Logic Systems

CPSC 433: Artificial Intelligence Fall 2025

Jonathan Hudson, Ph.D Associate Professor (Teaching) Department of Computer Science University of Calgary

August 28, 2025

Copyright © 2025

Propositional Logic Example

- Represent the following statements in propositional logic:
 - A Porsche is a black car.
 - Black cars are fast cars.
 - Bad cars are slow cars.
- Home exercise:
 Show that the following statement is a logical consequence of the statements above:
 - A Porsche is a good car.

- Represent the following statements in propositional logic:
 - A Porsche is a black car. $porsche \land black$
 - Black cars are fast cars. $black \rightarrow fast$
 - Bad cars are slow cars. $bad \rightarrow \neg fast$
- Home exercise:
 Show that the following statement is a logical consequence of the statements above:
 - A Porsche is a good car.

- $porsche \land black$
- $black \rightarrow fast$
- $bad \rightarrow \neg fast$
- A Porsche is a good car.

- $p \wedge bl$
- $bl \rightarrow f$
- $b \rightarrow \neg f$
- A Porsche is a good car.

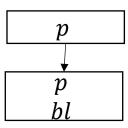
- $p \wedge bl$
- $bl \rightarrow f$
- $b \rightarrow \neg f$
- $p \land \neg b$

- $p \wedge bl$
- $bl \rightarrow f$
- $b \rightarrow \neg f$
- $\neg(p \land \neg b) = \neg p \lor b$

- $p \wedge bl$
- $bl \rightarrow f$
- $b \rightarrow \neg f$
- ¬p ∨ b

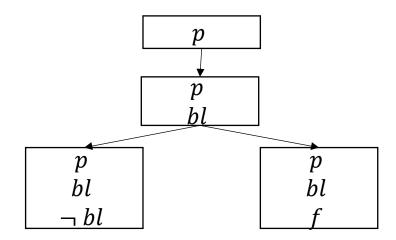
- p
- *bl*
- $bl \rightarrow f$
- $b \rightarrow \neg f$
- $\neg p \lor b$

- p
- *bl*
- $\neg bl \lor f$
- ¬*b* ∨ ¬ *f*
- $\neg p \lor b$

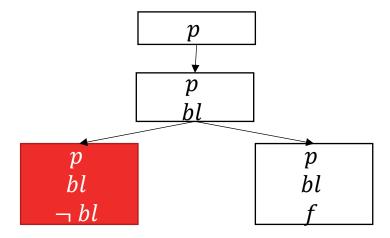


- x
- *bl*
- $\neg bl \lor f$
- ¬*b* ∨ ¬ *f*
- $\neg p \lor b$

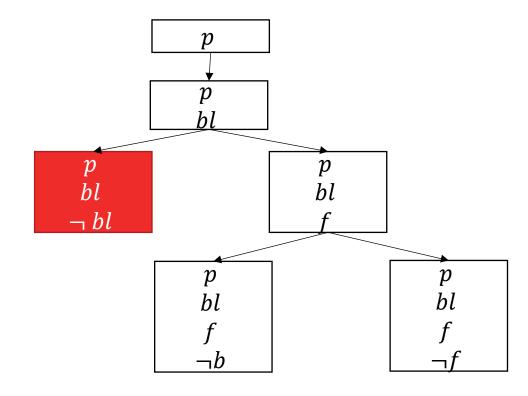
p



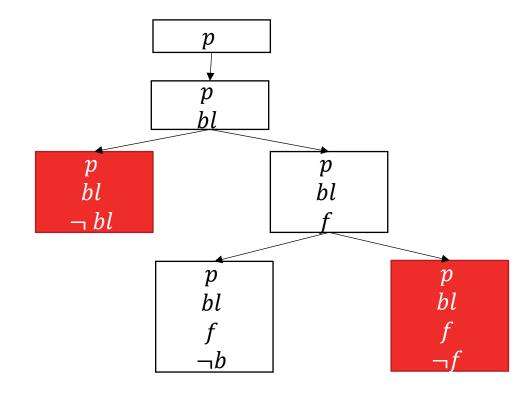
- p
- *bl*
- $\neg bl \lor f$
- ¬*b* ∨ ¬ *f*
- $\neg p \lor b$



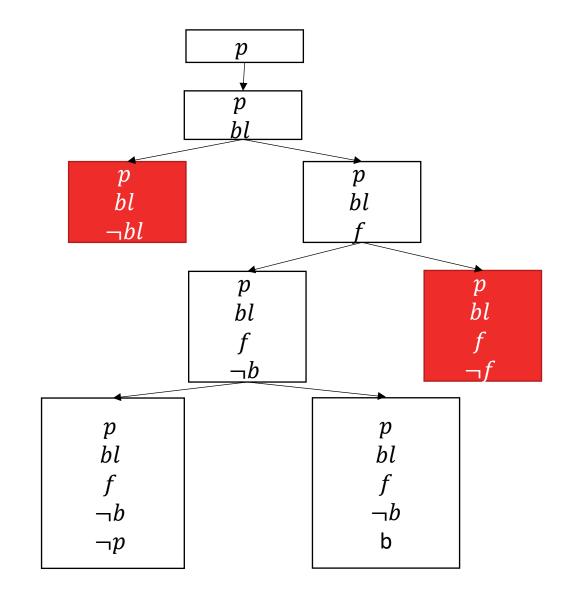
- p
- *bl*
- $\neg bl \lor f$
- ¬*b* ∨ ¬ *f*
- ¬p ∨ b



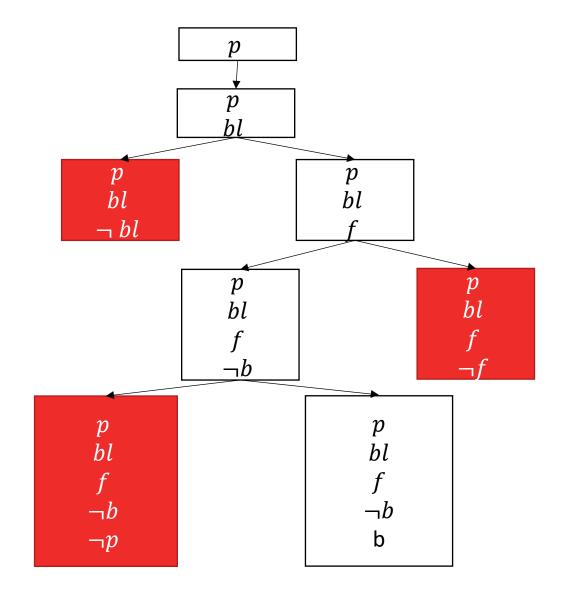
- p
- *bl*
- $\neg bl \lor f$
- ¬*b* ∨ ¬ *f*
- ¬p ∨ b



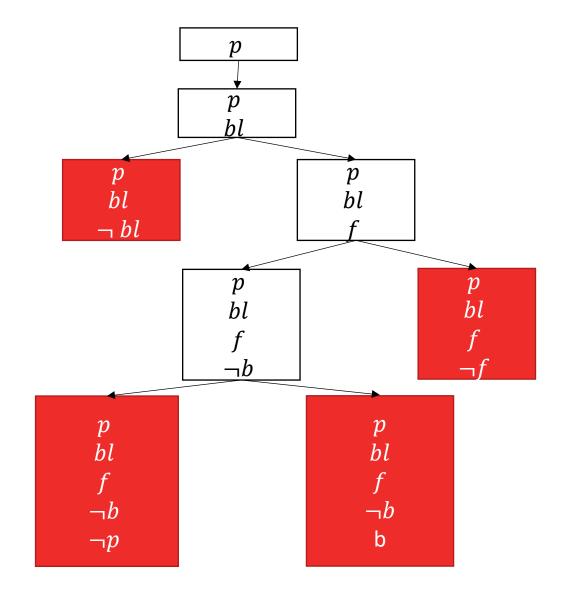
- p
- *bl*
- $\neg bl \lor f$
- $\neg b \lor \neg f$
- $\neg p \lor b$



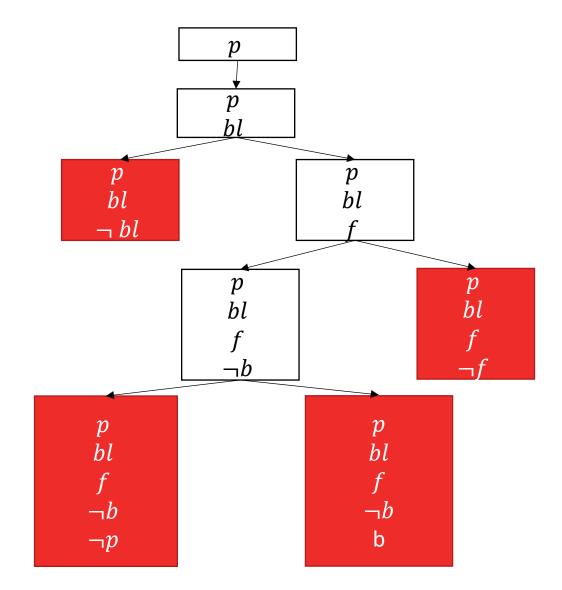
- p
- *bl*
- $\neg bl \lor f$
- $\neg b \lor \neg f$
- $\neg p \lor b$



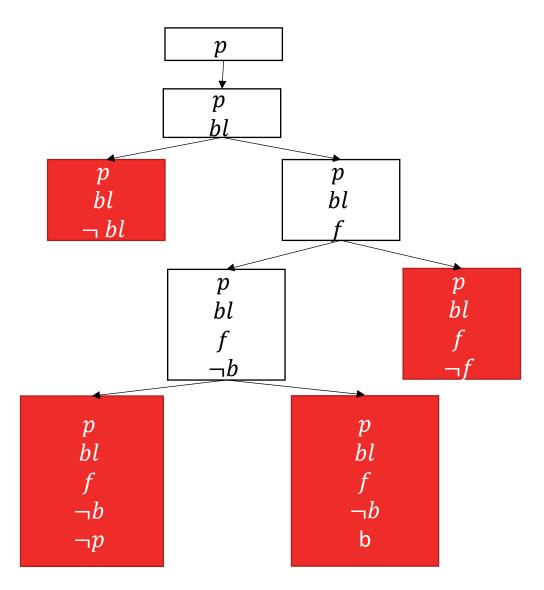
- p
- *bl*
- $\neg bl \lor f$
- $\neg b \lor \neg f$
- $\neg p \lor b$



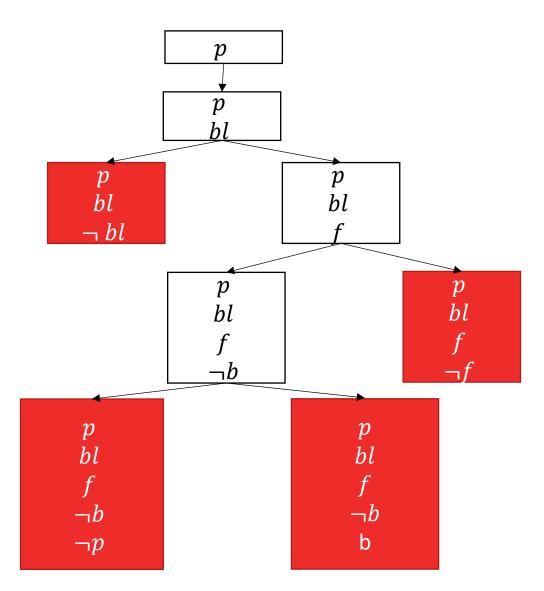
- p
- *bl*
- $\neg bl \lor f$
- $\neg b \lor \neg f$
- ¬p ∨ b



- p
- *bl*
- $\neg bl \lor f$
- ¬*b* ∨ ¬ *f*
- ¬p ∨ b



- p
- *bl*
- $\neg bl \lor f$
- $\neg b \lor \neg f$
- $\neg p \lor b$



- p
- *bl*
- $\neg bl \lor f$
- ¬*b* ∨ ¬ *f*
- $\neg p \lor b$
- $\neg(\neg p \lor b)$

- p
- *bl*
- $\neg bl \lor f$
- ¬*b* ∨ ¬ *f*
- ¬p ∨ b
- $p \land \neg b$
- A Porsche is a good car.

First-Order Logic Example

- Use PL1 for the example for propositional logic (2!)
- Home exercise:
 Show that the statements
 - Everyone who lies is a bad person
 - I know a politician who lies

implies the statement

There is a politician who is a bad person

- Represent the following statements in propositional logic:
 - A Porsche is a black car. black(p)
 - Black cars are fast cars. for all x black(x) -> fast(x)
 - Bad cars are slow cars. for all x bad(x) -> not fast(x)
- Home exercise:
 Show that the following statement is a logical consequence of the statements above:
 - A Porsche is a good car. good(p)

- Represent the following statements in propositional logic:
 - A Porsche is a black car. black(p)
 - Black cars are fast cars. for all x black(x) -> fast(x)
 - Bad cars are slow cars. for all x bad(x) -> not fast(x)
- Home exercise:
 Show that the following statement is a logical consequence of the statements above:
 - A Porsche is a good car. not bad(p)

- black(p)
- for all x black(x) -> fast(x)
- for all x bad(x) -> not fast(x)
- not bad(p)

- black(p)
- for all x black(x) -> fast(x)
- for all x bad(x) -> not fast(x)
- not bad(p)

- black(p)
- for all x black(x) -> fast(x)
- for all x bad(x) -> not fast(x)
- bad(p)

- black(p)
- not black(x) or fast(x)
- not bad(x) or not fast(x)
- bad(p)

- black(p)
- not black(x) or fast(x)
- not bad(x) or not fast(x)
- bad(p)

black(p)

black(p) not black(x) black(p) fast(x)

- black(p)
- not black(x) or fast(x)
- not bad(x) or not fast(x)
- bad(p)

$$mgu = \{x = p\}$$

black(p)

black(p) not black(x) black(p) fast(x)

- black(p)
- not black(x) or fast(x)
- not bad(x) or not fast(x)
- bad(p)

$$mgu = \{x = p\}$$

black(p)

black(p) not black(x) black(p) fast(x)

- black(p)
- not black(x) or fast(x)
- not bad(x) or not fast(x)
- bad(p)

$$mgu = \{x = p\}$$

black(p)

black(p) not black(x) black(p) fast(x)

black(p)
 fast(x)
not bad(x)

black(p) fast(x) not fast(x)

- black(p)
- not black(x) or fast(x)
- not bad(x) or not fast(x)
- bad(p)

```
mgu = \{x = p\}
```

black(p)

black(p) not black(x) black(p) fast(x)

black(p)
 fast(x)
not bad(x)

black(p) fast(x) not fast(x)

- black(p)
- not black(x) or fast(x)
- not bad(x) or not fast(x)
- bad(p)

```
mgu = \{x = p\}
```

black(p)

black(p) not black(x) black(p) fast(x)

black(p)
 fast(x)
not bad(x)

black(p) fast(x) not fast(x)

- black(p)
- not black(x) or fast(x)
- not bad(x) or not fast(x)
- not bad(p)

```
mgu = \{x = p\}
```

black(p)

black(p) not black(x) black(p) fast(x)

black(p)
 fast(x)
not bad(x)

black(p) fast(x) not fast(x)

- black(p)
- not black(x) or fast(x)
- not bad(x) or not fast(x)
- A Porsche is a good car.

```
mgu = \{x = p\}
```

black(p)

black(p) not black(x) black(p) fast(x)

black(p)
 fast(x)
not bad(x)

black(p) fast(x) not fast(x)

Onward to ... rule systems

Jonathan Hudson, Ph.D. jwhudson@ucalgary.ca https://cspages.ucalgary.ca/~jwhudson/

