Advanced Software
Development: Refactoring
Examples

CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D

Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Wednesday, January 8, 2025

Copyright © 2025
=z# UNIVERSITY OF

) CALGARY



Lets do something with all that

""""""""""""""

/) CALGARY



Example 1

* Form Template Method

* Used when there is similar (but not identical) code in
sibling classes
* Their methods do similar steps in the same order
* But the steps are different
* Goal is Template Method design pattern
* Identical code put into common superclass
* Differing code put into subclasses

3l UNIVERSITY OF

¥ CALGARY



Example 1

* Original code:

public class CorporateClient extends Client{

public double amountOwing(int daysWorked){

}

double base = retainer + (daysWorked / 30.0) * monthlyRate();
double discount = 500.0 + base * 0.02;
return base-discount;

public class RetailClient extends Client{

public double amountOwing(int daysWorked){
double base = daysWorked * dailyRate();
double discount = base * discountRate();
return base-discount;

}

A UNIVERSITY OF

¥) CALGARY




Example 1

* Original code:

Client

JA\

RetailClient

amountOwing()

CorporateClient

amountOwing()

3l UNIVERSITY OF

¥ CALGARY



Example 1

* Mechanics:

* Extract methods that are either identical or completely
different

OLD

NEW

public class RetailClient extends Client {

public class RetailClient extends Client{
public double amountOwing(int daysWorked) {

public double amountOwing(int daysWorked){ double base = baseAmount(daysWorked);
double base = daysWorked * dailyRate(); return base - discountAmount(base);
double discount = base * discountRate(); }
return base-discount;
} public double baseAmount(int daysWorked) {
return daysWorked * dailyRate();
}

public double discountAmount(double base) {
return base * discountRate();

}

el UNIVERSITY OF

§) CALGARY




Example 1

OLD

public class CorporateClient extends Client{

public double amountOwing(int daysWorked){

}

double base = retainer + (daysWorked / 30.0) * monthlyRate();
double discount = 500.0 + base * 0.02;
return base-discount;

NEW

public class CorporateClient extends Client {

public double amountOwing(int daysWorked) {
double base = baseAmount(daysWorked);
return base - discountAmount(base);

}

public double baseAmount(int daysWorked) {
return retainer + (daysWorked / 30.0) * monthlyRate();

}

public double discountAmount(double base) {
return 500.0 + base * 0.02;

}

A UNIVERSITY OF

¥) CALGARY




Example 1

* Original code:

Client

JA\

RetailClient

amountOwing()

CorporateClient

amountOwing()

3l UNIVERSITY OF

¥ CALGARY



Example 1

* Pull up the common method into the superclass, and declare differing methods
as abstract

public class CorporateClient extends Client { public class RetailClient extends Client {

public double amountOwing(int daysWorked) { public double amountOwing(int daysWorked) {
double base = baseAmount(daysWorked); double base = baseAmount(daysWorked);
return base - discountAmount(base); return base - discountAmount(base);

} }

public double baseAmount(int daysWorked) { public double baseAmount(int daysWorked) {
return retainer + (daysWorked / 30.0) * monthlyRate(); return daysWorked * dailyRate();

} }

public double discountAmount(double base) { public double discountAmount(double base) {
return 500.0 + base * 0.02; return base * discountRate();

} }

A UNIVERSITY OF

AN
N\

&% CALGARY



Example 1

* Pull up the common method into the superclass, and declare differing methods
as abstract

public abstract class Client {
public double amountOwing(int daysWorked) {
double base = baseAmount(daysWorked);
return base - discountAmount(base);

}

public abstract double baseAmount(int daysWorked);

public abstract double discountAmount(double base);

}

el UNIVERSITY OF

%) CALGARY

10



Example 1

* Remove pulled up methods from subclasses

public class CorporateClient extends Client { public class RetailClient extends Client {
public double baseAmount(int daysWorked){ public double baseAmount(int daysWorked){
return retainer + (daysWorked / 30.0) * monthlyRate(); return daysWorked * dailyRate();
} }
public double discountAmount(double base){ public double discountAmount(double base){
return 500.0 + base * 0.02; return base * discountRate();
} }

eagll UNIVERSITY OF

%) CALGARY

11



12

Example 1

* Result

Client

amountOwing()
baseAmount()
discountAmount()

AN

RetailClient

baseAmount()

discountAmount()

CorporateClient

baseAmount()

discountAmount()

A UNIVERSITY OF

N
W

CALGARY



13

Example 1

* Now easy to add new kinds of Clients
* Create a new concrete subclass, overriding the abstract methods

A UNIVERSITY OF

AN
&)

CALGARY



How about something else

""""""""""""""

/) CALGARY



15

Example 2

* Replace Type Code with Subclasses

* Allows you to remove switch statements, if followed by Replace Conditional with
Polymorphism

LN UNIVERSITY OF

N~/

& CALGARY



Example 2

* Original code:

public class Account {

static final int SAVINGS = 0;
static final int CHEQUING = 1;

private final int type;
public Account(int typeCode) {

type = typeCode;
}

16

A UNIVERSITY OF

[1je3
N\

&% CALGARY



17

Example 2

* Mechanics
* Self-encapsulate the type code

* If used by the constructor, replace constructor with factory method

public class Account {

}

static final int SAVINGS = O;
static final int CHEQUING = 1;
private final int type;

private Account(int typeCode) {
type = typeCode;

}

public static Account create(int typeCode) {
return new Account(typeCode);

}

public int getType() {
return type;

}

A UNIVERSITY OF

AN
&)

CALGARY



Example 2

* For each type code, create a subclass

* Override the getType() method
* Change the factory method

public class Chequing extends Account {
public Chequing() {
super(Account.CHEQUING);

}

public int getType() {
return Account.CHEQUING;
}
}

18

public class Savings extends Account {

}

public Savings() {

}

super(Account.SAVINGS);

public int getType() {

}

return Account.SAVINGS;

eagll UNIVERSITY OF

#) CALGARY



Example 2

public class Account {

static final int SAVINGS = 0;
static final int CHEQUING = 1;

private final int type;
protected Account(int typeCode) {

type = typeCode;
}

19

public static Account create(int typeCode) {
switch (typeCode) {

case SAVINGS:
return new Savings();

case CHEQUING:
return new Chequing();

default:
throw new lllegalArgumentException("Bad type code!");

}
}

public int getType() {
return type;

}

= UNIVERSITY OF

&% CALGARY



20

Example 2

* Remove the type code field
* Declare accessors as abstract

public abstract class Account {
static final int SAVINGS = O;
static final int CHEQUING = 1;

public static Account create(int typeCode) {
switch (typeCode) {

case SAVINGS:
return new Savings();

case CHEQUING:
return new Chequing();

default:
throw new lllegalArgumentException("Bad type code!");

}
}

public abstract int getType();
}

A UNIVERSITY OF

AN
&)

CALGARY



21

Example 2

Account

AN

Savings

Chequing

3l UNIVERSITY OF

¥ CALGARY



22

Example 2

* Use Push Down Method and Push Down Field for features specific to a
subclass

* If you have switch statements in methods other than the factory method, use
Replace Conditional with Polymorphism

LN UNIVERSITY OF

& CALGARY



Onward to ...
Docker.

Jonathan Hudson

LL1&9 ] ]
iwhudson@ucalgary.ca =" UNIVERSITY OF

N\~
https://pages.cpsc.ucalgary.ca/~jwhudson/ W CALGARY



mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Advanced Software Development: Refactoring Examples
	Lets do something with all that
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	Example 1
	How about something else
	Example 2
	Example 2
	Example 2
	Example 2
	Example 2
	Example 2
	Example 2
	Example 2
	Onward to … �Docker.

