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Importance of Testing
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• In large complex systems, 50% of the systems development budget 
may be spent on testing

• Studies have shown that virtually all non-trivial software ships
with errors!

• Thus, good testing is as important (more?) than programming
• We think if we're good, there will be no bugs. 
• BUT everyone writes code with bugs
• Good programs have approximately 1 bug per 100 lines.
• So take the attitude that the more bugs you find, the BETTER 

programmer you are.
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When to Test
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• Throughout the development lifecycle, not just at the end.

• Earlier you find error the better

• Benefits:
• require less testing & debugging time
• cost less
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Definitions
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• Exhaustive testing - (testing every possible input), would be ideal, but clearly 
impossible

• Blackbox Testing - assumes you know nothing of the internals of a program
• Whitebox Testing - look inside at details of program to determine what to test

• For inputs states, divide into equivalence classes to make tests
• Test Coverage – Try to cover all statements, conditionals, or all paths
• Boundary Testing – errors occur most often on border of equivalence classes
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Modular Testing
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Modular Testing
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• If you write whole 1000s of lines program and run it, and it
doesn't work (e.g. infinite loop), it is very hard to find error

• Better to test each module (100s of lines) separately ---> much
smaller bits of code to examine to find error.

• Most important concept: test each module individually as
you implement!
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Modular Testing (cont’d)
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• Test & debug method A. (unit test)
• Test & debug method B. (unit test)
• Test & debug method C. (unit test)
• Finally, test method F. (integration test)
• If it fails the testing then you can be (mostly) sure that the error is in F, and

not a sub-method.

method F

method A method B method C



8

Unit Testing
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Unit Testing

• A unit test is a technique for testing the correctness of a module of source code 

• You create separate test cases for every nontrivial method in the module 

• Unlike most other tests, is done by developers as they code 

• Is a form of “bottom-up” testing
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Benefits of Unit Testing

•  Benefits of unit testing: 
• Reduces the time spent on debugging 
• Catches bugs early 
• Eases integration 

• Bottom-up testing allows you to build a large system on a reliable 
“foundation” of working low-level code 

• Documents the intent of the code 
• Encourages refactoring 

• Tests are rerun to make sure no new bugs are introduced 
• Is a form of regression testing
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JUnit Example
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JUnit Example – Largest Integer Method

• We will test the following method: 
• (Note:  contains some bugs right now)
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JUnit Example – JUnit Test

• Create a test class with an initial test:

This is our function we are testing
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JUnit Example - Details

• Your test class can be named anything 
• Test methods must be annotated with @Test 

• Will be invoked automatically by the test runner 
• The assertEquals() will abort if the largest1() method does not return a 9 

• 9 is the largest element in the list 8, 9, 7 
• Save the file 

• Compile using:  javac *.java



18

JUnit Asserts

• JUnit asserts
• https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html

• assertEquals(expected, actual, [String message]) 
• message is optional 

• assertEquals(expected, actual, tolerance, [String message]) 
• Useful for imprecise f.p. numbers 

• assertNull(Object object, [String message]) 
• Asserts that the object is null 
• Also: assertNotNull()

https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html
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JUnit Asserts

• JUnit asserts:

• assertSame(expected, actual, [String message]) 
• Asserts that expected and actual point to the same object 
• Also:  assertNotSame() 

• assertTrue(boolean condition, [String message]) 
• Also:  assertFalse() 

• fail([String message]) 
• Fails the test immediately
• Used to mark code that should not be reached
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JUnit Example - Running

• Run the test 
• Use:  java org.junit.runner.JUnitCore LargestTest

• The classpath must be set correctly for this to work 
• Is a textual UI 
• Most IDEs can run tests within their GUI
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JUnit Example – Failing Test

Let’s try max=0 instead
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JUnit Example – Multiple Asserts

• Create a new test testOrder():   

• Tests for the largest element in all 3 positions 

• Recompile and retest

• Not a good test! Why?
• It tests 3 things at once? 

• When it fails we won’t immediately know which sub-test caused it to fail!
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JUnit Example – Failing Again

We had off by one error
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JUnit Example – Fix Bug

• We find another error: 
• Is an “off by one” bug: 

• Change loop for correct termination

• Recompile and retest 
• Should report:  OK (2 tests)
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JUnit Example – More Tests

• Add methods to test for duplicates and a list of size one:   

• Recompile and retest 
• Should report:  OK (4 tests)
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JUnit Example – Negative Numbers

•  Add a method to test negative numbers:   

• Retesting reveals another bug: 

• Fix by initializing  max = Integer.MIN_VALUE; 
• Retest
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Result

• Final Function
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JUnit Framework
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JUnit Asserts

• JUnit asserts: (JUnit4 and JUnit5 will swap message front/end of parameters)
• https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/

api/Assertions.html
• assertEquals(expected, actual, [String message]) 

• message is optional 

• assertEquals(expected, actual, tolerance, [String message]) 
• Useful for imprecise f.p. numbers 

• assertNull(Object object, [String message]) 
• Asserts that the object is null 
• Also: assertNotNull()

https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html
https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html
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JUnit Asserts

• JUnit asserts: (JUnit4 and JUnit5 will swap message front/end of parameters)

• assertSame(expected, actual, [String message]) 
• Asserts that expected and actual point to the same object 
• Also:  assertNotSame() 

• assertTrue(boolean condition, [String message]) 
• Also:  assertFalse() 

• fail([String message]) 
• Fails the test immediately
• Used to mark code that should not be reached
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JUnit Exceptions
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JUnit Example – Exceptions?

• What should happen if the list is empty?
•  Throw an exception
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JUnit Example – Exceptions Expected

•  Add a test for this
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JUnit Example – Null?

• What if our function should crash on null input?
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JUnit Before/After Examples
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JUnit AfterAll/BeforeAll

• Use @BeforeAll to mark a method used to initialize the testing environment before every test 
in test class

• E.g.  Allocate resources, initialize state 

• Use @AfterAll to mark a method used to clean up after every test in test class
• E.g.  Deallocate resources 

• Are invoked before and after EVERY test method is run 

• Incredibly useful to make objects re-used across multiple tests
• Tests should be designed to be run independently, and in any order 

• (JUnit DOES NOT follow your source code order)

36
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JUnit AfterEach/BeforeEach

• Like @BeforeAll/@AfterAll, but once for the whole test class (instead of each function)
• Good for static setups, like database connections

• Use @BeforeEach to mark a method used to initialize the testing environment when test class 
is initialized

• E.g.  Allocate resources, initialize state 

• Use @AfterEach to mark a method used to clean up after every test in test class is complete
• E.g.  Deallocate resources 
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Junit: Before and after

• BeforeAll – things you need for multiple tests 
(connections to resources, constants), shouldn’t 
be changed by tests

• AfterAll – cleanup things related to BeforeClass

• Issue here?
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Junit: Before and after

• BeforeAll – things you need for multiple tests 
(connections to resources, constants), shouldn’t 
be changed by tests

• AfterAll – cleanup things related to BeforeClass
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Junit: Before and after

• BeforeAll – things you need for multiple tests 
(connections to resources, constants), shouldn’t 
be changed by tests

• AfterAll – cleanup things related to BeforeClass

• Best used when you need some sort of 
infrastructure through-out the whole test, like a 
connection
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Junit: Before and after

• BeforeEach – things used for multiple tests, often 
changed by tests

• AfterEach – clean up stuff related to Before

• Proper usage for setting up an object, especially if 
you want to re-use it for multiple tests

• Great if you have a large amount of related classes 
to setup before a test can begin operating

• Ex. A lecture object connected with a list of 
student
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Junit: Before and after

• BeforeEach – things used for multiple tests, often 
changed by tests

• AfterEach – clean up stuff related to Before



Onward to … 
refactoring.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/
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