CPSC 433: Artificial Intelligence

Assignment: TensorFlow Neural Network Machine Learning

Collaboration

Discussing the assignment requirements with others is a reasonable thing to do and an
excellent way to learn. However, the work you hand in must ultimately be your work. This is
essential for you to benefit from the learning experience and for the instructors and TAs to
grade you fairly. Handing in work that is not your original work but is represented as such is
plagiarism and academic misconduct. Penalties for academic misconduct are outlined in the

university calendar.

Here are some tips to avoid plagiarism in your programming assignments.

1.

Cite all sources of code you hand in that are not your original work. You can put the citations into comments in
your program. For example, if you find and use code found on a website, include a comment that says, for
example:

The following code is from https://www.quackit.com/python/tutorial/python_hello_world.cfm.
Use the complete URL so that the marker can check the source.

A tool like chat-GPT can be used to improve small code blocks. For example, three lines of code. If you get help
from code assistance like Chat-GPT, you should comment above the block of code you requested assistance on
debugging or improving and cite the tool used to get that suggestion. Using a tool like chat-GPT to write the
majority of your assignment requirements will be treated as plagiarism if found without citation, and with
citation, it will be treated as O for the component the student did not complete. Code improvement of short
length will get credit if commented/cited properly.

Citing sources avoids accusations of plagiarism and penalties for academic misconduct. However, you may still
get a low grade if you submit code not primarily developed by yourself. Cited material should never be used
to complete core assignment specifications. Before submitting, you can and should verify any code you are
concerned about with your instructor/TA.

Discuss and share ideas with other programmers as much as you like, but make sure that when you write your
code, it is your own. A good rule of thumb is to wait 20 minutes after talking with somebody before writing
your code. If you exchange code with another student, write code while discussing it with a fellow student, or
copy code from another person’s screen, this code is not yours.

Collaborative coding is strictly prohibited. Your assignment submission must be strictly your code. Discussing
anything beyond assignment requirements and ideas is a strictly forbidden form of collaboration. This includes
sharing code, discussing the code itself, or modelling code after another student's algorithm. You can not use
(even with citation) another student’s code.

Making your code available, even passively, for others to copy or potentially copy is also plagiarism.

We will look for plagiarism in all code submissions, possibly using automated software designed for the task.
For example, see Measures of Software Similarity (MOSS - https://theory.stanford.edu/~aiken/moss/).
Remember, if you are having trouble with an assignment, it is always better to go to your TA and/or instructor
for help rather than plagiarizing. A common penalty is an F on a plagiarized assignment.

Late Penalty

The individual assignment submitted within 24 hours of the initial deadline will receive 10% off,
within 48 hours 20% off (based on total marks of assignment). After that the assignment grade
will be an F.

Goal

Use Google TensorFlow to learn neural network-based machine learning in Python.
Technology

Python, TensorFlow, IPython, Jupyter Notebooks, Numpy, Pandas, Matplotlib, Seaborn
Specifics

Python 3.13, TensorFlow 2.20

Description

The goal of this assignment is to explore two machine learning problems:

e Part1isto replace the MNIST image data that you explored in your tutorials with a
harder set of letter representation data and train a good model for it.

e Part 2 isto create and develop a model for data loaded from a CSV file about Canadian
Football League draft/combine data.

These problems are designed to give you a chance to explore different aspects of TensorFlow.
TensorFlow 2.20
You can get more familiar with the TensorFlow documentation that you can find at

https://www.tensorflow.org/api_docs/python/ or by looking at the tutorials at
https://www.tensorflow.org/tutorials . Note, we will be using TensorFlow 2 for Python 3 for
the Assignment. You are expected to use Python 3.13.X which is what is installed on lab
machines and tensorflow 2.20.

To install Python packages, such as TensorFlow, on a university user account you will have to
use a virtual environment. This should not be too challenging to setup and work in. There is a
file called setup.txt with the assignment materials and tutorials will address it.

Instead of a local Jupyter install or online Jupyter notebook environment such as Google
Collab. https://colab.research.google.com/ An online Google Colab Jupyter notebook
environment lets us use both Python 3 and TensorFlow 2 from any location we desire that has
internet access. Tutorials will also show how to use and code in this environment.

https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/tutorials
https://colab.research.google.com/

For the parts of this assignment starter files will be provided for Jupyter work. Certain material
such as interactive GUI programs to make input images will only work in a local desktop
environment.

Tutorial: MNIST Logistic Regression (if you didn’t go)

The home page of the MNIST database is http://yann.lecun.com/
(http://yann.lecun.com/exdb/mnist/ specific link appears down right now). The dataset is divided
into a set of 60,000 training examples and a set of 10,000 test examples, each consisting of
separate files for the images and their labels. Details on the file format can be found at the
bottom of the MNIST web page but we’ll make use of TensorFlow to load this data so you don’t
have to concern yourself with investigating that website.

It is relatively simple to get accuracy of “88% on the MNIST dataset with the provided starter
code. However, for deployed machine learning this performance is generally considered
unacceptable. The MNIST digit dataset is basically solved, and state of the art models reach
accuracies above 99%. Your tutorial goal is to improve the performance of the starting model
provided using hyper-parameters and simple changes to the structure of the neural network
model.

Experiment by adjusting the hyperparameters (loss functions, optimizers, epochs, etc.) and/or
structure (layers, activation functions, etc.) of the provided starter model to achieve an
accuracy of 98%+ on the test data. Your model must be built in TensorFlow 2.20 and keras. You
will be provided the code of a starter model MNIST-Starter.py (MNIST-Starter.ipynb) that you
are expected to modify to create MNIST-Complete. You should include lines of code that allow
you to save your model as MNIST.keras.

https://www.tensorflow.org/tutorials/keras/save and load

The input/output layer of the MNIST.keras model should be such that you could import that
model into the MNIST-Starter code in place of the compiled/fit model and run the evaluation
query at the end on it skipping any creation and training steps.

Part 1: Logistic regression on a replacement for MNIST dataset

Machine learning community is a bit sick of seeing MNIST digits pop up everywhere, so they
created a similar dataset and literally named it notMNIST. Created by Yaroslav Bulatov, a
research engineer previously at Google and then at OpenAl. notMNIST is designed to look like
the classic MNIST dataset, but less ‘clean’ and extremely ‘cute’. The images are still 28x28 and
there are also 10 labels, representing letters ‘A’ to ‘J’. The homepage for the dataset is
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html .

| have done the work of reducing this dataset down into something that is in the same format
as the MNIST dataset. This file is provided as notMNIST.npz.

http://yann.lecun.com/
http://yann.lecun.com/exdb/mnist/
https://www.tensorflow.org/tutorials/keras/save_and_load
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

The starter code notMNIST-Starter.py (notMNIST-Starter.ipynb) has the new data loading
included in place of the keras MNIST loading. This loading is done using the numpy library.

Build a model for this notMNIST data like you did for the tutorial and the MNIST data. This will
be harder given the challenge of the letter pictures being much more diverse. To start re-use
your model design and hyper-parameters to create notMNIST-Partial. (One of my 98%+ MNIST
model designs drops to 93% for notMNIST here.)

Add a line of code to save your model to a file called notMNIST-Partial.keras like you did for
the tutorial. Using this model, you can now use the following files:

predict_test.py (predict_test.ipynb) -> Provide index of test image from downloaded data and
see prediction made by your model

grabimage.py -> Desktop GUI program to capture image.png images from mouse input, if you
have issues the screen capture you may need to disable
scaling/hdpi modes in your OS (below is an example in
windows that causes issues at 150%, needs to be
changed to 100%), you could also just use GIMP or
similar tool to draw a b/w 28by28 pixel input image, a
captured image.png has been provided you can edit

Scale & layout

Scale
Change the size of text, apps, and other items

150% (Recommended) v

predict.py (predict.ipynb) -> Non-desktop program to take image.png image and predict using
your model

interactive.py -> Desktop program combining grabimage.py and predict.py into one program
for ease of use

In the predict.py/predict_test.py/interactive.py files you will have to change three lines to get
them to work.

1. First aline to load your model. Reference the save/load tutorial again!

2. Second, a line to get an array of percent confidence in each class for your image. The
beginner clothing prediction tutorial.

3. Third, a line to decide the index of the highest prediction in the previous array. The
beginner clothing prediction tutorial.

Report what lines you added to get these programs to work in your report.

Use the above four programs to find three images in the test data (and/or create images using
the tools provided) that you (or the test output label) would classify as one of the classes, but
that your model gets clearly wrong on its prediction label. Make changes to your model that
lead to these three images getting identified accurately. Store the image you made. Record
what your model’s accuracy was when this image was inaccurately predicted by MNIST-Partial,
what changes you made, then what your model predicted after the changes. Your final model
notMNIST-Complete.keras should reach 95% and be created by a file called notMNIST-
Complete.

In a report,

1. describe your Partial model (paragraph),

2. the three images and their original Partial model label (paragraph),

3. then describe your changes to the model and how/why they improve the net’s
performance (paragraph at least),

4. and then show the three images and their new Complete model label (paragraph).

You should have the following to submit

e notMNIST-Partial.py (or notMNIST-Partial.ipynb) [based on notMNIST-Starter]

e notMNIST-Complete.py (or notMNIST-Complete.ipynb) [based on notMNIST-Partial]
e notMNIST-Partial.keras [saved model from notMNIST-Partial]

e notMNIST-Complete.keras [saved model from above with 95%+ on test data]

e whichever of predict_test, predict, interactive you modified

® report.pdf
Part 2: Build a logistic regression model to predict CFL draft likelihood
You have been given a draft.csv file of data in csv format.

You should divide this file into draft_train.csv and draft_test.csv data. Generally, test data is
only a portion of the size of the training data. For example, in the MNIST data sets the test data
is 1/6 of the size of the training data or (1/7 of the total data). For example, 60,000 training
examples and 10,000 test examples.

For the file, the first row is the name of the columns variables. If an entry is missing data 0 is
used.

1. position: What position a player had, text
2. longsnapper: Did a player identify as a long snapper, (1=Yes, 0=No)
3. height: Inches, numerical

4, weight: Pounds, numerical

5. draftage: Years, numerical

6. bench: Count of 225Ib bench repetitions, numerical

7. forty: 40 yard dash hand timed seconds, numerical

8. fortyelectric: 40 yard dash electrical timed seconds, numerical
9. verticaljump: Vertical jump inches, numerical

10. broadjump: Horizontal jump inches, numerical

11. threecone: Three cone run seconds, numerical

12. shuttle: Shuttle weave run seconds, numerical

13. drafted: Was player drafted in CFL, (1=Yes 0=No)
Each following row contains the information of one player.
There are 671 samples in total.

We will be using the first 12 variables to predict the last variable. That is, your input will be 1-d
tensor of 12 elements, and your label is binary. You should write the function to read in data
yourself, and you should take care of dividing your data into train set and test set.

In terms of loading and processing csv data you will find the tutorial at
https://www.tensorflow.org/tutorials/load data/pandas dataframe very helpful. You have 10
numeric pieces of data, 1 binary, and 1 category.

Start with the most basic of models.
tf.keras.Sequential([
tf.keras.layers.Dense(512, activation='"relu’),

tf.keras.layers.Dense(1)

1)

One problem you will notice when building this model is overfitting due to the small amount of
data samples for training. A model like this at sufficient epochs could reach 100% on the
training data! But still be ~60% for test data.

Examine the differences in your initial model attempts between higher accuracies of training
data vs much lower accuracies in test data. Then make changes to your model to deal with
overfitting and report the impact of your changes before and after.
https://www.tensorflow.org/tutorials/keras/overfit_and underfit will be of good use for this
part.

https://www.tensorflow.org/tutorials/load_data/pandas_dataframe
https://www.tensorflow.org/tutorials/keras/overfit_and_underfit

In a report,

1. explain your data-splitting decisions (paragraph),

2. how you decided to handle the non-numerical input data (paragraph),
3. how you dealt with overfitting/underfitting (paragraph),

4. and report your hyper-parameters/results (paragraph).

You should have the following to submit

CFLModel.py (or CFLModel.ipynb)
draft_train.csv

draft_test.csv

report.pdf (should be same report from part 1 but updated with part 2 section)
Submit the following to the D2L Assignment Dropbox:

1. An electronic copy (zip file) of your source code files and models requested
2. Your report.pdf

Grading
Part 1 Code Source code for model 5
Part 1 Predict Source getting load, save, predict to work 1
Part 1 Improved Image exploration and discussion 5
Part 1 Report Report on model/hyper-parameters 3
Part 2 Data Getting data ready 5
Part 2 Model Source code for model 5
Part 2 Overfit Examining over-fitting 5
Part 2 Report Report on model/hyper-parameters 3
Code quality Name, class, semester, tutorial, UCID, comments, 3

citations, etc.

Total
ota 20

Conversion

Letter

A+

B+

C+

D+

Points

19

18

17

16

15

14

13

12

11

10

<9

