
Advanced Software
Development: Introduction
CPSC 501: Advanced Programming Techniques
Winter 2025

Jonathan Hudson, Ph.D
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

Wednesday, January 8, 2025

Copyright © 2025

2

Advanced Software Development

• The focus of this topic is 5 modern fundamental software development skills.
1. Git (version control)
2. JUnit (unit testing)

• Verify code correctness before commit (or on commit attempt with CI/CD tools)

3. Refactoring (improving code iteratively)
• A skill you’ve employed but possibly never formally framed as a concept

4. Docker (containerization)
• A now common tool to managing consistent system images for development and

deployment purposes

5. CI/CD (continuous integration/development)
• Advanced Gitlab/GitHub/etc. tools that all you to compile and deploy committed code

automatically to external users

3

Version Control and Refactoring
Let’s start with a motivating story

4

Once upon a time …

• A consultant visited a development project.
• There was a class hierarchy at the centre of the system.
• The consultant saw that it was rather messy.

1. The higher-level classes made certain assumptions
2. Super class code didn't suit all the subclasses.
3. If superclasses were modified, then less overriding would be necessary.
4. In other places the intention of the superclass had been misunderstood.
5. In yet other places several subclasses did the same thing.

5

I have some ideas!

6

I have some ideas!

• This code can be looked at and cleaned up!
• BUT the project management didn't seem enthusiastic.
• The code seemed to work and there were considerable schedule pressures.
• The managers said they would get around to it at some later point.
• The programmers initially agreed.

7

I have some ideas!

• The programmers initially agreed.

• A second set of eyes revealed unconsidered issues.

• It wasn’t really their fault.
• They spent some time to clean it up.
• They removed half the code but the functionality remained.
• It was now quicker and easier to make future changes.

8

What are you thinking?

9

What are you thinking?

• The project management was displeased.
• Schedules were tight and there was a lot of work to do.
• These two programmers had spent two days doing work that had done nothing

to add the many features the system had to deliver in a few months time.
• The old code had worked just ‘fine’.

10

What are you thinking?

• The old code had worked just ‘fine’.

• So the design was a bit more ‘pure’ a bit more ‘clean’.
• The project had to ship code that worked, not please an academic.

• The consultant suggested that this cleaning up be done elsewhere.
• Such an activity might halt the project for a week or two.
• All this activity was devoted to making the code ‘look’ better, not to making it

do anything new.

11

Thoughts?

12

Thoughts?

1. How do you feel about this story?

2. Do you think the consultant was right to suggest further clean up?

3. Or do you follow that old engineering adage, "if it works, don't fix it"?

13

Thoughts?

1. How do you feel about this story?

2. Do you think the consultant was right to suggest further clean up?

3. Or do you follow that old engineering adage, "if it works, don't fix it"?

• Maybe the issue here wasn’t the concept but the timing?

14

Refactoring
What is it?

15

Refactoring: Basic Concepts

• Even a well designed software system ‘decays’ as it is modified over time

• Loses its design integrity as new features and fixes are added in an ad hoc way
•

• i.e. as changes are ‘hacked’ in

16

Refactoring: Basic Concepts

• Refactoring reverses this decay

• A bad/chaotic design can be improved with series of small simple changes

• Refactoring should be done during software maintenance:
1. When fixing bugs
2. When adding new feature

• Waiting until we reach the point in the story is actually bad practice.

17

Refactoring: Basic Concepts

• Definition: disciplined process of changing the internal structure of software
to make it easier to understand and maintain, without changing its external
observable behaviour

18

Refactoring: Basic Concepts

• Definition: disciplined process of changing the internal structure of software
to make it easier to understand and maintain, without changing its external
observable behaviour

• Disciplined process: simple steps, defined start and end points, unambiguous

19

Refactoring: Basic Concepts

• Definition: disciplined process of changing the internal structure of software
to make it easier to understand and maintain, without changing its external
observable behaviour

• Disciplined process: simple steps, defined start and end points, unambiguous
• Internal structure: we change the internal code but don’t impact the connection layer to

outer components or human user.
• If you are changing the connection to externalities this is more than ‘refactoring’ it is a design

change.

20

Refactoring: Basic Concepts

• Definition: disciplined process of changing the internal structure of software
to make it easier to understand and maintain, without changing its external
observable behaviour

• Disciplined process: simple steps, defined start and end points, unambiguous
• Internal structure: we change the internal code but don’t impact the connection layer to

outer components or human user.
• If you are changing the connection to externalities this is more than ‘refactoring’ it is a design

change.
• Understand and maintain: goal is code clarity for other readers of code, and ease of future

changes

21

Refactoring: Basic Concepts

• Definition: disciplined process of changing the internal structure of software
to make it easier to understand and maintain, without changing its external
observable behaviour

• Disciplined process: simple steps, defined start and end points, unambiguous
• Internal structure: we change the internal code but don’t impact the connection layer to

outer components or human user.
• If you are changing the connection to externalities this is more than ‘refactoring’ it is a design

change.
• Understand and maintain: goal is code clarity for other readers of code, and ease of future

changes
• External observable behaviour: refactoring’s result should not require anything external to

code to be affected.

22

Refactoring: Basic Concepts

• Definition: disciplined process of changing the internal structure of software
to make it easier to understand and maintain, without changing its external
observable behaviour

• Goal is to improve the design of the code after it is written and already functional.
• Done in an orderly way to avoid introducing bugs .
• Changes are made in small steps (branch and merge).
• Every step is tested (usually with unit tests).
• Version control allows us to undo a step.

23

Refactoring: Non-iterative code lifecycles?

• Refactoring doesn’t function well with non-iterative development techniques.
• In the traditional “waterfall” lifecycle, design precedes coding, and is never

revisited:

This Photo by Unknown Author is licensed under CC BY-SA

https://kenscourses.com/tc1019fall2016/syndicated/semester-review/
https://creativecommons.org/licenses/by-sa/3.0/

24

Refactoring: Iterative code lifecycles?

• With iterative development, design occurs continuously:

Analysis

Design

Coding

Testing

25

Refactoring: Iterative code lifecycles?

• Refactoring is a form of redesign that can be superimposed on the iterative
lifecycle:

Analysis

Design

Coding

Testing

Refactoring

26

Jumping in
The simplest of examples … you’ve refactored before!

27

Refactoring: The simplest of examples

• How could this code be improved?

public class Employee {
 private String lastName;

 public void func1(String value) {
 lastName = value;
 }

 public static void main(String[] args) {
 Employee employee = new Employee();
 employee.func1("Smith");
 }
}

28

Refactoring: The simplest of examples

• Rename the method to better describe what it does:

public class Employee {
 private String lastName;

 public void func1(String value) {
 lastName = value;
 }

 public static void main(String[] args) {
 Employee employee = new Employee();
 employee.func1("Smith");
 }
}

public class Employee {
 private String lastName;

 public void setLastName(String value) {
 lastName = value;
 }

 public static void main(String[] args) {
 Employee employee = new Employee();
 employee.setLastName("Smith");
 }
}

29

Refactoring: The simplest of examples

• Rename the method to better describe what it does:
• This is the Rename Method (Change Function Declaration) refactoring (Fowler)

• “The name of the method does not reveal its purpose”
• Rename the violating method appropriately
• Most IDEs have a shortcut to do this through-out codebase at once
• Danger in choosing a name already in use!
• Compile and test after change

30

Refactoring: The simplest of examples

Version control process:
1. make branch,
2. make change on branch,
3. test change on branch,
4. make merge request,
5. pass unit testing pipeline,
6. merge request approved into main branch

31

Jumping in
Structural example … ok maybe a bit more

32

Refactoring: A structural example

• How could this code be improved?

public class Employee {
 protected String lastName;
}

public class Clerk extends Employee {
 public String getLastName() {
 return lastName;
 }
}

public class Cashier extends Employee {
 public String getLastName() {
 return lastName;
 }
}

33

Refactoring: A structural example

• Move functionality from subclass to superclass.

public class Employee {
 protected String lastName;
}

public class Clerk extends Employee {
 public String getLastName() {
 return lastName;
 }
}

public class Cashier extends Employee {
 public String getLastName() {
 return lastName;
 }
}

public class Employee {
 private String lastName;

 public String getLastName() {
 return lastName;
 }
}

public class Clerk extends Employee {
}

public class Cashier extends Employee {
}

34

Refactoring: A structural example

• Move functionality from subclass to superclass.
• This is the Pull Up Method refactoring

• “You have methods with identical results on subclasses”
• Move them to superclass
• Eliminates redundant code that is hard to maintain
• Again test post change and generally done within version control iterative life cycle.

35

Well that’s easy?

36

37

Refactoring: Risks

• Refactoring is risky
• “The butterfly effect”

• Changes can create subtle bugs and changes often
cascade

• Done improperly it can be like digging a hole you can’t
escape from

• Refactor ‘Systematically’
• Old style: make a backup, make a change, unit test, iterate
• Version control: make a branch instead of backup, after it

passes tests then merge

This Photo by Unknown Author is licensed under CC BY-NC-ND

http://lynnmosher.blogspot.com/2012/07/diggin-up-graves.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

Onward to …
version control.

Jonathan Hudson
jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/~jwhudson/

mailto:jwhudson@ucalgary.ca
https://pages.cpsc.ucalgary.ca/%7Ejwhudson/

	Advanced Software Development: Introduction
	Advanced Software Development
	Version Control and Refactoring
	Once upon a time …
	I have some ideas!
	I have some ideas!
	I have some ideas!
	What are you thinking?
	What are you thinking?
	What are you thinking?
	Thoughts?
	Thoughts?
	Thoughts?
	Refactoring
	Refactoring: Basic Concepts
	Refactoring: Basic Concepts
	Refactoring: Basic Concepts
	Refactoring: Basic Concepts
	Refactoring: Basic Concepts
	Refactoring: Basic Concepts
	Refactoring: Basic Concepts
	Refactoring: Basic Concepts
	Refactoring: Non-iterative code lifecycles?
	Refactoring: Iterative code lifecycles?
	Refactoring: Iterative code lifecycles?
	Jumping in
	Refactoring: The simplest of examples
	Refactoring: The simplest of examples
	Refactoring: The simplest of examples
	Refactoring: The simplest of examples
	Jumping in
	Refactoring: A structural example
	Refactoring: A structural example
	Refactoring: A structural example
	Well that’s easy?
	Slide Number 36
	Refactoring: Risks
	Onward to … �version control.

