
Advanced Software
Development: Docker
CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Wednesday, January 8, 2025

Copyright © 2025

2

Containerization

3

History

• 1979 – Unix -> idea of process having unique root dirs (diff. views of system)

• 2000-2011 – Container ideas grow in unix type systems
• ‘Jails’ to partition resource of system
• Snapshot and cloning of containers
• Google process containers become part of kernel as cgroups
• LXC (2008) linux containers (cgroups and linux namespaces)
• Warden (2011) API for container management

4

History

• 2013 – Docker – like Warden but ecosystem ended up growing fast

• 2016-2017 – strong evidence of security provided by containerizing
applications, and strong support across dev. ops and cloud tools. Continuous
integration and development built around using containers.

• By 2018 gold standard of modern soft. infrastructure needs understanding of
containerization (Kubernetes strong growth -> auto deploy/scale containers)

5

Motivation Story

• You make an application

• It uses Node.js/Express.js/SQLite3 (All rather lightweight)

• But maybe Node.js is based on version that needs Python 3 and C/C++ compiler

• While Python 3 is management install C/C++ compilers environments are
certainly not

6

Handling C/C++

• Setting-up C/C++ tool-chain is pretty easy on Linux but on Windows and Mac,
it's a painful task.

• On Windows, the C++ build tools package measures at gigabytes and takes
quite some time to install.

• On a Mac, you can either install the gigantic Xcode application or the much
smaller Command Line Tools for Xcode package.

• Regardless of the one you install, it still may break on OS updates.
• In fact, the problem is so prevalent that there are Installation notes for macOS

Catalina available on the official repository.

7

Are things now solved?

• What if you have a teammate who uses Windows while you're using Linux.
• Now you have to consider the inconsistencies of how these two different

operating systems handle paths.
• Or the fact that popular technologies are not well optimized to run on

Windows.
• Even if you get through the entire development phase, but the person

responsible for managing the servers follows the wrong deployment
procedure?

8

Solution

1. Develop and run the application inside an isolated environment (known as a
container) that matches your final deployment environment.

2. Put your application inside a single file (known as an image) along with all its
dependencies and necessary deployment configurations.

3. And share that image through a central server (known as a registry) that is
accessible by anyone with proper authorization.

• Containerization: Putting your applications inside a self-contained package
making it portable and reproducible across various environments.

9

Docker

10

Docker

• Docker is one containerization management platform
• Containers can be private or publicly stored an shared
• Docker allows you to orchestrate (access and deploy containers)
• Others include Podman, Kaniko, rkt

11

Kubernetes

• Kubernetes is an open-source container orchestration system for automating
software deployment, scaling, and management. Google originally designed
Kubernetes, but the Cloud Native Computing Foundation now maintains the
project.

• Amazon, Google, IBM, Microsoft, Oracle, Red Hat, SUSE, Platform9 and
VMware offer Kubernetes-based platforms or infrastructure as a service (IaaS)
that deploy Kubernetes.

12

Installation

• To use Docker you need to install the tool that handles everything
• https://docker-handbook.farhan.dev/installing-docker
• These installs can produce easy to view GUI tool to see what is live and running

on your system, but can just as easily be managed through terminal which is
great for remote/cloud deployment needs

https://docker-handbook.farhan.dev/installing-docker

13

Container versus VM

• Instead of having a full OS in a VM, a container instead access host OS through
the limiting containerization environment (Docker)

• Still maintains isolation like a VM

14

Terminology

• Image
• Multi-layered files that act as templates to make containers
• Frozen-read only copies of a container
• OCI (open container initiative) as standardized this

• Containers
• Image in a running state (writable layer on top of read-only image)

• Registry
• Stores images (DockerHub), can download freely
• Example there are Data Science images hosted that install 10s/100s of common packages
• Instead of managing each individual computer install I could register a common image for

a course and have everyone use it with the required tools

15

Terminology

• Docker Daemon
• Sits around in background waiting for commands to manage containers

• Docker Client
• Takes commands from user

• REST API
• Bridge between client and daemon

16

Hello, world!

17

Installation

• To use Docker you need to install the tool that handles everything
• https://docker-handbook.farhan.dev/installing-docker
• These installs can produce easy to view GUI tool to see what is live and running

on your system, but can just as easily be managed through terminal which is
great for remote/cloud deployment needs

https://docker-handbook.farhan.dev/installing-docker

18

Basics

docker <object-type> <command> <options>

• object-type indicates the type of Docker object you'll be manipulating. This can be a
container, image, network or volume object.

• command indicates the task to be carried out by the daemon i.e. run command.

• options can be any valid parameter that can override the default behavior of the command
i.e. the --publish option for port mapping.

docker container run <image name>
docker container run fhsinchy/hello-dock

Pull from registry and run

19

Isolation and Ports

Containers are isolated environments by default.
If you need outside to access inside (like connecting a DB container to another) you
need to publish ports

--publish <host>:<container>
docker container run --publish 8080:80 fhsinchy/hello-dock

http://127.0.0.1:8080/

You should see The Docker Handbook and your browser
This is on your local system

http://127.0.0.1:8080/

20

Commands

21

Detaching/Listing/Naming

Disconnect container from the terminal that launched it
docker container run --detach --publish 8080:80 fhsinchy/hello-dock

List containers running
docker container ls

List all containers that have run or are running
docker container ls –all

Name
docker container run --detach --publish 8080:80 --name hello-dock
fhsinchy/hello-dock

Rename
docker container rename <container identifier> <new name>

22

Stopping/Restarting/Create

Stop running container (easiest if named) (SIGTERM)
docker container stop <identifier>

With prejudice (SIGKILL)
docker container kill <identifier>

Restart previously ran container (retains previous config for ports)
docker container start <identifier>

Like previous but will stop first if it is running
docker container restart <identifier>

Create without running
docker container create --publish 8080:80 fhsinchy/hello-dock

23

Prune/Interactive

Remove one
docker container rm <identifier>

Remove all inactive
docker container prune

After launch leave terminal ‘inside’ of the container
docker container run --rm -it ubuntu

This command leaves us with a ubuntu container on our system with a fully
functional terminal connection (interactive it)
-rm means remove after stopped

24

Commands Inside

docker container run <image name> <command>

docker container run --rm busybox sh -c "echo -n my-secret | base64“

Access busybox container and run
sh -c "echo -n my-secret | base64“
On terminal inside of container

25

Files

26

What about files?

By default the container can’t see the host file system
Need to map/bind in host locations to virtual locations to enable access

--volume <local dir>:<container dir>:<read write access>
Example

-v $(pwd):/zone
Bind present working directory to folder zone (linux variant)

27

What about files?

Let’s consider our container fhsinchy/rmbyext has a program in a
folder called zone.

docker pull fhsinchy/rmbyext

The program rmbyext let’s us delete files in local directory with a
given extension pdf

docker container run --rm fhsinchy/rmbyext pdf
If we run our container that program is going to run rmbyext
whenever it is started

However, there are no files in container folder ‘zone’ to delete

28

What about files?

However, there are no files in container folder ‘zone’ to delete
We’ll make a host directory, add some files

then run our command from that directory (but with binding)

docker container run --rm -v “%cd%”:/zone fhsinchy/rmbyext pdf
docker container run --rm -v ${PWD}:/zone fhsinchy/rmbyext pdf
docker container run --rm -v $(pwd):/zone fhsinchy/rmbyext pdf

29

Images

30

Dockerfile

A docker container is created from an ‘image’ description of the
steps needed to setup the container

Containers can be built on top of each other by using
FROM

Ex.
From ubuntu:latest

Will build on the latest version of the ubuntu image docker.com has

31

Dockerfile

FROM ubuntu:latest
EXPOSE 80
RUN apt-get update && \

apt-get install nginx -y && \
apt-get clean && rm -rf /var/lib/apt/lists/*

CMD ["nginx", "-g", "daemon off;"]

This is a custom DockerFile that exposes port 80
Then installs nginx and runs it (nginx is a proxy server)

32

Dockerfile

Now make sure this file is saved in your local directory
Build the image with

docker image build .
This will give you an image name like

Successfully built 3199372aa3fc
That you can run

docker container run --rm --detach --name custom-nginx-
packaged --publish 8080:80 3199372aa3fc

Access it at http://127.0.0.1:8080
To help with naming….

docker image build --tag custom-nginx:packaged .

http://127.0.0.1:8080/

33

Dockerfile

A docker image is a multi-layer idea
Each command in DockerFile creates a new read-only layer
When you run the image it create yet another layer
This all works based on ‘union file system’ which allows the
branches of file system to be overlaid yet treated as one single
coherent virtual file system
This avoids data duplication, and lets you keep this layer history

Some very good information on optimizing image file size to help
with deployment and portability https://docker-
handbook.farhan.dev/image-manipulation-basics

https://docker-handbook.farhan.dev/image-manipulation-basics
https://docker-handbook.farhan.dev/image-manipulation-basics

34

Network

35

Networking

Docker containers can exist in their own ‘bridge’ networks
Or see those whole ‘host’ network
Or have ‘none’ for no network access
Or also have externalized network access through ‘overlay’ or
‘macvlan’
Most common isolated usage is ‘bridge’

36

Networking

There is a default bridge made for all containers
docker network ls

c2e59f2b96bd bridge bridge local
124dccee067f host host local
506e3822bf1f none null local

docker network create skynet
docker network ls

c2e59f2b96bd bridge bridge local
124dccee067f host host local
506e3822bf1f none null local
7bd5f351aa89 skynet bridge local

37

Networking

You can network different containers by adding them to a network
Ex.

docker network connect skynet hello-dock
Or by run running them attached to network

docker container run --network skynet --rm --name alpine-
box -it alpine sh

The previous command drops us into shell where we can ping the
other connected container, usefully docker will resolve the internal
names we had so we don’t need to do work to determine ip of each
service container we ran

ping hello-dock

38

Compose

39

Too many containers?

At a certain complexity of docker management you’ll find you have
to type a number of commands each time to set up the network of
containers
Docker-compose is an application that reads docker-compose.yml
files to run multiple docker commands

40

docker-compose.yml

Two different containers are made in this file, with the SQL todo-
mysq stored in a volume made for it
version: "3.8"
services:
app:
…

mysql:
…

volumes:
todo-mysql-data:

41

DB container

Database db image based on mysql, we use a versioned imaged,
indicate a mapping for database, and environment variables for
database
mysql:

image: mysql:5.7
volumes:
- todo-mysql-data:/var/lib/mysql

environment:
MYSQL_ROOT_PASSWORD: secret
MYSQL_DATABASE: todos

42

APP container

app:

image: node:12-alpine

command: sh -c "yarn install && yarn run dev"

ports:

- 3000:3000

working_dir: /app

volumes:

- ./app:/app

environment:

MYSQL_HOST: mysql

MYSQL_USER: root

MYSQL_PASSWORD: secret

MYSQL_DB: todos

Our app container is much more
complicated, we could actually put all
the commands in Dockerfile as well but
instead put it here directly as shell
command
We setup environment variables to
match database
Map volumes for the app data
And expose port 3000

43

Networking?

Networking isn’t declared in that docker-compose.yml file
Docker-compose actually creates a default bridge when docker-
compose is run for the contained services automatically
However, there is support for networks (can isolate internal services)
At general .yml description
networks:
 frontend:
 name: <name of network>
 driver: bridge
In a service
 networks:
 - frontend

44

Commands?

Start up the set of services (in detached mode)
 docker-compose --file docker-compose.yml up –detach
See running
 docker-compose ps
Execute service specific command
 docker-compose exec <service name> <command>
Done?
 docker-compose down --volumes

45

Why again?

46

Why? (just a few of reasons)

Development
Coding application and need to compile/test/dev against different operating
systems
Use containers to represent these environment builds and compile within
each to create artifacts or verify dev work

Deployment
No longer concern yourself with ‘installing’ application
Download docker image, deploy docker image with application already setup
No worry about breaking local environment or different variants of installs

Scale
Image can define a service ability
As more load balancing is needed for service, use deployment tool like
Kubernetes to initiate more docker instances in cloud environment to assist

Onward to …
Continuous
Integration/Development.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Advanced Software Development: Docker
	Slide Number 2
	History
	History
	Motivation Story
	Handling C/C++
	Are things now solved?
	Solution
	Slide Number 9
	Docker
	Kubernetes
	Installation
	Container versus VM
	Terminology
	Terminology
	Slide Number 16
	Installation
	Basics
	Isolation and Ports
	Slide Number 20
	Detaching/Listing/Naming
	Stopping/Restarting/Create
	Prune/Interactive
	Commands Inside
	Slide Number 25
	What about files?
	What about files?
	What about files?
	Slide Number 29
	Dockerfile
	Dockerfile
	Dockerfile
	Dockerfile
	Slide Number 34
	Networking
	Networking
	Networking
	Slide Number 38
	Too many containers?
	docker-compose.yml
	DB container
	APP container
	Networking?
	Commands?
	Slide Number 45
	Why? (just a few of reasons)
	Onward to … �Continuous Integration/Development.

