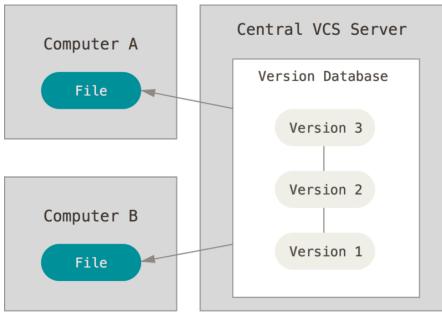
Advanced Software Development: Version Control

CPSC 501: Advanced Programming Techniques Winter 2025

Jonathan Hudson, Ph.D Assistant Professor (Teaching) Department of Computer Science University of Calgary

Wednesday, January 8, 2025

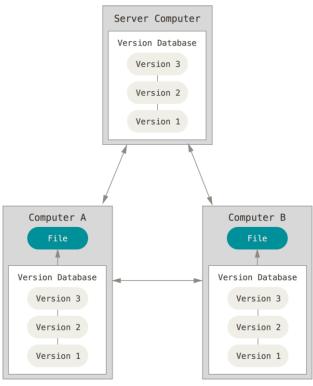
Copyright © 2025



Version control ... quick history

Version control ... quick history

- Three generations
- 1. Concurrency though **lock** operations on one file at a time (1972 **antiquated**)
- **2. Centralized** repository CVCS (SVN, Team Foundation Server)
 - Merge your change in case someone else made changes to central repo, then you can commit a change.
 - Managers like the control



https://git-scm.com/book/en/v2

Version control ... quick history

- Three generations
- **3. Distributed** repositories DVCS (**Git [by far market leader]**, Mercurial, more)
 - Can do work on a local repo
 - Developers like flexibility (managers can adapt)

https://git-scm.com/book/en/v2

First up some definitions

Contrast and compare ... later

Version Control

- Version control:
- 1. Stores source code files for a project in a **central** place
 - Allows multiple developers to work on the same code base in a controlled way
- 2. Keeps a record of changes made to source code files over time
 - You can recall any version of a file based on a date or version number
- 3. Allows you to maintain multiple, concurrent releases of your software
 - i.e. the mainline (or trunk) plus one or more branch releases

Version Control: Repository

- Repository: the place where source code files for projects are stored
 - Will contain all versions of the files
 - Actually stored as differences
 - much smaller than full copies
 - but means you need to history to recreate a full file
 - Can be local but often network accessible

Version Control: Repository

- In addition to source code, often stores non-code project artifacts such as:
 - Ant/Maven files, Makefiles, etc.
 - External documentation (analysis, design, etc.)
- Generally does not to store generated artifacts
 - E.g. Object code, .class files, linking files, executables, temp files, etc

Version Control: Basic Terms

Workspace: the place where you work on a copy of a project's files

Files in the *repository* are not changed by you directly

Checking out: populates your *workspace* with up-to-date copies of files and directories from the *repository*

Committing: saves your changes back into the repository

Sometimes called checking in The repository keeps track of changes using revision numbers

Updating/pulling: repopulates your workspace with the latest versions of files

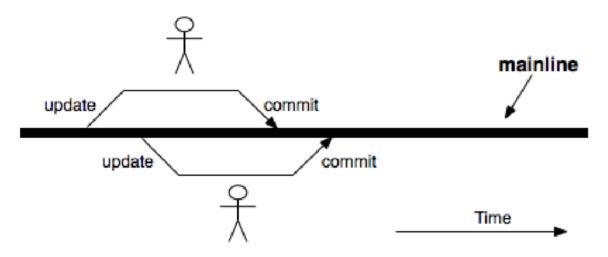
Useful when other developers are also working concurrently on the same project

Version Control: Versioning

- **Revision:** Each version of a file (or a set of files) is given a unique identifier
 - It is time-stamped and should be commented to describe the change made
 - In SVN:
 - 1 for the initial version
 - 2, 3, etc. for subsequent committed versions
 - In Git
 - no revision numbers, generated hash values
 - You have to name revisions for context with tagging

Version Control: Versioning/Tagging

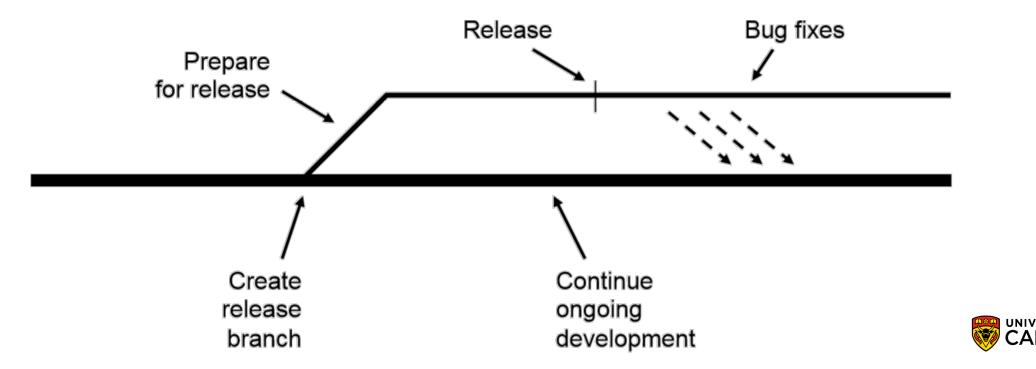
Revisions

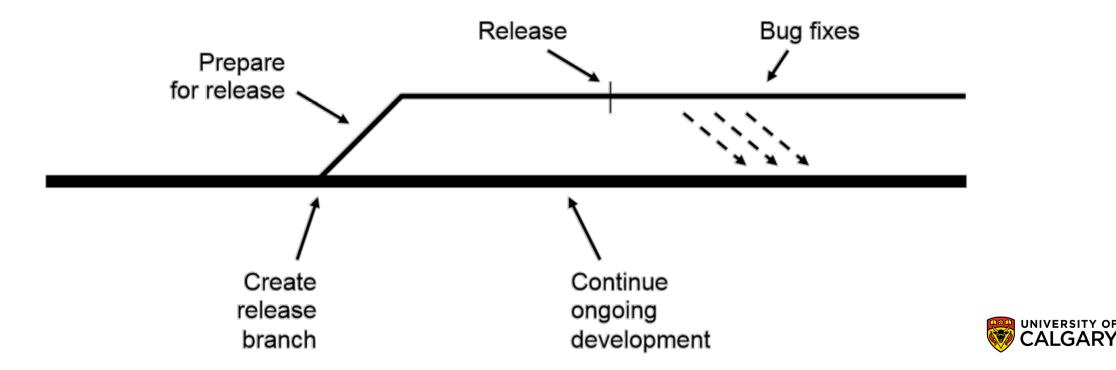

1. Retrieve a specific revision of a file or set of files (i.e. a directory or a project)

2. List the differences between revisions

3. Retrieve all source code as it appeared at some date in the past

Version Control: Trunk/Mainline


- In very simplistic development, developers work on the same shared code base for a project
 - Called the mainline (or trunk)
 - This is rather rare in the real-world, and often just for simple one developer personal projects


Version Control: Branching

- A **branch** is a separate, independent line of development
 - Is like a separate repository for the same project
 - Allows parallel development on the same code base
 - Useful for creating a release branch, or for bug/feature branches

Basic Concepts: Merging

- Merging allows you to apply changes made in a release branch back into the mainline
 - E.g. Bug fixes, Refactorings!!!

Basic Concepts : Conflicts

- Two or more developers editing the same file can lead to conflicts
 - Strict locking allows only one person at a time to have write access to the file (gen 1)
- SVN (normally) used optimistic locking
 - If you try to commit a shared file, you are forced to pull updates about the file first
 - SVN merges changes from other developers into the working copy
 - If no conflicts, you simply commit the file
 - Else, you must manually resolve the conflicts
- Git
 - Will attempt to do merge itself, even within files
 - Will have 'conflict' if file is deleted, or same line is edited differently
 - Will produce file with both lines and you'll have to pick (or to make more changes)

Onward to ... quick overview of svn.

Jonathan Hudson jwhudson@ucalgary.ca https://pages.cpsc.ucalgary.ca/~jwhudson/

