machine learning models are taught 
and visualized as directed graphs



Onward to … Convolutional 
Neural Networks 

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Machine Learing: Neural Networks: MNIST
	MNIST Database
	Design
	Model
	Model
	Model
	Variants of Cross entropy loss
	Process data
	Phase 1: Assemble our graph
	Specify loss function
	Train our model and evaluate it’s quality
	Train our model and evaluate it’s quality
	Train our model and evaluate it’s quality
	Save/Load our model
	Splitting data?
	Cross-validation
	Trade-offs
	Challenges
	Overfit/Underfit
	Dropout
	Dropout
	Dropout
	Learning Rate
	Learning Rate
	Learning Rate Decay
	Learning Rate Decay
	Keras Optimizers
	Keras loss functions – predict value
	Discussion
	Discussion
	NN Bonus! -> Subgraphs Let us use Compute Units
	Why graphs
	Onward to … Convolutional Neural Networks �

