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Unsupervised: Clustering
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Clustering

• Grouping unlabeled data based on similarities
• Find patterns
• Sometimes we have minor direction like

• How many clusters
• Quality of a good cluster
• Relationship of clusters
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Clustering Goals

• Clusters goal may 
have a desired shape

• Ex. Circular

• Or maybe not be 
restrained to a 
particular shape

• Goal can also be to 
force every point to 
be part of a cluster 
(hard clustering), or 
soft where goal is 
points end up with 
likelihood of 
membership 
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Clustering

• Most common intro example

• K-means clustering
• Ask for k clusters of data 
• algorithm attempts to create them

• Often usage has you run k-means with differing sizes and contrasting results
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K-Means

Initialize k means with random values
While more iterations left:

Loop through all the items
Find the mean closest to that item
Assign item to cluster of that mean
Update mean by shifting it to average of its cluster
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Sci Kit

from sklearn.cluster import Kmeans

kmeans = KMeans(n_clusters = 3, random_state = 2)
kmeans.fit(X)

pred = kmeans.fit_predict(X)

#Plot data is the same
plt.scatter(X[:,0],X[:,1],c = pred)
#We use use kmeans cluster data
for i in kmeans.cluster_centers_:

plt.scatter(i[0],i[1],marker = '^',c = 'red')
plt.show()
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Decision Trees
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Decision Trees

• A decision tree is a tree where you enter at 
the root

• You are presented with decisions at each 
node in which you pick one path to a lower 
node in tree

• Another internal node, or a leaf node

• You continue this making a choice at each 
node based on your data (an attribute test)

• At the bottom of the tree are leaf/terminal 
nodes which are the decision the tree makes 
based on the data
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Example

Outlook Temp Humidity Windy Play Golf

Rainy Hot High False No

Rainy Hot High True No

Overcast Hot High False Yes

Sunny Mild High False Yes

Sunny Cool Normal False Yes

Sunny Cool Normal True No

Overcast Cool Normal True Yes

Rainy Mild High False No

Rainy Cool Normal False Yes

Sunny Mild Normal False Yes

Rainy Mild Normal True Yes

Overcast Mild High True Yes

Overcast Hot Normal False Yes

Sunny Mild High True No

Outlook

Rainy

Humidity

High

Play=No

Normal

Play=Yes

Overcast

Play=Yes

Sunny

Windy

False

Play=Yes

True

Play=No

Predictors Target Decision Tree
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How to make

1. All dataset outcomes are at root 
2. Select an attribute with the most benefit (use info theory concept called 

entropy -> information gained (ex. Best split of groups, think binary search))
3. Split dataset on attribute to make leaf nodes
4. Now you have a root with 2 or more leaves (often 2)
5. Now return to step 1 for each new leaf node
• Repeat above until a designate stopping point
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Applications

• Decision Making
• Should I buy something, make a deal, go for it on 4th down

• Business Management
• Customer Relationship Management
• Fraudulent Statement Detection
• Energy Consumption
• Healthcare Management
• Fault Diagnosis
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Sci-Kit

data = []
data.append(["Sunny", "Mild", "High", "False", "Yes"])
data.append(["Sunny", "Cool", "Normal", "False", "Yes"])
data.append(["Sunny", "Mild", "Normal", "False", "Yes"])
data.append(["Sunny", "Cool", "Normal", "True", "No"])
data.append(["Sunny", "Mild", "High", "True", "No"])
data.append(["Overcast", "Hot", "High", "False", "Yes"])
data.append(["Overcast", "Cool", "Normal", "True", "Yes"])
data.append(["Overcast", "Mild", "High", "True", "Yes"])
data.append(["Overcast", "Hot", "Normal", "False", "Yes"])
data.append(["Rainy", "Hot", "High", "False", "No"])
data.append(["Rainy", "Hot", "High", "True", "No"])
data.append(["Rainy", "Mild", "High", "False", "No"])
data.append(["Rainy", "Cool", "Normal", "False", "Yes"])
data.append(["Rainy", "Mild", "Normal", "True", "Yes"])
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Sci-Kit

import numpy as np

from sklearn import preprocessing

from sklearn.tree import DecisionTreeRegressor 

from sklearn.tree import plot_tree

oe = preprocessing.OrdinalEncoder()

oe.fit(data)

data = oe.transform(data)

dataset = np.array(data) 

[[2. 2. 0. 0. 1.]
[2. 0. 1. 0. 1.]
[2. 2. 1. 0. 1.] 
[2. 0. 1. 1. 0.] 
[2. 2. 0. 1. 0.] 
[0. 1. 0. 0. 1.] 
[0. 0. 1. 1. 1.] 
[0. 2. 0. 1. 1.] 
[0. 1. 1. 0. 1.] 
[1. 1. 0. 0. 0.] 
[1. 1. 0. 1. 0.] 
[1. 2. 0. 0. 0.] 
[1. 0. 1. 0. 1.] 
[1. 2. 1. 1. 1.]] 
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Sci-Kit

from sklearn import preprocessing

enc = preprocessing.OneHotEncoder()

enc.fit(data)

data = enc.transform(data).toarray()

#For binary categories drop one column

data = np.delete(data,[7,8,10],1)

import numpy as np

dataset = np.array(data)

OneHot coding is the only way sklearn lets us do categories with inaccurate implication that the 
categories are numerical related
We should not use the prior label encoder as it relates Sunny to Rainy to Overcast as relative 
numbers

[[0. 0. 1. 0. 0. 1. 1. 0. 1.]
 [0. 0. 1. 1. 0. 0. 0. 0. 1.]
 [0. 0. 1. 0. 0. 1. 0. 0. 1.]
 [0. 0. 1. 1. 0. 0. 0. 1. 0.]
 [0. 0. 1. 0. 0. 1. 1. 1. 0.]
 [1. 0. 0. 0. 1. 0. 1. 0. 1.]
 [1. 0. 0. 1. 0. 0. 0. 1. 1.]
 [1. 0. 0. 0. 0. 1. 1. 1. 1.]
 [1. 0. 0. 0. 1. 0. 0. 0. 1.]
 [0. 1. 0. 0. 1. 0. 1. 0. 0.]
 [0. 1. 0. 0. 1. 0. 1. 1. 0.]
 [0. 1. 0. 0. 0. 1. 1. 0. 0.]
 [0. 1. 0. 1. 0. 0. 0. 0. 1.]
 [0. 1. 0. 0. 0. 1. 0. 1. 1.]]



16

Sci-Kit: CART Decision Trees

import numpy as np

from sklearn import preprocessing

from sklearn.tree import DecisionTreeRegressor 

from sklearn.tree import plot_tree

oe = preprocessing.OrdinalEncoder()

oe.fit(data)

data = oe.transform(data)

dataset = np.array(data)

X = dataset[:, 0:8].astype(int)

y = dataset[:, 8:9].astype(int)

regressor = DecisionTreeClassifier(random_state = 0)  

regressor.fit(X, y) 

plot_tree(regressor, feature_names 
=['Overcast','Rainy','Sunny','Cool','Hot','Mild','Humidity High','Windy True']) 
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Sci-Kit

Outlook
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High
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Normal

Play=Yes

Overcast

Play=Yes

Sunny

Windy

False
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Sci-Kit

Outlook

Rainy

Humidity

High

Play=No

Normal

Play=Yes

Overcast

Play=Yes

Sunny

Windy

False

Play=Yes

True

Play=No

Outlook 
Overcast

TrueFalse

Play=Yes

Play=Yes

Play=Yes Play=Yes

Play=No

Play=No Play=No

Windy True <= 0.5
Windy False

Rainy <= 0.5
Means Overcast or Sunny 
but we’ve eliminated 
Overcast already

Outlook 
Rainy

Humidity
Normal

Outlook 
Sunny

True False

False True True False

True False False True

Windy

Windy
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Sci-Kit
Outlook 
Overcast

TrueFalse

Play=Yes

Play=Yes

Play=Yes Play=Yes

Play=No

Play=No Play=No

Outlook 
Rainy

Humidity
Normal

Outlook 
Sunny

True False

False True True False

True False False True

Windy

Windy

If Outlook is Rainy and Humidity is High, then Play is No
If Outlook is Rainy and Humidity is Normal, then Play is Yes
If Outlook is Overcast, then Play is Yes
If Outlook is Sunny and Windy is False, then Play is Yes
If Outlook is Sunny and Windy is True, then Play is No

If Outlook is Overcast, then Play is Yes
If Outlook is Sunny or Rainy and Humidity is Normal and Windy is False, then Play is Yes
If Outlook is Sunny and Humidity is Normal and Windy is True, then Play is No
If Outlook is Rainy and Humidity is Normal and Windy is True, then Play is Yes
If Outlook is Rainy and Humidity is High, then Play is No
If Outlook is Sunny and Humidity is High and Windy is False, then Play is Yes
If Outlook is Sunny and Humidity is High and Windy is True, then Play is No
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Random Forest
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Random Forest

• Decision trees and Random Forests take the same input and produce the same 
output

• A structure you can create with data, and that when you feed it future data it 
either

• Classifies it into a category label (Play Golf or Not)
• Or produces a regression (a predicated value)

• What is different
• Random Forests are an ensemble method
• Ensemble methods bring together multiple models/classifiers at one time and 

combines their results
• In random FOREST is made up of many decision TREES
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Random Forest

• Essentially
• Build many decisions trees on data
• For each decision tree allow internal node creation to be made with stochastic 

factors around indeterminate/unclear choices (which attribute next, which 
exact value for attribute is best split point)

• Make multiple trees (200!, more?)
• When we predict something we average the combination of all the outputs
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Usage Scenario

• It is popular in sports to make win 
predications

• i.e. this is the state of game, will a team 
win the game

• You do this my taking game states from 
past games, and then whether or not the 
team won, and training a classifier on it 
(yes/no)

• With this you can then either ask single 
questions about a game state, Will my 
team come back? Or repetitive questions 
to chart the back and forth of a 
competition.
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Usage Scenario

• You can do this with a neural network
• High uninterpretable and often takes a 

reasonable large amount of computer power 
for training

• The neural network has no reason not to 
learn weird ideas when data is sparse

• In general if you are losing my more points 
,you are less likely to win

• But if there is one data point where a team 
won at -25 points with 18 minutes left, 
maybe a neural network will learn this input 
means it should predict a win, despite rest 
of relationship not following that
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Usage Scenario

• A decision tree could be used
• However one decision tree would be 

highly susceptible again to outliers, and 
would likely easily overfit

• But it would be interpretable to explore 
why it thinks your team will win

• It also wouldn’t take a lot of compute 
power, one decision trees can be very 
very efficient (relative to neural 
network), train/predict
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Usage Scenario

• Or you could use random forest
• Robustness to overfitting and outliers
• Still relatively simple to train
• Treats numerical data sanely at decision 

points that match how games actually 
work on average

• -25 points with 18 minutes left is not a 
secret to winning football games

• In fact those that make win prediction 
models will prefer a random forest

• https://journalofbigdata.springeropen.co
m/articles/10.1186/s40537-024-01008-2
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Usage Scenario

• What’s great in sklearn the models are 
swappable with one line adjustment

model_wp = RandomForestClassifier(
 n_estimators=500,
 max_leaf_nodes=200,)
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Usage Scenario

• What’s great in sklearn the models are 
swappable with one line adjustment

model_wp = MLPClassifier(
 hidden_layer_sizes=(100,100,100,), 
 activation='relu',  
 solver='adam')
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Bagging and boosting

• There are two main ways to make an ensemble method
• Bagging

• Make each model independently, with likely only stochastic factors that result in each 
being different (data used, decisions varied or randomized, etc.)

• Boosting
• Make one model, then to make the next look at what that model is bad at, design next 

model to be good at those things first
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Bagged method of random forest
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Adaboost (boosting method)



Onward to … neural 
networks 

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/
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