
Machine Learning: Optional
Other SciKit
CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Friday, February 21, 2025

Copyright © 2025

2

Unsupervised: Clustering

3

Clustering

• Grouping unlabeled data based on similarities
• Find patterns
• Sometimes we have minor direction like

• How many clusters
• Quality of a good cluster
• Relationship of clusters

4

Clustering Goals

• Clusters goal may
have a desired shape

• Ex. Circular

• Or maybe not be
restrained to a
particular shape

• Goal can also be to
force every point to
be part of a cluster
(hard clustering), or
soft where goal is
points end up with
likelihood of
membership

5

Clustering

• Most common intro example

• K-means clustering
• Ask for k clusters of data
• algorithm attempts to create them

• Often usage has you run k-means with differing sizes and contrasting results

6

K-Means

Initialize k means with random values
While more iterations left:

Loop through all the items
Find the mean closest to that item
Assign item to cluster of that mean
Update mean by shifting it to average of its cluster

7

Sci Kit

from sklearn.cluster import Kmeans

kmeans = KMeans(n_clusters = 3, random_state = 2)
kmeans.fit(X)

pred = kmeans.fit_predict(X)

#Plot data is the same
plt.scatter(X[:,0],X[:,1],c = pred)
#We use use kmeans cluster data
for i in kmeans.cluster_centers_:

plt.scatter(i[0],i[1],marker = '^',c = 'red')
plt.show()

8

Decision Trees

9

Decision Trees

• A decision tree is a tree where you enter at
the root

• You are presented with decisions at each
node in which you pick one path to a lower
node in tree

• Another internal node, or a leaf node

• You continue this making a choice at each
node based on your data (an attribute test)

• At the bottom of the tree are leaf/terminal
nodes which are the decision the tree makes
based on the data

10

Example

Outlook Temp Humidity Windy Play Golf

Rainy Hot High False No

Rainy Hot High True No

Overcast Hot High False Yes

Sunny Mild High False Yes

Sunny Cool Normal False Yes

Sunny Cool Normal True No

Overcast Cool Normal True Yes

Rainy Mild High False No

Rainy Cool Normal False Yes

Sunny Mild Normal False Yes

Rainy Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Sunny Mild High True No

Outlook

Rainy

Humidity

High

Play=No

Normal

Play=Yes

Overcast

Play=Yes

Sunny

Windy

False

Play=Yes

True

Play=No

Predictors Target Decision Tree

11

How to make

1. All dataset outcomes are at root
2. Select an attribute with the most benefit (use info theory concept called

entropy -> information gained (ex. Best split of groups, think binary search))
3. Split dataset on attribute to make leaf nodes
4. Now you have a root with 2 or more leaves (often 2)
5. Now return to step 1 for each new leaf node
• Repeat above until a designate stopping point

12

Applications

• Decision Making
• Should I buy something, make a deal, go for it on 4th down

• Business Management
• Customer Relationship Management
• Fraudulent Statement Detection
• Energy Consumption
• Healthcare Management
• Fault Diagnosis

13

Sci-Kit

data = []
data.append(["Sunny", "Mild", "High", "False", "Yes"])
data.append(["Sunny", "Cool", "Normal", "False", "Yes"])
data.append(["Sunny", "Mild", "Normal", "False", "Yes"])
data.append(["Sunny", "Cool", "Normal", "True", "No"])
data.append(["Sunny", "Mild", "High", "True", "No"])
data.append(["Overcast", "Hot", "High", "False", "Yes"])
data.append(["Overcast", "Cool", "Normal", "True", "Yes"])
data.append(["Overcast", "Mild", "High", "True", "Yes"])
data.append(["Overcast", "Hot", "Normal", "False", "Yes"])
data.append(["Rainy", "Hot", "High", "False", "No"])
data.append(["Rainy", "Hot", "High", "True", "No"])
data.append(["Rainy", "Mild", "High", "False", "No"])
data.append(["Rainy", "Cool", "Normal", "False", "Yes"])
data.append(["Rainy", "Mild", "Normal", "True", "Yes"])

14

Sci-Kit

import numpy as np

from sklearn import preprocessing

from sklearn.tree import DecisionTreeRegressor

from sklearn.tree import plot_tree

oe = preprocessing.OrdinalEncoder()

oe.fit(data)

data = oe.transform(data)

dataset = np.array(data)

[[2. 2. 0. 0. 1.]
[2. 0. 1. 0. 1.]
[2. 2. 1. 0. 1.]
[2. 0. 1. 1. 0.]
[2. 2. 0. 1. 0.]
[0. 1. 0. 0. 1.]
[0. 0. 1. 1. 1.]
[0. 2. 0. 1. 1.]
[0. 1. 1. 0. 1.]
[1. 1. 0. 0. 0.]
[1. 1. 0. 1. 0.]
[1. 2. 0. 0. 0.]
[1. 0. 1. 0. 1.]
[1. 2. 1. 1. 1.]]

15

Sci-Kit

from sklearn import preprocessing

enc = preprocessing.OneHotEncoder()

enc.fit(data)

data = enc.transform(data).toarray()

#For binary categories drop one column

data = np.delete(data,[7,8,10],1)

import numpy as np

dataset = np.array(data)

OneHot coding is the only way sklearn lets us do categories with inaccurate implication that the
categories are numerical related
We should not use the prior label encoder as it relates Sunny to Rainy to Overcast as relative
numbers

[[0. 0. 1. 0. 0. 1. 1. 0. 1.]
 [0. 0. 1. 1. 0. 0. 0. 0. 1.]
 [0. 0. 1. 0. 0. 1. 0. 0. 1.]
 [0. 0. 1. 1. 0. 0. 0. 1. 0.]
 [0. 0. 1. 0. 0. 1. 1. 1. 0.]
 [1. 0. 0. 0. 1. 0. 1. 0. 1.]
 [1. 0. 0. 1. 0. 0. 0. 1. 1.]
 [1. 0. 0. 0. 0. 1. 1. 1. 1.]
 [1. 0. 0. 0. 1. 0. 0. 0. 1.]
 [0. 1. 0. 0. 1. 0. 1. 0. 0.]
 [0. 1. 0. 0. 1. 0. 1. 1. 0.]
 [0. 1. 0. 0. 0. 1. 1. 0. 0.]
 [0. 1. 0. 1. 0. 0. 0. 0. 1.]
 [0. 1. 0. 0. 0. 1. 0. 1. 1.]]

16

Sci-Kit: CART Decision Trees

import numpy as np

from sklearn import preprocessing

from sklearn.tree import DecisionTreeRegressor

from sklearn.tree import plot_tree

oe = preprocessing.OrdinalEncoder()

oe.fit(data)

data = oe.transform(data)

dataset = np.array(data)

X = dataset[:, 0:8].astype(int)

y = dataset[:, 8:9].astype(int)

regressor = DecisionTreeClassifier(random_state = 0)

regressor.fit(X, y)

plot_tree(regressor, feature_names
=['Overcast','Rainy','Sunny','Cool','Hot','Mild','Humidity High','Windy True'])

17

Sci-Kit

Outlook

Rainy

Humidity

High

Play=No

Normal

Play=Yes

Overcast

Play=Yes

Sunny

Windy

False

Play=Yes

True

Play=No

18

Sci-Kit

Outlook

Rainy

Humidity

High

Play=No

Normal

Play=Yes

Overcast

Play=Yes

Sunny

Windy

False

Play=Yes

True

Play=No

Outlook
Overcast

TrueFalse

Play=Yes

Play=Yes

Play=Yes Play=Yes

Play=No

Play=No Play=No

Windy True <= 0.5
Windy False

Rainy <= 0.5
Means Overcast or Sunny
but we’ve eliminated
Overcast already

Outlook
Rainy

Humidity
Normal

Outlook
Sunny

True False

False True True False

True False False True

Windy

Windy

19

Sci-Kit
Outlook
Overcast

TrueFalse

Play=Yes

Play=Yes

Play=Yes Play=Yes

Play=No

Play=No Play=No

Outlook
Rainy

Humidity
Normal

Outlook
Sunny

True False

False True True False

True False False True

Windy

Windy

If Outlook is Rainy and Humidity is High, then Play is No
If Outlook is Rainy and Humidity is Normal, then Play is Yes
If Outlook is Overcast, then Play is Yes
If Outlook is Sunny and Windy is False, then Play is Yes
If Outlook is Sunny and Windy is True, then Play is No

If Outlook is Overcast, then Play is Yes
If Outlook is Sunny or Rainy and Humidity is Normal and Windy is False, then Play is Yes
If Outlook is Sunny and Humidity is Normal and Windy is True, then Play is No
If Outlook is Rainy and Humidity is Normal and Windy is True, then Play is Yes
If Outlook is Rainy and Humidity is High, then Play is No
If Outlook is Sunny and Humidity is High and Windy is False, then Play is Yes
If Outlook is Sunny and Humidity is High and Windy is True, then Play is No

20

Random Forest

21

Random Forest

• Decision trees and Random Forests take the same input and produce the same
output

• A structure you can create with data, and that when you feed it future data it
either

• Classifies it into a category label (Play Golf or Not)
• Or produces a regression (a predicated value)

• What is different
• Random Forests are an ensemble method
• Ensemble methods bring together multiple models/classifiers at one time and

combines their results
• In random FOREST is made up of many decision TREES

22

Random Forest

• Essentially
• Build many decisions trees on data
• For each decision tree allow internal node creation to be made with stochastic

factors around indeterminate/unclear choices (which attribute next, which
exact value for attribute is best split point)

• Make multiple trees (200!, more?)
• When we predict something we average the combination of all the outputs

23

Usage Scenario

• It is popular in sports to make win
predications

• i.e. this is the state of game, will a team
win the game

• You do this my taking game states from
past games, and then whether or not the
team won, and training a classifier on it
(yes/no)

• With this you can then either ask single
questions about a game state, Will my
team come back? Or repetitive questions
to chart the back and forth of a
competition.

24

Usage Scenario

• You can do this with a neural network
• High uninterpretable and often takes a

reasonable large amount of computer power
for training

• The neural network has no reason not to
learn weird ideas when data is sparse

• In general if you are losing my more points
,you are less likely to win

• But if there is one data point where a team
won at -25 points with 18 minutes left,
maybe a neural network will learn this input
means it should predict a win, despite rest
of relationship not following that

25

Usage Scenario

• A decision tree could be used
• However one decision tree would be

highly susceptible again to outliers, and
would likely easily overfit

• But it would be interpretable to explore
why it thinks your team will win

• It also wouldn’t take a lot of compute
power, one decision trees can be very
very efficient (relative to neural
network), train/predict

26

Usage Scenario

• Or you could use random forest
• Robustness to overfitting and outliers
• Still relatively simple to train
• Treats numerical data sanely at decision

points that match how games actually
work on average

• -25 points with 18 minutes left is not a
secret to winning football games

• In fact those that make win prediction
models will prefer a random forest

• https://journalofbigdata.springeropen.co
m/articles/10.1186/s40537-024-01008-2

27

Usage Scenario

• What’s great in sklearn the models are
swappable with one line adjustment

model_wp = RandomForestClassifier(
 n_estimators=500,
 max_leaf_nodes=200,)

28

Usage Scenario

• What’s great in sklearn the models are
swappable with one line adjustment

model_wp = MLPClassifier(
 hidden_layer_sizes=(100,100,100,),
 activation='relu',
 solver='adam')

29

Bagging and boosting

• There are two main ways to make an ensemble method
• Bagging

• Make each model independently, with likely only stochastic factors that result in each
being different (data used, decisions varied or randomized, etc.)

• Boosting
• Make one model, then to make the next look at what that model is bad at, design next

model to be good at those things first

30

Bagged method of random forest

31

Adaboost (boosting method)

Onward to … neural
networks

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Machine Learning: Optional Other SciKit
	Unsupervised: Clustering
	Clustering
	Clustering Goals
	Clustering
	K-Means
	Sci Kit
	Decision Trees
	Decision Trees
	Example
	How to make
	Applications
	Sci-Kit
	Sci-Kit
	Sci-Kit
	Sci-Kit: CART Decision Trees
	Sci-Kit
	Sci-Kit
	Sci-Kit
	Random Forest
	Random Forest
	Random Forest
	Usage Scenario
	Usage Scenario
	Usage Scenario
	Usage Scenario
	Usage Scenario
	Usage Scenario
	Bagging and boosting
	Bagged method of random forest
	Adaboost (boosting method)
	Onward to … neural networks

