CPSC 433: Artificial Intelligence - Assignment
Search Problem - Input and Output Definition

(Version 1)

Your system should be able to take as input a text file and positive integer inputs.
The simplest way to do this is through the command line, but a GUI is an option as
well if your group so chooses. The text file will contain a description of the specific
problem being solved, and the positive integer inputs will be used for soft constraint
values and as additional multiplier weightings to soft constraint categories.

Example command line execution
java CPSC433F25Main filename Whinfilled Wpref Wpair Wseacdiff

java CPSC433F25Main input.txt 1 0 1 0

This minimal format is mandatory, additional parameters can be included (like control
weights) with arguments that follow these.

The definition and usage of these specific weights and will be addressed
later in this document. The four should already be familiar from the prior
document discussing the project problem description. The four weights were not in
that document.

You will generate a search instance (your starting state) based on the text file, which
contains a few key words and then describes the information as tables.

Every key word header (Ex. Lecture slots:) will be in every input file, although
sometimes there will be no data under a header. For example, if there are no paired
lectures/tutorials, or no pre-assigned lectures/tutorials. The quantity of empty lines
between each table is not guaranteed. Each line in the input file (that is not a key
word header line or empty line) is a row in one of the key word tables. You should
use keyword headers as table breaks. The fields within a row are separated by
commas! Please note, that extra spaces, or missing spaces around commas may
occur in valid input files.



The general scheme of an input text file is as follows:

Name:
Example-name

Lecture slots:
Day, Start time, lecturemax, lecturemin, allecturemax

Tutorial slots:
Day, Start time, tutorialmax, tutorialmin, altutorialmax

Lectures:
Lecture Identifier, alrequired

Tutorials:
Tutorial Identifier, alrequired

Not compatible:

Lecture Identifier, Lecture Identifier
Lecture Identifier, Tutorial Identifier
Tutorial Identifier, Tutorial Identifier

Unwanted:
Lecture Identifier, Slot day, Slot time
Tutorial Identifier, Slot day, Slot time

Preferences:
Slot day, Slot time, Lecture Identifier, Preference value
Slot day, Slot time, Tutorial Identifier, Preference value

Pair:

Lecture Identifier, Lecture Identifier
Lecture Identifier, Tutorial Identifier
Tutorial Identifier, Tutorial Identifier

Partial assignments:
Lecture Identifier, Slot day, Slot time
Tutorial Identifier, Slot day, Slot time



Naturally, this requires some additional explanations:

» Possible days for all references to lecture slots are MO and TU only (due to the
additional hard constraint of the UofC that lectures on monday to be taught
on wednesday and friday at the same time, resp. lectures taught on tuesday to
be taught on thursday at the same time).

o Possible days for all references to tutorial slots are MO, TU, and FR.

o The possible start times for all available slots are stated in the problem
description given prior.

o Every slot that is available must have an entry in the input file. If one of the
possible slots does not occur in the input file, we assume that lecturemax
and lecturemin (resp. tutorialmax and tutorialmin) is 0, which means
that no lectures (tutorials) can be scheduled into this slot!

o Active learning rooms are a subset of rooms available at a slot time so
allecturemax < lecturemax and alltutorialmax < tutorialmax. A
lecture assigned to a lecture slot would count against lecturemax regardless
of is alrequired property being true or not. If alrequired=true the that
assignment counts against allecturemax as well.

o We schedule only lectures and tutorials that occur in the listings:

Exception: if we have under Lectures: lectures starting with CPSC 351 and/or
CPSC 413, we have to schedule CPSC 851 and/or CPSC 913 in the required slots
(note, they are scheduled into tutorial slots) and have to satisfy all the reqular
constraints that are given in the problem description.

o A Lecture Identifier has the form described in the problem description (see
also the example below).

o A Tutorial Identifier has the form described in the problem description (see
also the example below).

o The entries after "Not compatible" identify all lectures and tutorials that are
not compatible with each other. But note that there have to be also some
additional built-in incompatibilities, as described in the problem description!
Note also that incompatibilities are symmetric!

Finally, there is no particular order of the 3 types of statements, they can be
mixed in this section!

o The entries under "Unwanted" provide a list of lectures/tutorials and slots in
which we do not want the lectures/tutorials to be scheduled. Lecture
statements and tutorial statements can occur in any possible order.

o “Preferences” can be expressed for lectures and tutorials, and we do not
require a particular order here. i.e. it is not necessary to list all lectures first!

If a preference entry does not refer to a valid time slot, you can ignore this



entry (but you might want to print out a warning)! Note that we can have
preferences for lectures/tutorials and slots that also appear in the
“Unwanted” list.

o The entries under "Pair" identify lectures that we want to be scheduled at the
same time, if possible. (don’t count these twice, only once for the pair
altogether when it isn’t fulfilled)

Again, there is no particular order of the 3 types of statements, they can be
mixed in this section!

o The order of the entries under "Partial assignments" is not fixed, again. If an
entry is not valid (lecture with a slot that is not a lecture slot or tutorial with a
slot that is not a tutorial slot) terminate with an error message.

Some of the questions regarding input-files from previous years were:

1. is the format static?, i.e. do the key words occur in the given sequence - > Yes

2. what to do with additional blanks in inputs? -> your parser should filter them

3. what kind of GUI do | expect? -> CMD line is sufficient (GUI very optional),
regarding your output, see below.

The positive integer inputs will mostly have to be concerned with the various
parameters that deal with the soft constraints and essentially for the function Eval.
| would like you to define Eval using four subfunctions Eval iy fineqd, EV@lyyrey,

Evaly,,, and Evalg, qif5 that are producing a value for each of the 4 types of soft
constraints.

Then we have
Eval(assign) = Evalyfiea(assign) * Wyinriea +
Evaly,.f(assign) * w,,.; +
Eval,q;, (assign) * wyq;, +
Evalgecqisr(assign) * Weecqiss

With Wy in fittedr Wprefr Wpair aNd Weecqirr being weights that tell the system how
important the different soft constraints are. Note that | will have examples that
require as values for these weights a 0! Reminder , ,

and are being used by the individual Eval sub-functions.
Eval,infitieq Uses , . Evalyq;, uses



Evalg, q4if5 uses . Evaly,. .5 uses the specific individual values in input file
under “Preferences:”.

The following is a short example input file that your parser should be able to parse
without error (note there is some inconsistent spacing in this input):

Name:
ShortExample

Lecture slots:
MO, 8:00, 3, 2,0
MO, 9:00,3,2,1
TU, 9:30, 2, 1,2

Tutorial slots:

MO, 8:00, 4, 2,4
TU, 10:00,2,1,2
FR, 10:00, 2, 1,0

Lectures:

CPSC 231 LEC 01,true
CPSC 231 LEC 02,true

DATA 201 LEC 01,false
SENG 300 LEC 01,false

Tutorials:

CPSC 231 LEC 01 TUT 01,true
CPSC 231 LEC 02 TUT 02,true
DATA 201 LEC 01 LAB 01,false
SENG 300 TUT 01,false

Not compatible:

CPSC 231 LEC01 TUT 01, CPSC 231 LEC 02 TUT 02
SENG 300 LEC 01, CPSC 231 LEC 01

SENG 300 LEC 01, CPSC 231 LEC 02

SENG 300 TUT 01, CPSC 231 LEC 02

CPSC 231 LEC 01, SENG 300 TUT 01



Unwanted:
CPSC 231 LEC 01, MO, 8:00

Preferences:

TU, 9:30, CPSC 231 LEC 01, 10

MO, 8:00, CPSC 231 LEC 01TUTO1,3
TU, 9:30, CPSC 231 LEC 02, 10

TU, 10:00, CPSC 231 LEC01 LAB 02,5
MO, 8:00, CPSC 231 LEC02 LAB 02, 1
MO, 10:00, CPSC 231 LEC02 LAB 02, 7

Pair:
DATA 201 LEC 01, SENG 300 LEC 01

Partial assignments:
DATA 201 LEC 01, MO, 8:00
DATA 201 LEC 01 LAB 01, FR, 10:00

As output from your system, | expect an assignment presented in the following form
and the Eval-value that your system assigns to the assignment. There are several
ways how we could output an assignment, but | prefer it ordered by lectures. This
means that we order the lectures alphabetically. After each lecture, the tutorials for
the lecture (also alphabetically). At the end of each lecture or tutorial, output the
assigned slot using the assigned days and times that identified it in the input file.

Here is an example (that is not the solution to the above input example, please
create your own test examples for the system functionality):

Eval-value: 30

CPSC 231 LECO1 : MO, 10:00
CPSC 231 LECO1TUTO1 : TU, 10:00
CPSC 231 LECO02 : MO, 14:00
CPSC 231 LEC02 TUT 02 : MO, 8:00
SENG 300 LEC 01 : TU, 9:30
SENG 300 TUT 01 : MO, 8:00
DATA 201 LECO1 : MO, 8:00

DATA 201 LEC 01 LAB 01 : FR, 10:00



