

CPSC 501: Advanced Programming Techniques
Assignment 2: TensorFlow Neural Network Machine Learning

Collaboration

Discussing the assignment requirements with others is a reasonable thing to do, and an
excellent way to learn. However, the work you hand-in must ultimately be your work. This is
essential for you to benefit from the learning experience, and for the instructors and TAs to
grade you fairly. Handing in work that is not your original work, but is represented as such, is
plagiarism and academic misconduct. Penalties for academic misconduct are outlined in the
university calendar.

Here are some tips to avoid plagiarism in your programming assignments.

1. Cite all sources of code that you hand-in that are not your original work. You can put the citation into
comments in your program. For example, if you find and use code found on a web site, include a comment
that says, for example:

the following code is from
https://www.quackit.com/python/tutorial/python_hello_world.cfm.

Use the complete URL so that the marker can check the source.

2. Citing sources avoids accusations of plagiarism and penalties for academic misconduct. However, you may still
get a low grade if you submit code that is not primarily developed by yourself. Cited material should never
be used to complete core assignment specifications. You can and should verify and code you are concerned
with your instructor/TA before submission.

3. Discuss and share ideas with other programmers as much as you like, but make sure that when you write your
code that it is your own. A good rule of thumb is to wait 20 minutes after talking with somebody before
writing your code. If you exchange code with another student, write code while discussing it with a fellow
student, or copy code from another person’s screen, then this code is not yours.

4. Collaborative coding is strictly prohibited. Your assignment submission must be strictly your code. Discussing
anything beyond assignment requirements and ideas is a strictly forbidden form of collaboration. This includes
sharing code, discussing code itself, or modelling code after another student's algorithm. You can not use
(even with citation) another student’s code.

5. Making your code available, even passively, for others to copy, or potentially copy, is also plagiarism.
6. We will be looking for plagiarism in all code submissions, possibly using automated software designed for the

task. For example, see Measures of Software Similarity (MOSS - https://theory.stanford.edu/~aiken/moss/).
7. Remember, if you are having trouble with an assignment, it is always better to go to your TA and/or instructor

to get help than it is to plagiarize. The most common penalty is an F on a plagiarized assignment.
8. For assignments limited use of generative AI in writing assistance is acceptable. For example, grammar

suggestion, or code suggestion tools for programming. Programming or text that is largely generative AI
produced is not allowed. Learners are ultimately accountable for the work they submit. Use of AI tools must
be documented in an appendix for the assignment. The documentation should include what tool(s) were
used, how they were used, and how the results from the AI were incorporated into the submitted work.
Failure to cite the use of AI generated content in an assignment will be considered a breach of academic
integrity and subject to Academic Misconduct procedures.

Late Penalty

Assignment Late Policy: Students may choose to submit one or more assignments late, for no
more than a total of five (5) days over the entire semester for the combined 4 assignments.

Each 24-hour period late after an assignment deadline counts as one full day regardless of how
many hours the assignment was late within that period. For example, deadlines are generally
on a Friday, 11:59pm local time. That means an assignment submitted any time Saturday
before 11:59pm local time will be considered as 1 day late and count against the total number
of late days.

Use these days at your own discretion and without explanation during the course for
assignment extensions. For example, you could submit your second assignment 3 days late and
your final assignment 2 days late, or just your final assignment 5 days late.

If a student still has days left to use, then their assignment will be graded without penalty. If a
student has no more days left, or their submission exceeds the days they have remaining, then
they will receive a 0 grade for a late assignment.

Late day usage will be tracked in a D2L grading column.

Goal

Use Google TensorFlow to learn neural network-based machine learning in Python.

Technology

Python, TensorFlow, IPython, Jupyter Notebooks, Numpy, Pandas, MatplotLib, Seaborn

Specifics

Python 3, TensorFlow 2, csgit.ucalgary.ca

Description

The goal of this assignment is to explore four machine learning problems.

1. There will be one Main machine learning problem that runs the length of the
assignment, and then

2. three others that are inter-leaved through-out the longer one. These 3 will operate
more as a for credit tutorial in learning the basics that help you do the first part.

Each of these 4 parts of assignment should be stored in its own folder in a Gitlab project
(Main/Part1/Part2/Part3). Grading will be roughly 50/50 between these two.

The Main machine learning problem is to find a dataset, load this dataset into Python, view this
dataset using MatPlotLib/Seaborn, process this dataset using NumPy/Pandas, and then using
TensorFlow in Python train a model to use a portion of this dataset’s columns as input variables

and in attempt to predict another column as an output variable. Finally, you will view the
performance of this trained model using MatPlotLib/Seaborn again. Feasibility of the dataset
size, and time to train a model is important here. You should avoid large image datasets, or
video, and limit yourself to tables of data that could be stored in .csv files.

The inter-leaved smaller three machine learning problems (Part1/Part2/Part3) are the
following: Part 1 is to improve the logistic regression accuracy of a MNIST digit image
recognition model. Part 2 is to replace the MNIST image data with a harder set of letter
representation data and train a good model for it. Part 3 is to create and develop a model for
data loaded from a CSV file about Coronary Heart Disease and associated risk factors. These
three smaller problems are designed to give you a chance to explore different aspects of
TensorFlow and then apply learned lessons to the Main larger problem.

TensorFlow 2.18

You can get more familiar with the TensorFlow documentation that you can find at

https://www.tensorflow.org/api_docs/python/ or by looking at the tutorials at
https://www.tensorflow.org/tutorials . Note, we will be using TensorFlow 2.18 for Python 3 for
the Assignment. You are expected to use Python 3.12.X which is what is installed on lab
machines.

To install Python packages, such as TensorFlow, on a university user account you will have to
use a virtual environment. This should not be too challenging to setup and work in. There is a
file called setup.txt with the assignment materials and tutorials will address it.

Instead of a local Jupyter install or online Jupyter notebook environment such as Google
Collab. https://colab.research.google.com/ An online Google Colab Jupyter notebook
environment lets us use both Python 3 and TensorFlow 2 from any location we desire that has
internet access. Tutorials will also show how to use and code in this environment.

For the parts of this assignment starter files will be provided for Jupyter work. Certain material
such as interactive GUI programs to make input images will only work in a local desktop
environment.

Main Project Stage 1: Data Science and Machine Learning

Source a dataset for your project. This dataset should have at least 7 columns and 500 rows of
data and have both numerical features and non-numerical (text-based) features. You should
have at least 6 input variable columns of which 5 are numerical (the other should be text like a
category label). You should have at least 1 output variable column that is numerical. If you want
to use a dataset without these, then you’ll have to request approval from your TA/instructor.
The goal of this dataset is to use some of the column data (input variables) to predict at least
one of the other columns of data (output variables). Again, these are minimums for input data

https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/tutorials
https://colab.research.google.com/

and more expansive input variable quantities, or the prediction of more than one output
variable, is allowed.

For the first part of the project your requirement is to find a dataset and determine that you
have the rights to use this dataset. Common sources of dataset are kaggle.com but can also
include resources like the City of Calgary, Province of Alberta, or other sources that provide
open datasets. Your dataset does not have to be a single file, but this will be common to find.
You may find that your preferred dataset will require you to combine information from more
than one source. This is allowed but you may want to consult your TA or in the instructor on
advice if this is going to cause any concerns for your project in terms of scope.

1. Once you have this dataset (data-input.csv), load it into Python using NumPy/Pandas.
At this point if you have more than one input file (data-input1.csv, data-input2.csv, etc.),
then you will have to load and combine them into one dataset. Your Python code file
(main1.py/main1.ipynb) should output a csv file of your complete dataset at this point
(data.csv) with proper simple readable column headers (as would be produced by
Pandas csv output). [data.csv could end up looking like your data-input.csv if the data is
already a single table in named column form]

2. Once you have your full dataset you will need to clean that dataset. Cleaning a dataset
involves exploring if there is missing data, inconsistent data, or other parts of dataset
that would make it dangerous to use in machine learning. Pandas is a data science data
processing library well-suited to do this. Remember, garbage in -> garbage out for how
machine learning works. Your Python code file should output a csv file of your complete
cleaned dataset (data-cleaned.csv) at this point with proper readable column headers
(as would be produced by Pandas csv output).

3. You should use Seaborn/MatPlotLib to make three visualizations of your current
dataset to help others understand some features of your dataset. For example, what is
the distribution for a column of data (ex. histogram), or what is the relationship
between two variables of your data (ex. scatter plot, line chart). These visualizations
(plot1.jpg, plot2.jpg, plot3.jpg) should be output by your Python program.

4. Start a report (report.md) in the base gitlab project project folder that reports for Stage
1: where the data came from (paragraph), any specific challenges you had in
combining/cleaning data or why it is clear cleaning did not need to be done (paragraph),
and then a description of what your three visualizations show (paragraph each
visualization).

5. At this point you’ll stop with this part of project and do Part 1 of the smaller problems to
explore TensorFlow machine learning.

Your Gitlab project should have in the base gitlab project folder:

• report.md (add a Main Stage 1 sub-section)

Your Gitlab project should have in the Main sub-folder:

• main1.py (or main1.ipynb)
• data-input.csv (or data-input1.csv, data-input2.csv, etc.)
• data.csv
• data-cleaned.csv
• plot1.jpg, plot2.jpg, plot3.jpg

Part 1: MNIST Logistic Regression

The home page of the MNIST database is http://yann.lecun.com/exdb/mnist/. The dataset is
divided into a set of 60,000 training examples and a set of 10,000 test examples, each
consisting of separate files for the images and their labels. Details on the file format can be
found at the bottom of the MNIST web page but we’ll make use of TensorFlow to load this data
so you don’t have to concern yourself with investigating that website.

It is relatively simple to get accuracy of ~88% on the MNIST dataset with the provided starter
code. However, for deployed machine learning this performance is generally considered
unacceptable. The MNIST digit dataset is basically solved, and state of the art models reach
accuracies above 99%. Your tutorial goal is to improve the performance of the starting model
provided using hyper-parameters and simple changes to the structure of the neural network
model.

Experiment by adjusting the hyperparameters (loss functions, optimizers, epochs, etc.) and/or
structure (layers, activation functions, etc.) of the provided starter model to achieve an
accuracy of 95%+ on the test data. Your model must be built in TensorFlow 2.18 and keras. You
will be provided the code of a starter model MNIST-Starter.py (MNIST-Starter.ipynb) that you
are expected to modify to create MNIST-Complete. You should include lines of code that allow
you to save your model as MNIST.keras.
https://www.tensorflow.org/tutorials/keras/save_and_load

The input/output layer of the MNIST.keras model should be such that you could import that
model into the MNIST-Starter code in place of the compiled/fit model and run the evaluation
query at the end on it skipping any creation and training steps.

In a report, describe your hyper-parameters (paragraph), model (paragraph), results
(paragraph) justifying the changes you made, including relevant code excerpts. In your report, it
should be clear what changes you made, as well as how/why they should have improved the
neural network’s performance to reach your final accuracy of 95%+.

Your Gitlab project should have in the base gitlab project folder:

• report.md (add a Part 1 sub-section)

Your Gitlab project should have in the Part 1 sub-folder

• MNIST-Complete.py (MNIST-Complete.ipynb) [based on MNIST-Starter]

http://yann.lecun.com/exdb/mnist/
https://www.tensorflow.org/tutorials/keras/save_and_load

• MNIST.keras [saved model from above with 95%+ on test data]

Main Project Stage 2: Data Science and Machine Learning

Return to your overall project. At this point we want to create a simple neural network
TensorFlow model to do a prediction on your data. The minimal requirement is that 5
numerical columns of your data must be involved as input variables and at least 1 numerical
column predicted as an output variable. For now, use only numerical input/output variables.
We’ll introduce how to utilize your non-numerical variables like text/category data later.

1. Divide your rows of data into two groups for training/test data. You will need to justify
your choice for the size of each group of data in your report later so consider why you
are making the choice you make.

2. Split off the input variables and output variables into separate parts for each of the
training input/output variables and test input/output variables.

3. Train a simple model like the model trained in Part 1 for MNIST on your training data.
Then verify this model by running it against you test data. Make similar hyper-
parameter and model adjustments as you tried in Part 1 to improve this model as best
you can (note we are not done with the model yet and will improve it more later). [You
should note the model from Part 1 was a classifier and had 10 labels {0,1,…,9} which is
why the last layer had 10 neurons with softmax activation and used sparse categorical
cross-entropy, while if you choose something binary {0,1} here you will have a last layer
of 1 neuron with sigmoid activation and will have binary cross-entropy.]

Continue your previous report. You must discuss your choice: of what columns you chose for
this simple model as input and output variables and why (paragraph), what choices you made
when splitting data into train/test (paragraph), what choices you made in your simple model
design (paragraph), what hyper-parameters your chose (paragraph), and discuss the current
accuracy of your model on the training and test data (paragraph). (There is no required
accuracy here for training or test data.)

Your Gitlab project should have in the base gitlab project folder:

• report.md (add a Main Stage 2 sub-section)

Your Gitlab project should add/change in the Main folder:

• main2.py (or main2.ipynb) [modified version of main1]

Part 2: Logistic regression on a replacement for MNIST dataset

Machine learning community is a bit sick of seeing MNIST digits pop up everywhere, so they
created a similar dataset and literally named it notMNIST. Created by Yaroslav Bulatov, a
research engineer previously at Google and then at OpenAI. notMNIST is designed to look like
the classic MNIST dataset, but less ‘clean’ and extremely ‘cute’. The images are still 28x28 and

there are also 10 labels, representing letters ‘A’ to ‘J’. The homepage for the dataset is
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html .

I have done the work of reducing this dataset down into something that is in the same format
as the MNIST dataset. This file is provided as notMNIST.npz.

The starter code notMNIST-Starter.py (notMNIST-Starter.ipynb) has the new data loading
included in place of the keras MNIST loading. This loading is done using the numpy library.

Build a model for this notMNIST data like you did for the tutorial and the MNIST data. This will
be harder given the challenge of the letter pictures being much more diverse. To start re-use
your model design and hyper-parameters to create notMNIST-Partial. One of my 98%+ MNIST
model designs drops to 93% for notMNIST here.

Add a line of code to save your model to a file called notMNIST-Partial.keras like you did for
the tutorial. Using this model, you can now use the following files:

predict_test.py (predict_test.ipynb) -> Provide index of test image from downloaded data and
see prediction made by your model

grabimage.py -> Desktop GUI program to capture image.png images from mouse input, if you
have issues the screen capture you may need to disable
scaling/hdpi modes in your OS (below is an example in
windows that causes issues at 150%, needs to be
changed to 100%), you could also just use GIMP or
similar tool to draw a b/w 28by28 pixel input image, a
captured image.png has been provided you can edit

predict.py (predict.ipynb) -> Non-desktop program to take image.png image and predict using
your model

interactive.py -> Desktop program combining grabimage.py and predict.py into one program
for ease of use

In the predict.py/predict_test.py/interactive.py files you will have to change three lines to get
them to work.

1. First a line to load your model. Reference the save/load tutorial again!

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

2. Second, a line to get an array of percent confidence in each class for your image. The
beginner clothing prediction tutorial.

3. Third, a line to decide the index of the highest prediction in the previous array. The
beginner clothing prediction tutorial.

Report what lines you added to get these programs to work in your report.

Use the above four programs to find three images in the test data (and/or create images using
the tools provided) that you (or the test output label) would classify as one of the classes, but
that your model gets clearly wrong on its prediction label. Make changes to your model that
lead to these three images getting identified accurately. Store the image you made. Record
what your model’s accuracy was when this image was inaccurately predicted by MNIST-Partial,
what changes you made, then what your model predicted after the changes. Your final model
notMNIST-Complete.keras should reach 93% and be created by a file called notMNIST-
Complete.

In a report,

1. describe your Partial model (paragraph),
2. the three images and their original Partial model label (paragraph),
3. then describe your changes to the model and how/why they improve the net’s

performance (paragraph at least),
4. and then show the three images and their new Complete model label (paragraph).

Your Gitlab project should have in the base gitlab project folder:

• report.md (add a Part 2 sub-section)

Your Gitlab project should have in the Part 2 sub-folder

• notMNIST-Partial.py (or notMNIST-Partial.ipynb) [based on notMNIST-Starter]
• notMNIST-Complete.py (or notMNIST-Complete.ipynb) [based on notMNIST-Partial]
• notMNIST-Partial.keras [saved model from notMNIST-Partial]
• notMNIST-Complete.keras [saved model from above with 93%+ on test data]
• whichever of predict_test, predict, interactive you modified

Main Project Stage 3: Data Science and Machine Learning

Return to your overall project. At this point we want to examine our model to determine what
it appears to have not been good at. Choose at least one column of input and visualize how it
relates to the predictions of your model in main3 (main3.ipynb). Add improvements learned in
Part 2 to increase your accuracy of your model.

1. Modify your report and add your visualization (paragraph), and report what additional
changes were made to your original model after Part 2 (paragraph). (There is no
required accuracy here on either part of your data.)

Your Gitlab project should have in the base gitlab project folder:

• report.md (add a Main Stage 3 sub-section)

Your Gitlab project should add/change in the Main folder:

• main3.py (or main3.ipynb) [modified version of main2]

Part 3: Build a logistic regression model to predict coronary heart disease

You have been given a heart.csv file of data in csv format.

You should divide this file into heart_train.csv and heart_test.csv data. Generally, test data is
only a portion of the size of the training data. For example, in the MNIST data sets the test data
is 1/6 of the size of the training data or (1/7 of the total data). For example, 60,000 training
examples and 10,000 test examples.

For the file, the first row is the name of the observed variables. There are 10 variables:

1. sbp: Systolic blood pressure

2. tobacco: Cumulative tobacco consumption, in kg

3. ldl: Low-density lipoprotein cholesterol

4. adiposity: Adipose tissue concentration

5. famhist: Family history of heart disease (1=Present, 0=Absent)

6. typea: Score on test designed to measure type-A behavior

7. obesity: Obesity

8. alcohol: Current consumption of alcohol

9. age: Age of subject

10. chd: Coronary heart disease at baseline; 1=Yes 0=No

Each following row contains the information of one patient.

There are 462 samples in total. Source of the data:
http://statweb.stanford.edu/~tibs/ElemStatLearn/

We will be using the first 9 variables to predict the last variable. That is, your input will be 1-d
tensor of 9 elements, and your label is binary. You should write the function to read in data
yourself, and you should take care of dividing your data into train set and test set.

http://statweb.stanford.edu/%7Etibs/ElemStatLearn/

In terms of loading and processing csv data you will find the tutorial at
https://www.tensorflow.org/tutorials/load_data/pandas_dataframe very helpful. You have 10
numeric pieces of data, 1 binary, and 1 category.

Start with the most basic of models.

tf.keras.Sequential([

 tf.keras.layers.Dense(512, activation='relu'),

 tf.keras.layers.Dense(1)

])

One problem you will notice when building this model is overfitting due to the small amount of
data samples for training. A model like this at sufficient epochs could reach 100% on the
training data! But still be ~60% for test data.

In a report,

1. explain your data-splitting decisions (paragraph),
2. how you decided to handle the non-numerical input data (paragraph),
3. how you dealt with overfitting/underfitting (paragraph),
4. and report your hyper-parameters/results (paragraph).

Your Gitlab project should have in the base gitlab project folder:

• report.md (add a Part 3 sub-section)

Your Gitlab project should have in the Part 3 sub-folder

• CHDModel.py (or CHDModel.ipynb)
• CHDModel.keras
• heart_train.csv
• heart_test.csv

Main Project Stage 4: Data Science and Machine Learning

Return to your overall project and complete it. At this point we want to use lessons from Part 3
to integrate your non-numeric columns, and to consider over-fitting/under-fitting. Add
improvements learned in Part 3 to accomplish both goals.

2. Modify your report discuss what additional changes were made to your original model
after Part 3 for integrating the non-numeric data (paragraph), what you did for over-
fitting/under-fitting concerns (paragraph), and it there were any other model decisions
you made such as batch processing, normalization, one-hot-encoding, etc. (paragraph).
(There is no required accuracy here on either part of your data.)

https://www.tensorflow.org/tutorials/load_data/pandas_dataframe

Your Gitlab project should have in the base gitlab project folder:

• report.md (add a Main Stage 4 sub-section)

Your Gitlab project should add/change in the Main folder:

• main4.py (or main4.ipynb) [modified version of main3]

Submit the following to the D2L Assignment 2 Dropbox:

1. An electronic copy (zip file) of your exported source code from your final Gitlab project
2. Directions/access to the csgit.ucalgary.ca project so that your TA can access your

project and read your report. TAs will need to be added as at least a ‘Developer’ role to
your code.

Version control: As in the previous assignments, you will be using GitLab to maintain version
control and to share your final project with the TAs. Your assignment should be kept in a
repository titled CPSC501W25A2. As you develop your code, make sure to use proper version
control practices, making regular commits with descriptive messages. This includes keeping a
local copy of your assignment (including the git repository) on your own computer, just in case.

Your readme.md for your project should include the expected base identifying information
about the assignment, but also the source/rights to the dataset used in the Main part of
assignment. If you are having issues completing Main/Part1/Part2/Part3 portions of the
report.md then you can complete these in a report.pdf instead, but you should still have the
base data source information requested in the readme.md

Your D2L dropbox should also include directions for the TA to access your project (a csgit link).
This is how they will be able to access your code and commit history, so double-check this
works correctly before submitting. Make sure to indicate in your dropbox submission whether
you decided to implement the bonus part of the assignment. You may also include any
information (known bugs, etc.) that you think will be useful to the TAs when grading.

Bonus

• Part 1: 98% or higher, Part 2: 95% or higher, Part 3: 75% or higher (on saved model)
• Complete a Dockerfile that someone could use with your repository so that they didn’t

have to setup a virtual environment like we did to get your code running on their
computer. They’d just need to download setup Docker, download your Dockerfile
instead, and run your code that is already inside of it. (Put this Dockerfile in the base of
your Gitlab directory with your readme.md) Include readme.md information on the
command line commands to execute each of your python files like main.py within the
Dockerfile.

Grading

Main Report 1 Where the data came from (paragraph), any specific
challenges you had in combining/cleaning data or why it
is clear cleaning did not need to be done (paragraph), and
then a description of what your three visualizations show
(paragraph each visualization).

5

Main Report 2 What columns you chose for this simple model as input
and output variables and why (paragraph), what choices
you made when splitting data into train/test (paragraph),
what choices you made in your simple model design
(paragraph), what hyper-parameters your chose
(paragraph), and discuss the current accuracy of your
model on the training and test data (paragraph).

5

Main Report 3 Visualization of accuracy (paragraph), and report what
additional changes were made to your original model
after Part 2 (paragraph).

2

Main Report 4 Additional changes were made to your original model
after Part 3 for integrating the non-numeric data
(paragraph), what you did for over-fitting/under-fitting
concerns, and it there were any other model decisions
you made such as batch processing, normalization, one-
hot-encoding, etc.

3

Main Code Load data, clean data, save data, visualizations, split data,
make model, fit model, predict data, non-numeric, over-
fit/under-fit

10

Part 1 Code Source code for model 2

Part 1 Report Report on model/hyper-parameters 3

Part 2 Code Source code for model 2

Part 2 Predict Source getting load, save, predict to work 1

Part 2 Improved Image exploration and discussion 2

Part 2 Report Report on model/hyper-parameters 3

Part 3 Data Getting data ready 2

Part 3 Model Source code for model 2

Part 3 Overfit Examining over-fitting 2

Part 3 Report Report on model/hyper-parameters 3

Gitlab usage Commits, Structure, Readme.md, dataset source/rights 3

Total 50

Bonus Part 1 98%+, Part 2 95%+, Part 3 75%+, Dockerfile
5

Letter A+ A A- B+ B B- C+ C C- D+ D F

Points Above

50

47.5 45 42.5 40 37.5 35 32.5 30 27.5 25 Below

25

