
Advanced Software
Development: JUnit
CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Wednesday, January 8, 2025

Copyright © 2025

2

Importance of Testing

2

• In large complex systems, 50% of the systems development budget
may be spent on testing

• Studies have shown that virtually all non-trivial software ships
with errors!

• Thus, good testing is as important (more?) than programming
• We think if we're good, there will be no bugs.
• BUT everyone writes code with bugs
• Good programs have approximately 1 bug per 100 lines.
• So take the attitude that the more bugs you find, the BETTER

programmer you are.

3

When to Test

3

• Throughout the development lifecycle, not just at the end.

• Earlier you find error the better

• Benefits:
• require less testing & debugging time
• cost less

4

Definitions

4

• Exhaustive testing - (testing every possible input), would be ideal, but clearly
impossible

• Blackbox Testing - assumes you know nothing of the internals of a program
• Whitebox Testing - look inside at details of program to determine what to test

• For inputs states, divide into equivalence classes to make tests
• Test Coverage – Try to cover all statements, conditionals, or all paths
• Boundary Testing – errors occur most often on border of equivalence classes

5

Modular Testing

6

Modular Testing

6

• If you write whole 1000s of lines program and run it, and it
doesn't work (e.g. infinite loop), it is very hard to find error

• Better to test each module (100s of lines) separately ---> much
smaller bits of code to examine to find error.

• Most important concept: test each module individually as
you implement!

7

Modular Testing (cont’d)

7

• Test & debug method A. (unit test)
• Test & debug method B. (unit test)
• Test & debug method C. (unit test)
• Finally, test method F. (integration test)
• If it fails the testing then you can be (mostly) sure that the error is in F, and

not a sub-method.

method F

method A method B method C

8

Unit Testing

9

Unit Testing

• A unit test is a technique for testing the correctness of a module of source code

• You create separate test cases for every nontrivial method in the module

• Unlike most other tests, is done by developers as they code

• Is a form of “bottom-up” testing

10

Benefits of Unit Testing

• Benefits of unit testing:
• Reduces the time spent on debugging
• Catches bugs early
• Eases integration

• Bottom-up testing allows you to build a large system on a reliable
“foundation” of working low-level code

• Documents the intent of the code
• Encourages refactoring

• Tests are rerun to make sure no new bugs are introduced
• Is a form of regression testing

14

JUnit Example

15

JUnit Example – Largest Integer Method

• We will test the following method:
• (Note: contains some bugs right now)

16

JUnit Example – JUnit Test

• Create a test class with an initial test:

This is our function we are testing

17

JUnit Example - Details

• Your test class can be named anything
• Test methods must be annotated with @Test

• Will be invoked automatically by the test runner
• The assertEquals() will abort if the largest1() method does not return a 9

• 9 is the largest element in the list 8, 9, 7
• Save the file

• Compile using: javac *.java

18

JUnit Asserts

• JUnit asserts
• https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html

• assertEquals(expected, actual, [String message])
• message is optional

• assertEquals(expected, actual, tolerance, [String message])
• Useful for imprecise f.p. numbers

• assertNull(Object object, [String message])
• Asserts that the object is null
• Also: assertNotNull()

https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html

19

JUnit Asserts

• JUnit asserts:

• assertSame(expected, actual, [String message])
• Asserts that expected and actual point to the same object
• Also: assertNotSame()

• assertTrue(boolean condition, [String message])
• Also: assertFalse()

• fail([String message])
• Fails the test immediately
• Used to mark code that should not be reached

20

JUnit Example - Running

• Run the test
• Use: java org.junit.runner.JUnitCore LargestTest

• The classpath must be set correctly for this to work
• Is a textual UI
• Most IDEs can run tests within their GUI

21

JUnit Example – Failing Test

Let’s try max=0 instead

22

JUnit Example – Multiple Asserts

• Create a new test testOrder():

• Tests for the largest element in all 3 positions

• Recompile and retest

• Not a good test! Why?
• It tests 3 things at once?

• When it fails we won’t immediately know which sub-test caused it to fail!

23

JUnit Example – Failing Again

We had off by one error

24

JUnit Example – Fix Bug

• We find another error:
• Is an “off by one” bug:

• Change loop for correct termination

• Recompile and retest
• Should report: OK (2 tests)

25

JUnit Example – More Tests

• Add methods to test for duplicates and a list of size one:

• Recompile and retest
• Should report: OK (4 tests)

26

JUnit Example – Negative Numbers

• Add a method to test negative numbers:

• Retesting reveals another bug:

• Fix by initializing max = Integer.MIN_VALUE;
• Retest

27

Result

• Final Function

28

JUnit Framework

29

JUnit Asserts

• JUnit asserts: (JUnit4 and JUnit5 will swap message front/end of parameters)
• https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/

api/Assertions.html
• assertEquals(expected, actual, [String message])

• message is optional

• assertEquals(expected, actual, tolerance, [String message])
• Useful for imprecise f.p. numbers

• assertNull(Object object, [String message])
• Asserts that the object is null
• Also: assertNotNull()

https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html
https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/Assertions.html

30

JUnit Asserts

• JUnit asserts: (JUnit4 and JUnit5 will swap message front/end of parameters)

• assertSame(expected, actual, [String message])
• Asserts that expected and actual point to the same object
• Also: assertNotSame()

• assertTrue(boolean condition, [String message])
• Also: assertFalse()

• fail([String message])
• Fails the test immediately
• Used to mark code that should not be reached

31

JUnit Exceptions

32

JUnit Example – Exceptions?

• What should happen if the list is empty?
• Throw an exception

33

JUnit Example – Exceptions Expected

• Add a test for this

34

JUnit Example – Null?

• What if our function should crash on null input?

35

JUnit Before/After Examples

36

JUnit AfterAll/BeforeAll

• Use @BeforeAll to mark a method used to initialize the testing environment before every test
in test class

• E.g. Allocate resources, initialize state

• Use @AfterAll to mark a method used to clean up after every test in test class
• E.g. Deallocate resources

• Are invoked before and after EVERY test method is run

• Incredibly useful to make objects re-used across multiple tests
• Tests should be designed to be run independently, and in any order

• (JUnit DOES NOT follow your source code order)

36

37

JUnit AfterEach/BeforeEach

• Like @BeforeAll/@AfterAll, but once for the whole test class (instead of each function)
• Good for static setups, like database connections

• Use @BeforeEach to mark a method used to initialize the testing environment when test class
is initialized

• E.g. Allocate resources, initialize state

• Use @AfterEach to mark a method used to clean up after every test in test class is complete
• E.g. Deallocate resources

38

Junit: Before and after

• BeforeAll – things you need for multiple tests
(connections to resources, constants), shouldn’t
be changed by tests

• AfterAll – cleanup things related to BeforeClass

• Issue here?

39

Junit: Before and after

• BeforeAll – things you need for multiple tests
(connections to resources, constants), shouldn’t
be changed by tests

• AfterAll – cleanup things related to BeforeClass

40

Junit: Before and after

• BeforeAll – things you need for multiple tests
(connections to resources, constants), shouldn’t
be changed by tests

• AfterAll – cleanup things related to BeforeClass

• Best used when you need some sort of
infrastructure through-out the whole test, like a
connection

41

Junit: Before and after

• BeforeEach – things used for multiple tests, often
changed by tests

• AfterEach – clean up stuff related to Before

• Proper usage for setting up an object, especially if
you want to re-use it for multiple tests

• Great if you have a large amount of related classes
to setup before a test can begin operating

• Ex. A lecture object connected with a list of
student

42

Junit: Before and after

• BeforeEach – things used for multiple tests, often
changed by tests

• AfterEach – clean up stuff related to Before

Onward to …
refactoring.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Advanced Software Development: JUnit
	Importance of Testing
	When to Test
	Definitions
	Modular Testing
	Modular Testing
	Modular Testing (cont’d)
	Unit Testing
	Unit Testing
	Benefits of Unit Testing
	JUnit Example
	JUnit Example – Largest Integer Method
	JUnit Example – JUnit Test
	JUnit Example - Details
	JUnit Asserts
	JUnit Asserts
	JUnit Example - Running
	JUnit Example – Failing Test
	JUnit Example – Multiple Asserts
	JUnit Example – Failing Again
	JUnit Example – Fix Bug
	JUnit Example – More Tests
	JUnit Example – Negative Numbers
	Result
	JUnit Framework
	JUnit Asserts
	JUnit Asserts
	JUnit Exceptions
	JUnit Example – Exceptions?
	JUnit Example – Exceptions Expected
	JUnit Example – Null?
	JUnit Before/After Examples
	JUnit AfterAll/BeforeAll
	JUnit AfterEach/BeforeEach
	Junit: Before and after
	Junit: Before and after
	Junit: Before and after
	Junit: Before and after
	Junit: Before and after
	Onward to … �refactoring.

