
CPSC 433: Artificial Intelligence - Assignment
Search Problem - Input and Output Definition

(Version 1)

Your system should be able to take as input a text file and positive integer inputs.
The simplest way to do this is through the command line, but a GUI is an option as
well if your group so chooses. The text file will contain a description of the specific
problem being solved, and the positive integer inputs will be used for soft constraint
penalty values and as additional multiplier weightings to soft constraint categories.

Example command line execution

java CPSC433F25Main filename wminfilled wpref wpair wsecdiff penlecturemin pentutorialmin pennotpaired pensection

java CPSC433F25Main input. txt 1 0 1 0 10 10 10 10

This minimal format is mandatory, additional parameters can be included (like control
weights) with arguments that follow these.

The definition and usage of these specific weights and penalties will be addressed
later in this document. The four penalties should already be familiar from the prior
document discussing the project problem description. The four weights were not in
that document.

You will generate a search instance (your starting state) based on the text file, which
contains a few key words and then describes the information as tables.

Every key word header (Ex. Lecture slots:) will be in every input file, although
sometimes there will be no data under a header. For example, if there are no paired
lectures/tutorials, or no pre-assigned lectures/tutorials. The quantity of empty lines
between each table is not guaranteed. Each line in the input file (that is not a key
word header line or empty line) is a row in one of the key word tables. You should
use keyword headers as table breaks. The fields within a row are separated by
commas! Please note, that extra spaces, or missing spaces around commas may
occur in valid input files.

The general scheme of an input text file is as follows:

Name:
Example-name

Lecture slots:
Day, Start time, lecturemax, lecturemin, allecturemax

Tutorial slots:
Day, Start time, tutorialmax, tutorialmin, altutorialmax

Lectures:
Lecture Identifier, alrequired

Tutorials:
Tutorial Identifier, alrequired

Not compatible:
Lecture Identifier, Lecture Identifier
Lecture Identifier, Tutorial Identifier
Tutorial Identifier, Tutorial Identifier

Unwanted:
Lecture Identifier, Slot day, Slot time
Tutorial Identifier, Slot day, Slot time

Preferences:
Slot day, Slot time, Lecture Identifier, Preference value
Slot day, Slot time, Tutorial Identifier, Preference value

Pair:
Lecture Identifier, Lecture Identifier
Lecture Identifier, Tutorial Identifier
Tutorial Identifier, Tutorial Identifier

Partial assignments:
Lecture Identifier, Slot day, Slot time
Tutorial Identifier, Slot day, Slot time

Naturally, this requires some additional explanations:

• Possible days for all references to lecture slots are MO and TU only (due to the
additional hard constraint of the UofC that lectures on monday to be taught
on wednesday and friday at the same time, resp. lectures taught on tuesday to
be taught on thursday at the same time).

• Possible days for all references to tutorial slots are MO, TU, and FR.
• The possible start times for all available slots are stated in the problem

description given prior.
• Every slot that is available must have an entry in the input file. If one of the

possible slots does not occur in the input file, we assume that 𝒍𝒆𝒄𝒕𝒖𝒓𝒆𝒎𝒂𝒙
and 𝒍𝒆𝒄𝒕𝒖𝒓𝒆𝒎𝒊𝒏 (resp. 𝒕𝒖𝒕𝒐𝒓𝒊𝒂𝒍𝒎𝒂𝒙 and 𝒕𝒖𝒕𝒐𝒓𝒊𝒂𝒍𝒎𝒊𝒏) is 0, which means
that no lectures (tutorials) can be scheduled into this slot!

• Active learning rooms are a subset of rooms available at a slot time so
𝒂𝒍𝒍𝒆𝒄𝒕𝒖𝒓𝒆𝒎𝒂𝒙 ≤ 𝒍𝒆𝒄𝒕𝒖𝒓𝒆𝒎𝒂𝒙 and 𝒂𝒍𝒍𝒕𝒖𝒕𝒐𝒓𝒊𝒂𝒍𝒎𝒂𝒙 ≤ 𝒕𝒖𝒕𝒐𝒓𝒊𝒂𝒍𝒎𝒂𝒙. A
lecture assigned to a lecture slot would count against 𝒍𝒆𝒄𝒕𝒖𝒓𝒆𝒎𝒂𝒙 regardless
of is 𝒂𝒍𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 property being true or not. If 𝒂𝒍𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅=true the that
assignment counts against 𝒂𝒍𝒍𝒆𝒄𝒕𝒖𝒓𝒆𝒎𝒂𝒙 as well.

• We schedule only lectures and tutorials that occur in the listings:
Exception: if we have under Lectures: lectures starting with CPSC 351 and/or
CPSC 413, we have to schedule CPSC 851 and/or CPSC 913 in the required slots
(note, they are scheduled into tutorial slots) and have to satisfy all the regular
constraints that are given in the problem description.

• A Lecture Identifier has the form described in the problem description (see
also the example below).

• A Tutorial Identifier has the form described in the problem description (see
also the example below).

• The entries after "Not compatible" identify all lectures and tutorials that are
not compatible with each other. But note that there have to be also some
additional built-in incompatibilities, as described in the problem description!
Note also that incompatibilities are symmetric!
Finally, there is no particular order of the 3 types of statements, they can be
mixed in this section!

• The entries under "Unwanted" provide a list of lectures/tutorials and slots in
which we do not want the lectures/tutorials to be scheduled. Lecture
statements and tutorial statements can occur in any possible order.

• “Preferences” can be expressed for lectures and tutorials, and we do not
require a particular order here. i.e. it is not necessary to list all lectures first!
If a preference entry does not refer to a valid time slot, you can ignore this

entry (but you might want to print out a warning)! Note that we can have
preferences for lectures/tutorials and slots that also appear in the
“Unwanted” list.

• The entries under "Pair" identify lectures that we want to be scheduled at the
same time, if possible. (don’t count these twice, only once for the pair
altogether when it isn’t fulfilled)
Again, there is no particular order of the 3 types of statements, they can be
mixed in this section!

• The order of the entries under "Partial assignments" is not fixed, again. If an
entry is not valid (lecture with a slot that is not a lecture slot or tutorial with a
slot that is not a tutorial slot) terminate with an error message.

Some of the questions regarding input-files from previous years were:

1. is the format static?, i.e. do the key words occur in the given sequence - > Yes
2. what to do with additional blanks in inputs? -> your parser should filter them
3. what kind of GUI do I expect? -> CMD line is sufficient (GUI very optional),

regarding your output, see below.

The positive integer inputs will mostly have to be concerned with the various
parameters that deal with the soft constraints and essentially for the function 𝑬𝒗𝒂𝒍.
I would like you to define 𝑬𝒗𝒂𝒍 using four subfunctions 𝑬𝒗𝒂𝒍𝒎𝒊𝒏𝒇𝒊𝒍𝒍𝒆𝒅, 𝑬𝒗𝒂𝒍𝒑𝒓𝒆𝒇,

𝑬𝒗𝒂𝒍𝒑𝒂𝒊𝒓 and 𝑬𝒗𝒂𝒍𝒔𝒆𝒄𝒅𝒊𝒇𝒇 that are producing a value for each of the 4 types of soft

constraints.

Then we have

 𝑬𝒗𝒂𝒍(𝑎𝑠𝑠𝑖𝑔𝑛) = 𝑬𝒗𝒂𝒍𝒎𝒊𝒏𝒇𝒊𝒍𝒍𝒆𝒅(𝑎𝑠𝑠𝑖𝑔𝑛) ∗ 𝑤𝑚𝑖𝑛𝑓𝑖𝑙𝑙𝑒𝑑 +

𝑬𝒗𝒂𝒍𝒑𝒓𝒆𝒇(𝑎𝑠𝑠𝑖𝑔𝑛) ∗ 𝑤𝑝𝑟𝑒𝑓 +

𝑬𝒗𝒂𝒍𝒑𝒂𝒊𝒓(𝑎𝑠𝑠𝑖𝑔𝑛) ∗ 𝑤𝑝𝑎𝑖𝑟 +

𝑬𝒗𝒂𝒍𝒔𝒆𝒄𝒅𝒊𝒇𝒇(𝑎𝑠𝑠𝑖𝑔𝑛) ∗ 𝑤𝑠𝑒𝑐𝑑𝑖𝑓𝑓

with 𝑤𝑚𝑖𝑛𝑓𝑖𝑙𝑙𝑒𝑑, 𝑤𝑝𝑟𝑒𝑓, 𝑤𝑝𝑎𝑖𝑟 and 𝑤𝑠𝑒𝑐𝑑𝑖𝑓𝑓 being weights that tell the system how

important the different soft constraints are. Note that I will have examples that
require as values for these weights a 0! Reminder 𝑝𝑒𝑛lecturemin, 𝑝𝑒𝑛𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙𝑚𝑖𝑛,
𝑝𝑒𝑛𝑛𝑜𝑡𝑝𝑎𝑖𝑟𝑒𝑑 and 𝑝𝑒𝑛𝑠𝑒𝑐𝑡𝑖𝑜𝑛 are being used by the individual Eval sub-functions.

𝑬𝒗𝒂𝒍𝒎𝒊𝒏𝒇𝒊𝒍𝒍𝒆𝒅 uses 𝑝𝑒𝑛 lecturemin, 𝑝𝑒𝑛𝑡𝑢𝑡𝑜𝑟𝑖𝑎𝑙𝑚𝑖𝑛. 𝑬𝒗𝒂𝒍𝒑𝒂𝒊𝒓 uses 𝑝𝑒𝑛𝑛𝑜𝑡𝑝𝑎𝑖𝑟𝑒𝑑.

𝑬𝒗𝒂𝒍𝒔𝒆𝒄𝒅𝒊𝒇𝒇 uses 𝑝𝑒𝑛𝑠𝑒𝑐𝑡𝑖𝑜𝑛. 𝑬𝒗𝒂𝒍𝒑𝒓𝒆𝒇 uses the specific individual values in input file

under “Preferences:”.

The following is a short example input file that your parser should be able to parse
without error (note there is some inconsistent spacing in this input):

Name:
ShortExample

Lecture slots:
MO, 8:00, 3, 2,0
MO, 9:00,3,2,1
TU, 9:30, 2, 1,2

Tutorial slots:
MO, 8:00, 4, 2,4
TU, 10:00,2,1,2
FR, 10:00, 2, 1,0

Lectures:
CPSC 231 LEC 01,true
CPSC 231 LEC 02,true
DATA 201 LEC 01,false
SENG 300 LEC 01,false

Tutorials:
CPSC 231 LEC 01 TUT 01,true
CPSC 231 LEC 02 TUT 02,true
DATA 201 LEC 01 LAB 01,false
SENG 300 TUT 01,false

Not compatible:
CPSC 231 LEC 01 TUT 01, CPSC 231 LEC 02 TUT 02
SENG 300 LEC 01, CPSC 231 LEC 01
SENG 300 LEC 01, CPSC 231 LEC 02
SENG 300 TUT 01, CPSC 231 LEC 02
CPSC 231 LEC 01, SENG 300 TUT 01

Unwanted:
CPSC 231 LEC 01, MO, 8:00

Preferences:
TU, 9:30, CPSC 231 LEC 01, 10
MO, 8:00, CPSC 231 LEC 01 TUT 01, 3
TU, 9:30, CPSC 231 LEC 02, 10
TU, 10:00, CPSC 231 LEC 01 LAB 02, 5
MO, 8:00, CPSC 231 LEC 02 LAB 02, 1
MO, 10:00, CPSC 231 LEC 02 LAB 02, 7

Pair:
DATA 201 LEC 01, SENG 300 LEC 01

Partial assignments:
DATA 201 LEC 01, MO, 8:00
DATA 201 LEC 01 LAB 01, FR, 10:00

As output from your system, I expect an assignment presented in the following form
and the Eval-value that your system assigns to the assignment. There are several
ways how we could output an assignment, but I prefer it ordered by lectures. This
means that we order the lectures alphabetically. After each lecture, the tutorials for
the lecture (also alphabetically). At the end of each lecture or tutorial, output the
assigned slot using the assigned days and times that identified it in the input file.

Here is an example (that is not the solution to the above input example, please
create your own test examples for the system functionality):

Eval-value: 30
CPSC 231 LEC 01 : MO, 10:00
CPSC 231 LEC 01 TUT 01 : TU, 10:00
CPSC 231 LEC 02 : MO, 14:00
CPSC 231 LEC 02 TUT 02 : MO, 8:00
SENG 300 LEC 01 : TU, 9:30
SENG 300 TUT 01 : MO, 8:00
DATA 201 LEC 01 : MO, 8:00
DATA 201 LEC 01 LAB 01 : FR, 10:00

