CPSC 501 – Advanced Programming Techniques

Midterm Examination – February 27
Name:__ ID:__________________________

Time limit: 75 minutes. You may use your 8.5 by 11-inch double-sided cheat sheet (printed or written); however, no electronic devices are allowed. There is a total of 2 long-answer questions. Answer these questions in this booklet in the space provided.

Fowler text Code Smells

Duplicated Code, Long Method, Long Parameter List, Shotgun Surgery, Data Clumps,
Primitive Obsession, Switch Statements, Lazy Class, Speculative Generality, Temporary Field, Message Chains, Middle Man, Inappropriate Intimacy, Alternative Classes with Different Interfaces, Incomplete Library Class, Data Class, Refused Bequest, Comments
Fowler text Refactoring
Composing Methods (Extract Method, Inline Method, Inline Temp, Replace Temp with Query, Introduce Explaining Variable, Split Temporary Variable, Remove Assignments to Parameters

Replace Method with Method Object, Substitute Algorithm)

Moving Features Between Objects (Move Field, Inline Class, Remove Middle Man, Introduce Local Extension)
Organizing Data (Self Encapsulate Field, Change Value to Reference, Replace Array with Object, Duplicate Observed Data, Change Unidirectional Association to Bidirectional,
Replace Magic Number with Symbolic Constant, Encapsulate Collection, Replace Type Code with Class, Replace Type Code with Subclasses, Replace Type Code with State/Strategy,
Replace Subclass with Fields)
Simplifying Conditional Expressions (Decompose Conditional, Consolidate Conditional Expression, Consolidate Duplicate Conditional Fragments, Remove Control Flag, Replace Nested Conditional with Guard Clauses, Replace Conditional with Polymorphism, Introduce Assertion)
Making Method Calls Simpler (Rename Method, Remove Parameter, Parameterize Method, Replace Parameter with Explicit Methods, Preserve Whole Object, Replace Parameter with Method, Introduce Parameter Object, Remove Setting Method, Hide Method, Replace Constructor with Factory Method, Encapsulate Downcast, Replace Error Code with Exception,
Replace Exception with Test)

Dealing with Generalization (Pull Up Field, Pull Up Constructor Body, Push Down Method, Push Down Field, Extract Subclass, Extract Superclass, Extract Interface, Collapse Hierarchy, Form Template Method, Replace Inheritance with Delegation, Replace Delegation with Inheritance)

Big Refactorings (Tease Apart Inheritance, Convert Procedural Design to Objects,
Separate Domain from Presentation, Extract Hierarchy)

Part A: Refactoring (25 marks)
Refactor the code given, applying a series of refactorings.
· Do 5 refactorings in total, each of them different. I would recommend claiming credit for the parts of a multi-step refactoring like Extract Interface, Replacing Type Code, or Form Template Method instead of using them as only one of your 5. For something like Extract Interface you could extract the interface as a first step, and then move methods into it for a second (which could require renaming), or extracting methods, etc.
· None of the chosen refactorings can be renaming or adding comments for credit
· unless they are used within a bigger refactoring as a sub-refactoring you aren’t claiming credit for.
· You can perform a refactoring more than once (if needed within another to accomplish it for example), but you will only get credit for it once
· Ex. all pull-up/push-down methods will count for credit once
· At least one of the refactorings must be structural in nature, resulting in a major change to the class diagram.
Half of your grade will be given for the code changes, and the other half for your explanation.
Incomplete sentences or explanations which are too broad, general, or brief will not receive full grades for your explanation. Similarly, code that is indecipherable will not receive full grades.
Show each refactoring as a separate step on the following pages, and for each step also briefly explain:
1) What needed to be improved? That is, what “bad smell” was detected?
a) Use the official name for this from the Fowler text (names above).

2) What refactoring was applied?
a) Use the official name for this from the Fowler text (names above)
3) Why is the code better structured after the refactoring?
Each refactoring should build on the previous refactoring. To save space and time, you should indicate that code is copied from a previous step and just show what has changed.
Use things like ellipses (…) or comment \\Unchanged to indicate that code is unchanged.
(However, if code is left out that is important or otherwise ambiguous you will lose marks.)

After doing these refactorings in part 1 you will be asked to create unit tests in part 2

Refactoring:

a) Bad smell detected: __

b) Name of refactoring: ___

c) Why is the code better structured after the refactoring?

Show the code that results from your refactoring here (Do not rewrite all the code, just what is changed):

Part B: Unit Testing (10 marks)
Two Unit Tests (based on Final Refactoring):

Pick one of your functions to test.
Create 2 unit tests for that function.
Clearly specify the input/output combination, the reason for choice of these values, along with JUnit code that accomplishes the refactoring.
Full marks require tests that accomplish a range of input test coverage. We reserve the right to give 0 credit to a tests that are identical to prior ones.

Write each test as a single function (Do not write the Test Class around the function. Everything should be self-contained in your unit test function itself).
Imports will be assumed to be correctly completed already for you.
You can assume all the necessary Junit 5 libraries are imported already for you.
Each unit test should be well-formed code.
Simple summary of Junit 5 API.

assertEquals(expected, actual, message)

assertNull(actual, message)

assertNotNull(actual, message)

assertFalse(actual, message)

assertTrue(actual, message)

fail(message)

…

Function being tested: __

Test:

a) Input: ___

b) Output: __

c) Goal of the test?

Show the Junit test code here (just the test function itself, no imports/class):
1

