
Advanced Software 
Development: Git
CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Wednesday, January 8, 2025

Copyright © 2025



2

Not an acronym



3

Not an acronym

• (from the source code read-me)
• "git" can mean anything, depending on your mood.

• random three-letter combination that is pronounceable, and not actually used by any 
common UNIX command. The fact that it is a mispronunciation of "get" may or may not be 
relevant.

• stupid. contemptible and despicable. simple. Take your pick from the dictionary of slang.
• "global information tracker": you're in a good mood, and it actually works for you. Angels 

sing, and a light suddenly fills the room.
• "g0d@mn idiotic truckload of sh*t": when it breaks



4

The Rise of Git

• Git is the most popular implementation of a distributed version control system.
• Development started in 2005 by Linus Torvalds.

• Linux kernel source host dispute with BitKeeper [had been using for linux kernel since 2002]
• Same reason resulted in another DVCS -> Mercurial

• It is used by many popular open source projects as well as many commercial
organizations.



5

The Rise of Git - Goal

1. Take Concurrent Versions System (CVS) as an example of what not to do; if in 
doubt, make the exact opposite decision.

2. Support a distributed, BitKeeper-like workflow. (‘He’s dead Jim’ -> BitKeeper)
3. Include very strong safeguards against corruption, either accidental or 

malicious.



6

Why Git?

• Git’s the most popular version control system in the industry. 
• https://insights.stackoverflow.com/survey/2021
• Most other popular VCS are similar to Git

Source: Stackoverflow 2018 survey

https://insights.stackoverflow.com/survey/2021


7

What is Git?

• Git is distributed
• i.e. there is generally a remote repo. (like the single svn one) and a local repo 

on your own machine 
• SVN required repo to be only local, or only remote
• Git lets each developer have their own version of repo
• Each developer can make changes and make commits to own repo and periodically 

push/pull from remote to bring together development
• Frees programmer, code on a plane and still do multiple local commits 



8

Tracking changes?

• Not a delta-based system where only changes 
are tracked

• Git has a snapshot per commit 
• Old files are not-resaved if they haven’t changed
• But model allows tools to think of each image as a 

full file system at a time

https://git-scm.com/book/en/v2



9

This is how you do it



10

Git: *New* Version Control Terminology

SHA
• A SHA is basically an ID number for each commit.

• Ex. E2adf8ae3e2e4ed40add75cc44cf9d0a869afeb6
• Instead of version numbering (SVN)

Staging Area
• You can think of the staging area as a prep table where Git will take the next commit. 
• Files on the Staging Index are ready to be added to the repository.



11

Git: Getting Started

• Three trees of Git
• Repo (.git) 

• Where the metadata and object database is stored
• Staging area/Index

• Proposed next commit snapshot
• Working directory

• Where your IDE is working on project

• Example install

• https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

• Most IDEs have it integrated in GUI form

https://git-scm.com/book/en/v2

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git


12

Git: Status of Files

https://git-scm.com/book/en/v2

Figure 8. The lifecycle of the status of your files



13

Git: Basic Commands

• git init – Initialize a Git repository/working directory
• git init NAME

• git status – Status of your working directory
• git status

• git add <filename> or git add . (for all files in your working directory)
• git commit – Stash changes in your working directory to repo
• git log – View your commit history

• git clone – Create an identical copy (example is pulling from GitHub/Gitlab)



14

Branching



15

Git: Commit Tree -> Branching

• When you checkout a branch name you switch HEAD to it
git branch testing
git checkout testing

https://git-scm.com/book/en/v2



16

Git: Commit Tree -> Branching

• Then when you commit you add to that branch only
git add test.rb
git commit -a -m 'made a change'

https://git-scm.com/book/en/v2



17

Git: Commit Tree -> Branching

• You can move back to master and commit to it, now you have parallel dev.
git checkout master
git add x.java
git commit -a -m 'made diff change'

https://git-scm.com/book/en/v2



18

Merging



19

Git: Commit Tree -> Merging

• Let’s consider you were working on issue 53, then switched back to hotfix 
master, then you went back to work on issue 53. Now you are done, how do 
introduce changes back to mainline

https://git-scm.com/book/en/v2



20

Git: Commit Tree -> Merging

• Move to master, then merge iss53 into it (results in new commit)
git checkout master
git merge iss53

https://git-scm.com/book/en/v2



21

Git: Branching and Merging

• Why this is cool?
• Non-linear development

clone the code that is in ‘master’
create a branch for issue #53 ‘iss53’
work for 10 minutes

someone asks for a hotfix for issue #102
checkout ‘master’
create a branch ‘hotfix’
fix the issue
checkout ‘master’, merge ‘hotfix’
push ‘master’

checkout ‘iss53’ and keep working
…
checkout ‘master’, merge ‘iss53’



22

Git: Conflicts

• Conflicts happen generally in 2 ways
1. Auto-mergeable

1. The git tool fits pieces together and creates merge without involvement of user

2. Fix by hand
1. Merge will fail
2. Leave file in directory with conflict-resolution markers
3. Fix these yourself (or use tool like IDE)
4. Git add these back into attempt to merge
5. Then merge

<<<<<<< HEAD:index.html 
<div id="footer">contact : email.support@github.com</div> 
======= 
<div id="footer">
 please contact us at support@github.com 
</div> 
>>>>>>> iss53:index.html 

<div id="footer">
 please contact us at support@github.com 
</div>



23

Remotes



24

GitHub, UofC GitLab

• It’s a hosting medium/website for your Git repositories

• Offers powerful collaborative abilities

• A good indicator of what you code/how much you code/quality of your code



25

Git: Working with a remote repository

• Remote? 
The common central repository
By default, remote name is origin and default branch is main (previously master).
A cloned repo with generally have its remote set to origin (it is possible to add 
more than one remote)

Add a new remote
git remote add <shortname> <url>



26

How to access GitHub/UofC GitLab

• Access on https://github.com/ or https://gitlab.cpsc.ucalgary.ca

• Example repo on GitHub
• https://github.com/intley/version-control-workshop

• Get a clone link
• https://github.com/intley/version-control-workshop.git

git clone <repo url>

https://github.com/
https://gitlab.cpsc.ucalgary.ca/
https://github.com/intley/version-control-workshop
https://github.com/intley/version-control-workshop.git


27

Git: Remote Commands

• push your changes into the remote repository 
git push origin master

• Pull latest changes from remote (harmless and lets you view before pull)
git fetch origin

• Pull your latest changes from the remote to master and integrate (merge 
conflicts may occur)

git pull origin master



28

Collaborate



29

Git: Collaborate

C1

C2

Master

Alice Bob

Remote Repo



30

Git: Collaborate

C1

C2

Master

Alice Bob

git clone git clone

C1

C2

Master

C1

C2

Master

Remote Repo



31

Git: Collaborate

C1

C2

Master

Alice Bob
C1

C2

Master

C1

C2

Master

CA git add 
git commit

CB git add 
git commit

Remote Repo



32

Git: Collaborate

C1

C2

Master

Alice Bob
C1

C2

Master

C1

C2

Master

CA CB

git push

C3

Remote Repo



33

Git: Collaborate

C1

C2

Master

Alice Bob
C1

C2

Master

C1

C2

Master

CA CB

git fetch

C3

C3

Remote Repo



34

Git: Collaborate

C1

C2

Master

Alice Bob
C1

C2

Master

C1

C2

Master

CA

CB

git merge

C3 C3

Remote Repo



35

Git: Collaborate

C1

C2

Master

Alice Bob
C1

C2

Master

C1

C2

Master

CA

CB

git push

C3 C3

CB

Remote Repo



36

Git: Collaborate

C1

C2

Master

Alice Bob
C1

C2

Master

C1

C2

Master

CA

CB

git pull

C3 C3

CB

Remote Repo

CB



Onward to … 
git workflows.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ehudsonj/

	Advanced Software Development: Git
	Not an acronym
	Not an acronym
	The Rise of Git
	The Rise of Git - Goal
	Why Git?
	What is Git?
	Tracking changes?
	This is how you do it
	Git: *New* Version Control Terminology
	Git: Getting Started
	Git: Status of Files
	Git: Basic Commands
	Branching
	Git: Commit Tree -> Branching
	Git: Commit Tree -> Branching
	Git: Commit Tree -> Branching
	Merging
	Git: Commit Tree -> Merging
	Git: Commit Tree -> Merging
	Git: Branching and Merging
	Git: Conflicts
	Remotes
	GitHub, UofC GitLab
	Git: Working with a remote repository
	How to access GitHub/UofC GitLab
	Git: Remote Commands
	Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Git: Collaborate
	Onward to … �git workflows.

