
CPSC 433: Artificial Intelligence – Project
Problem Description
(Version 1)

We (you!) oversee the academic semester scheduling group at the University of
Calgary. This is a rather challenging problem that’s obviously even more complex
than we will define here. We will simplify this problem to the challenge of assigning
𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 and 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 to weekly room time 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺.

Instead of this being a year-long problem, or even a semester-long problem, the
fundamental idea of our problem can be simplified to the challenge that we (as the
university scheduling group) want to make a weekly schedule (re-usable for 13
weeks) for the semester for all our classes.

We will have already contacted all the interested faculties/departments/professors to
ask them what time locations in a 5-day week MTWRF they’d like to have access to
room slots the university has available. Those groups will have given us some
(hard/soft) constraints that described how they want their lectures/tutorials to fit into
the available room slots. (We are going to save Sat/Sun for Continuing Education)

We are going to help ourselves out further by treating our room availabilities 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 as
having two types: (1) room slots that lectures can fit in (larger and designed for
lecture delivery) and (2) rooms slots that tutorials can fit in (smaller and designed for
tutorial delivery).

There are many more properties that rooms can have in real life, but the only other
property we’re going to consider is if a room is designed for ‘active learning’ (AL)
[generally this means moveable layout and interactive technical systems]. Some
lecture rooms and tutorials rooms available at certain times will have this AL state be
either true or false. We’ll address how to track AL later as a hard constraint.

Note, for each time a Slot represents for a week we have different quantities of rooms
available. We aren’t going to bother with variations in rooms sizes for
lectures/tutorials and will consider all lectures to be equal in size and similar for all
tutorials.

(There are a lot of things both you and I can think of to make this problem even more
challenging or simply different that we will be ignoring!)

General Problem Description

There are many departmental programs at the university. For example, Computer
Science, Data Science, and Software Engineering.

Each program offers numerous courses under course codes.

Each semester a department will offer one ore more lecture sections for these courses.

Each program wants to book time slots for their weekly lecture offerings. For now, to
simplify things instead of worrying about all 3 components for this description (since
each triple of 3 is uniquely needing to be scheduled), we will reduce each down to one
lecture symbol 𝑙𝑙.

This reduces the problem down to the generic challenge of needed to schedule a set of
m lectures 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 = {𝒍𝒍𝟏𝟏, … , 𝒍𝒍𝒎𝒎 } to schedule, where one 𝑙𝑙𝑖𝑖 is one lecture section
that needs to be scheduled.

Tutorials are inconsistently named across campus but stand in for the idea of smaller
teaching environments that the students from a lecture are divided into.

As a result, we also have a set 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 = �𝒕𝒕𝟏𝟏𝟏𝟏, … , 𝒕𝒕𝟏𝟏𝒌𝒌𝟏𝟏 , … , 𝒕𝒕𝒎𝒎𝒎𝒎, … , 𝒕𝒕𝒎𝒎𝒌𝒌𝒎𝒎� of
tutorials associated with lectures.

Tutorials 𝑡𝑡𝑖𝑖1, … , 𝑡𝑡𝑖𝑖𝑘𝑘𝑖𝑖 are associated with lecture section 𝑖𝑖. Note, if 𝑘𝑘𝑖𝑖 = 0 this would
mean the lecture does not have any tutorials to be scheduled.

Finally, we have a set

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = {𝒔𝒔𝟏𝟏, … , 𝒔𝒔𝒏𝒏} of time slots into which lectures and tutorials must be assigned.
These slots will have at least a time start and end point.

Since you are a student at the UofC a comparison to creating a weekly schedule for
your own weekly semester is fair (that’s where this problem came from!). Lectures
need to be booked to times in a week. Some lectures have one or more tutorials that
also need to be booked to times in a week. There will be limitations on the available
time periods to be booked and other limitations like limiting overlap between
lectures/tutorials, etc. Like your class schedule this problem can be thought of as
creating a weekly schedule that is re-used every week.

Now for a formalization of the constraints on the problem. We’ll start with the most
obvious example of hard constraints.

For each slot 𝑠𝑠𝑗𝑗 we have a limit 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝒔𝒔𝒋𝒋) (a natural number) of lectures that
can be put into the slot. This is because we have only that many lecture-sized rooms
available at that time.

For each slot 𝑠𝑠𝑗𝑗 we have a limit 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒔𝒔𝒋𝒋) (a natural number) of tutorials that
can be put into the slot. (Lectures and tutorials are independent from each other in this
regard, i.e., a slot can take 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝒔𝒔𝒋𝒋) lectures and 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝒔𝒔𝒋𝒋)
tutorials.).

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 and 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 are one example of a hard constraint for this
problem that must be fulfilled for a valid solution to be found.

We will also handle Active Learning room needs in a similar way. Each slot will have
a 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 and 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 to indicate the maximum active learning
rooms of each type available at that slot time. These will always be less than the
general max values for each slot (i.e. represent the subset size of rooms for AL)

Another obvious hard constraint for this problem is that the tutorials for a particular
lecture section can never be in the slot in which the lectures are so that students can
register in that tutorial. (On the other hand, we won’t care if a tutorial for a lecture is
booked immediately before/after lectures which simplifies things.)

There will be more hard constraints listed later as well as soft constraints which can
be left unfilled in a valid solution, but better solutions will satisfy them if possible.

The task of the system you will develop/implement is to find an assignment 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂
of lectures and tutorials to slots that fulfills the hard constraints and optimizes the
soft constraints.

More formally, 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 is a function

𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂:𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 + 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 → 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 that fulfills two conditions, namely

1. 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂) = true
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 is a function testing the fulfillment of all hard constraints (and being
true if and only if every single hard constraint is fulfilled)

2. 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬(𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂) is minimized
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 is an evaluation function that measures how well an assignment fulfills
the 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 soft constraints.

General Problem Constraints

First, lest us examine the general hard and soft constraints.

Hard constraints:

First 5 are restatements of prior constraints

1. Not more than 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝒔𝒔) lectures can be assigned to each 𝑠𝑠 ∈ 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺.
2. Not more than 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝐬𝐬) tutorials can be assigned to each 𝑠𝑠 ∈ 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺.
3. Not more than 𝑨𝑨𝑨𝑨𝑨𝑨𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆(𝒔𝒔) lectures that need 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

(described later) can be assigned to each 𝑠𝑠 ∈ 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺.
4. Not more than 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝐬𝐬) tutorials that need 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

(described later) can be assigned to each 𝑠𝑠 ∈ 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺.
5. 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝒍𝒍𝒊𝒊) ≠ 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝒕𝒕𝒊𝒊𝒌𝒌𝒊𝒊) for all 𝑖𝑖 and 𝑘𝑘𝑖𝑖.

These are new hard constraints

1. Some courses should not be scheduled at the same time. For example, first year
students are directed to take course like CPSC 231 and CPSC 251 in the same
semester. To inform the system of this, the input for your system will contain a
list of 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒂𝒂,𝒃𝒃) statements, with 𝑎𝑎, 𝑏𝑏 ∈ 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳+
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻.

For each of those, 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑎𝑎) ≠ 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑏𝑏) This mean the a and b slots the
lectures/tutorials are in can’t overlap in time.

2. Sometimes there are certain offerings that already have pre-arrangements for
certain slots. The input for your system can contain a partial
assignment 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑: 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 + 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 → 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 + {$}. ($ is a
placeholder for no pre-assignment.)

The assignment 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 your system produces has to fulfill the condition:
𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑎𝑎) = 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝑎𝑎) for all 𝑎𝑎 ∈
𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 + 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 with 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝑎𝑎) ≠ $.

3. The input for your system can contain a list of 𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖(𝒂𝒂, 𝒔𝒔) statements,
with 𝑎𝑎 ∈ 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 + 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 and 𝑠𝑠 ∈ 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺.

For each of those 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑎𝑎) ≠ 𝑠𝑠 must be true.

4. Sometimes there are certain offerings that should be delivery in an active
learning environment. To inform the system of this, the input for your system
will contain a list of 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝒂𝒂) statements, with 𝑎𝑎 ∈ 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳+
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻.

For each of those, 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(𝑎𝑎) should be such that 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝒂𝒂) (or
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝒂𝒂) as necessary) is greater than 0 (and the prior hard
constraint for the slot AL availability is not exceeded).

5. There will be additional hard constraints specific to the University of Calgary
that will be explained later.

Soft constraints:

• There are certain times of the day that nobody prefers but we’d like our system
to produce a result that attempts to spread out the usage of our resources. To
accomplish this, we’ll define a soft constraint which is a minimum level of
room usage we’d like a slot to achieve.

We have for each slot 𝑠𝑠 a 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝑠𝑠) and 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(𝑠𝑠) that indicate
how many lectures, resp. tutorials, should at least be scheduled into the slot 𝑠𝑠.

Your system should be able to accept as input penalty values 𝑝𝑝𝑝𝑝𝑛𝑛lectureminand
𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and for each lecture below 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 we will get
𝑝𝑝𝑝𝑝𝑛𝑛lecturemin and for each tutorial 𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 added to the Eval-value of an
assignment.

Example. If 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝑠𝑠) = 5 and we have assigned 3 we would have 2 ∗
𝑝𝑝𝑝𝑝𝑛𝑛lecturemin as a penalty.

• Certain departments have certain preferences regarding in which time slots
their lectures and tutorials should be scheduled. Naturally, we see this as
something that should be treated as soft constraint. Each department can
distribute points over pairs of (lecture/tutorial, time slots).

Formally, we assume a function
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: (𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 + 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻) × 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 → ℕ that reports those
preferences. (i.e. we have a function that indicates a numerical natural number
score of the preference of a lecture or tutorial being assigned to a slot.)

For each assignment in 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂, we add up the preference-values for a
lectures/tutorials that refer to a different slot as the penalty that is added to
the Eval-value of 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂. The penalty will accumulated be the specific
number attached to each preference.

• For certain lectures and/or tutorials, we might prefer these to be scheduled at
the same time.

To facilitate this, there will be a list of 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒂𝒂,𝒃𝒃) statements in the input for
your system, with 𝑎𝑎,𝑏𝑏 ∈ 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 + 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 and a parameter
𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 for your system.

For every 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑(𝒂𝒂,𝒃𝒃) statement, for which 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(a) is not equal
to 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂(b), you have to add 𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 to the Eval-value of 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂.

The description of the basic version of our problem was aimed to be very general, so
that this description can match the requirements of many different lecture scheduling
situations that are possible. However, usually an organizing body doing this job will
have additional hard/soft constraints (that might be realized using the ones we
already described) and naturally they will also have concrete time slots and some
organization regarding how they name and describe lectures and tutorials.

In the following, I will describe the instantiation of the general problem for the
University of Calgary, and your task will be to write a system that solves the
instantiated problem (Note that this is a completely fabricated artificial instantiation of
the problem. As well this is a partial instantiation, and there are still many different
specific search instances that can occur out of it).

Instantiation Specifics

Lectures/Tutorial Naming

Programs are generally communicated generally in a four-letter shorthand. For
example,

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪,𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫,𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

are used for Computer Science, Data Science, and Software Engineering respectively.

Each program offers numerous courses. Course offerings for a semester are encoded
by a 3-digit number.

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝟑𝟑𝟑𝟑𝟑𝟑,𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝟒𝟒𝟒𝟒𝟒𝟒,𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝟐𝟐𝟐𝟐𝟐𝟐

Course offerings sometimes require one or more lecture sections within those courses.

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝟑𝟑𝟑𝟑𝟑𝟑 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎,𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝟒𝟒𝟒𝟒𝟒𝟒 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎,𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝟐𝟐𝟐𝟐𝟐𝟐 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎,𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝟐𝟐𝟐𝟐𝟐𝟐 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎

Each program wants to book time slots for their weekly lecture offerings. (Each one
of the Program/CourseNo/Section combinations need a weekly scheduled time)

𝑬𝑬𝑬𝑬. 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 = �

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝟑𝟑𝟑𝟑𝟑𝟑 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎,
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝟒𝟒𝟒𝟒𝟒𝟒 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎,
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝟐𝟐𝟐𝟐𝟐𝟐 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎,
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝟐𝟐𝟐𝟐𝟐𝟐 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎

�

Remember, the larger set of tutorials would look more like the following if shown in
more detail

𝑬𝑬𝑬𝑬. 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 =

⎩
⎪
⎨

⎪
⎧𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝟑𝟑𝟑𝟑𝟑𝟑 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎 𝑻𝑻𝑻𝑻𝑻𝑻 𝟎𝟎𝟎𝟎,
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝟒𝟒𝟒𝟒𝟒𝟒 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎 𝑻𝑻𝑻𝑻𝑻𝑻 𝟎𝟎𝟎𝟎,
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝟒𝟒𝟒𝟒𝟒𝟒 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎 𝑻𝑻𝑻𝑻𝑻𝑻 𝟎𝟎𝟎𝟎,
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝟐𝟐𝟐𝟐𝟐𝟐 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎 𝑻𝑻𝑻𝑻𝑻𝑻 𝟎𝟎𝟎𝟎,
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝟐𝟐𝟐𝟐𝟐𝟐 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎 𝑻𝑻𝑻𝑻𝑻𝑻 𝟎𝟎𝟎𝟎⎭

⎪
⎬

⎪
⎫

If a tutorial is used by all lectures, then we drop the lecture code

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝟒𝟒𝟒𝟒𝟒𝟒 𝑻𝑻𝑻𝑻𝑻𝑻 𝟎𝟎𝟎𝟎

Sometimes lectures have labs instead of tutorials. We will ignore any differences
between the two and treat all LAB designations the same way we treat TUT
designations. For example, Data Science often uses labs like

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝟐𝟐𝟐𝟐𝟐𝟐 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎 𝑳𝑳𝑳𝑳𝑳𝑳 𝟎𝟎𝟎𝟎

Time Slots

The available time slots depend on the day of the week and whether we look at
lectures or labs/tutorials.

Mondays and Wednesdays, the slots available for lectures and labs/tutorials are

8:00-9:00, 9:00-10:00, 10:00-11:00, 11:00-12:00, 12:00-13:00, 13:00-14:00,
14:00-15:00, 15:00-16:00, 16:00-17:00, 17:00-18:00, 18:00-19:00, 19:00-20:00
and 20:00-21:00.

The same above slots are available for lectures also on Fridays (but see the hard
constraints for connections between slots on these three days of the week for
lectures).

The available time slots for Tuesdays and Thursdays for lectures are

8:00-9:30, 9:30-11:00, 11:00-12:30, 12:30-14:00, 14:00-15:30, 15:30-17:00,
17:00-18:30 and 18:30-20:00.

For labs/tutorials, the available time slots are the same on Tuesdays and Thursdays
as previously given for Mondays and Wednesdays labs/tutorials.

The slots available for labs/tutorials on Fridays are

8:00-10:00, 10:00-12:00, 12:00-14:00, 14:00-16:00, 16:00-18:00, 18:00-20:00.

All slots beginning at 18:00 or later are called evening slots.

Note that the fact that the slots for lectures and labs/tutorials on Tuesdays and
Thursdays are not following the same time scheme requires you to deal with time and
how time slots may overlap. It also seems that this contradicts the general problem
scheme, but it can be reformulated in terms of the general problem.

Our University of Calgary problem has the following hard constraints:

• If a lecture (Ex. CPSC 231 LEC 01) is put into a slot on Mondays, then it must
be put into the corresponding time slots on Wednesdays and Fridays. So, these
three time slots are often treated as one abstract slot, which allows us to see our
UofC problem as an instantiation of the general problem!

• Similarly, if a lecture is put into a slot on Tuesdays, then it must be put into the
corresponding time slots on Thursdays.

• If a tutorial/lab (ex. CPSC 231 LEC 01 TUT 01) is put into a slot on Mondays,
it must be put into the corresponding time slots on Wednesdays.

• If a tutorial/lab is put into a slot on Tuesdays, it must be put into the
corresponding time slots on Thursdays.

• Fridays are single tutorial/lab slots and not linked with other days.

• I don’t care that the UofC now has WF slots or 2-hour tutorials on other
days of the week than Friday! Let me keep the problem a bit simpler for
you.

• All lectures with a division number starting with the prefix “LEC 9” are
evening lectures and must be scheduled into evening slots.

• All lectures in all tiers with a course number 5XX level must be scheduled into
non-overlapping time slots.

• No lectures can be scheduled on Tuesdays 11:00-12:30 as a department
meeting happens at this time once a month.

• There are two special tutorial/lab bookings for CPSC 851 and CPSC 913.
These must be scheduled Tuesdays / Thursdays 18:00-19:00. CPSC 851 is not
allowed to overlap with any labs/tutorials/lectures of CPSC 351 and CPSC 913
is not allowed to overlap with any labs/tutorials/lectures of CPSC 413. These
are two unique slots saved for evening assessments in these courses. These
bookings are only triggered if the respective lecture booking for CPSC 351 or
CPSC 413 is requested in the input.

The University of Calgary also has the following soft constraints:

• Different sections of lectures within a single department/course number should
be scheduled at different times. For each pair of sections that are scheduled into
the same slot, we add a penalty 𝑝𝑝𝑝𝑝𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to the Eval-value of an
assignment 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂.

Ex. CPSC 231 LEC 01 and CPSC 231 LEC 02 should not be scheduled at same
time slot, if possible, for a better Eval score. (often this is so instructor can
teach both, and so that class is now has two times for students to try and fit into
their own schedule)

The information provided so far is enough to write the paper describing two search
models and processes. Please use in this paper the terminology and symbols
introduced here. I will make a description of the input file available shortly after your
paper is due, so that those groups that have finished the paper can start writing the
parser for their system. But note that I will select which search model and process a
group will be implementing, so that starting on these parts of your program should not
be done before this decision is made!

	CPSC 433: Artificial Intelligence – Project Problem Description
	General Problem Description
	General Problem Constraints
	Instantiation Specifics
	Lectures/Tutorial Naming
	Time Slots

