
Rule Systems
CPSC 433: Artificial Intelligence
Fall 2024

Jonathan Hudson, Ph.D.
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

August 8, 2024

Copyright © 2024

2

Rule Systems

3

Rule Sets / Production Systems

• Focus on operational knowledge:
if condition then action

• Uses a logic:
usually propositional or multi-valued

• probabilistic rules

• Actions include input-requests, output, changes of knowledge-base
• If several rules can be applied, a conflict manager decides what to do
 defines the operational semantics of the system
must be well understood by knowledge engineer

4

Rule Sets / Production Systems

• Focus on operational knowledge:
if condition then action

• Actions include input-requests, output, changes of knowledge-base

• If several rules can be applied, a conflict manager decides what to do
• defines the operational semantics of the system
• must be well understood by knowledge engineer

5

PROLOG

6

PROLOG

General idea:

1. program descriptively by just stating axioms in a logic and asking queries

2. guide interpreter by clear evaluation control scheme

3. whole concept is based on SLD-resolution

7

Basic data structures

1. Horn clauses in first-order logic,
• i.e. clauses of form

¬𝑨𝑨𝟏𝟏 ∨ ¬𝑨𝑨𝟐𝟐 ∨ ⋯∨ ¬𝑨𝑨𝒏𝒏 ∨ 𝑩𝑩
• written:

𝑩𝑩 ∶ − 𝑨𝑨𝟏𝟏,𝑨𝑨𝟐𝟐, … ,𝑨𝑨𝒏𝒏
• read:

if 𝑨𝑨𝟏𝟏 and 𝑨𝑨𝟐𝟐and … and 𝑨𝑨𝒏𝒏 then 𝑩𝑩
𝑨𝑨𝟏𝟏 ∧ 𝑨𝑨𝟐𝟐 ∧ ⋯∧ 𝑨𝑨𝒏𝒏 → 𝑩𝑩

2. Some higher-order predicates to manipulate the set (list) of clauses in the
knowledge base, influence the interpreter, or provide in- and output.

8

Database

• We generally have a data base/knowledge base:

• This is a list of horn clauses in Prolog form, the left side (knowledge A) exists for
each, if all of the right side (knowledge Bs) exist

• Notice prolog clauses use :- as divider and a period . at the end

Data base:
 ...
𝐴𝐴1:−𝐵𝐵11, … , 𝑏𝑏1𝑛𝑛1 .

 ...
𝐴𝐴𝑘𝑘:−𝐵𝐵𝑘𝑘𝑘, … , 𝑏𝑏𝑘𝑘𝑛𝑛𝑘𝑘 .
...

9

Goal Stack

• We generally have a goal stack (or a query):
• This is something we are trying to see if it fits with the previous database on

knowledge (here we have m sub-goals in our query/goal stack)

• We basically will move forward trying to solve the goals by examining the data
we have in our world (remember that we will have predicates in prolog and this
means we have to worry about unification (mgu) being consistent during
process)

?−𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑚𝑚

10

Semantics

• Operational semantic using a goal stack and the list of clauses (data
base/knowledge base):

• We replace our goal by unifying against
• Our first piece of database knowledge
• Which adds those pieces of knowledge to the goal stack/query

?−𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑚𝑚

?−𝜎𝜎1 𝐵𝐵11 , … ,𝜎𝜎1 𝐵𝐵1𝑛𝑛1 ,𝜎𝜎1 𝐺𝐺2 , … ,𝜎𝜎1 𝐺𝐺𝑚𝑚

𝜎𝜎1 𝐺𝐺1 = 𝜎𝜎1 𝐴𝐴1

𝜎𝜎1 mgus

Data base:
 ...
𝑨𝑨𝟏𝟏:−𝑩𝑩𝟏𝟏𝟏𝟏, … ,𝒃𝒃𝟏𝟏𝒏𝒏𝟏𝟏 .
 ...
𝐴𝐴𝑘𝑘:−𝐵𝐵𝑘𝑘𝑘, … , 𝑏𝑏𝑘𝑘𝑛𝑛𝑘𝑘 .
...

11

Semantics

• Operational semantic using a goal stack and the list of clauses (data
base/knowledge base):

?−𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑚𝑚

?−𝜎𝜎1 𝐵𝐵11 , … ,𝜎𝜎1 𝐵𝐵1𝑛𝑛1 ,𝜎𝜎1 𝐺𝐺2 , … ,𝜎𝜎1 𝐺𝐺𝑚𝑚

𝜎𝜎1 𝐺𝐺1 = 𝜎𝜎1 𝐴𝐴1

𝜎𝜎1(𝐵𝐵𝑖𝑖𝑖𝑖) not solvable?
backtrack

𝜎𝜎1 mgus

Data base:
 ...
𝐴𝐴1:−𝐵𝐵11, … , 𝑏𝑏1𝑛𝑛1 .

 ...
𝐴𝐴𝑘𝑘:−𝐵𝐵𝑘𝑘𝑘, … , 𝑏𝑏𝑘𝑘𝑛𝑛𝑘𝑘 .
...

12

Semantics

• Operational semantic using a goal stack and the list of clauses (data
base/knowledge base):

?−𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑚𝑚

?−𝜎𝜎2 𝐵𝐵21 , … ,𝜎𝜎2 𝐵𝐵2𝑛𝑛2 ,𝜎𝜎2 𝐺𝐺2 , … ,𝜎𝜎2 𝐺𝐺𝑚𝑚

𝜎𝜎2 𝐺𝐺1 = 𝜎𝜎2 𝐴𝐴2

𝜎𝜎2 mgus

Data base:
 ...
𝐴𝐴1:−𝐵𝐵11, … , 𝑏𝑏1𝑛𝑛1 .
𝐴𝐴2:−𝐵𝐵21, … , 𝑏𝑏2𝑛𝑛2 .
 ...
𝐴𝐴𝑘𝑘:−𝐵𝐵𝑘𝑘𝑘, … , 𝑏𝑏𝑘𝑘𝑛𝑛𝑘𝑘 .
...

13

Semantics (II)

1. Solution: if goal stacks get empty
• collect substitutions that fulfilled original goals
• use as answer

2. Next solution (for more than one fulfilling answer): initiate backtrack

3. No solution:
• if no clause in data base solves a particular subgoal Gi for all solutions to

G1,…,Gi-1

14

How to get knowledge into the representation
structure
Getting knowledge into system?
• By writing a declarative problem description

• Caution: take into account the semantics!

• Especially that we have an and-or-tree-based search with a special depth-first control
• (that in fact boils down to and-tree-based search with backtracking)
• ordering of clauses in data base very important:

• from very specialized to very general

15

Discussion

• In theory: describing knowledge by logic rules enough; no control necessary
• Fast prototyping very easy!

- Not really much left from logic
- Exact understanding of operational semantic necessary to use

Just another (not very efficient) programming language if you don’t

16

And what about processing data?

• Follow operational semantics
• not really search

• Rely on user/programmer knowing what he/she is doing

17

PROLOG Examples

18

Examples

• Write a PROLOG program that given facts of the form
 mother(X,Y). father(X,Y).

meaning a is mother, resp. father of b, answers questions like
 ?- grandmother(agnes,X).
 ?- grandfather(Y,clara).

• Home exercise: Given the facts:
mother(anna,peter). mother(anna,clara). father(joe,peter). father(jim,clara).
mother(mary,anna). father(tom,joe).
Answer: ?- grandfather(tom,X).
 ?- grandmother(X,peter).

19

Examples

mother(X,Y).
father(X,Y).

Note these two are not actually rules we would store but reminding you of that
we plan to use to form grandmother/grandfather

20

Examples

mother(X,Y).
father(X,Y).
grandmother(X,Y):-mother(X,Z),mother(Z,Y).

21

Examples

mother(X,Y).
father(X,Y).
grandmother(X,Y):-mother(X,Z),mother(Z,Y).
grandfather(X,Y):-father(X,Z),father(Z,Y).

22

Examples 1

mother(X,Y).
father(X,Y).
grandmother(X,Y):-mother(X,Z),mother(Z,Y).
grandfather(X,Y):-father(X,Z),father(Z,Y).
grandmother(X,Y):-mother(X,Z),father(Z,Y).
grandfather(X,Y):-father(X,Z),mother(Z,Y).

23

Examples 2

mother(X,Y).
father(X,Y).
parent(X,Y):-mother(X,Y).
parent(X,Y):-father(X,Y).
grandmother(X,Y):-mother(X,Z),parent(Z,Y).
grandfather(X,Y):-father(X,Z),parent(Z,Y).

24

Examples 2 - Database

parent(X,Y):-mother(X,Y).
parent(X,Y):-father(X,Y).
grandmother(X,Y):-mother(X,Z),parent(Z,Y).
grandfather(X,Y):-father(X,Z),parent(Z,Y).
mother(anna,peter).
mother(anna,clara).
father(joe,peter).
father(jim,clara).
mother(mary,anna).
father(tom,joe).

25

Examples 2 – Goal 1

parent(X,Y):-mother(X,Y).
parent(X,Y):-father(X,Y).
grandmother(X,Y):-mother(X,Z),parent(Z,Y).
grandfather(X,Y):-father(X,Z),parent(Z,Y).
mother(anna,peter).
mother(anna,clara).
father(joe,peter).
father(jim,clara).
mother(mary,anna).
father(tom,joe).

?-grandmother(X,peter).
X=mary

26

Examples 2 – Goal 2

parent(X,Y):-mother(X,Y).
parent(X,Y):-father(X,Y).
grandmother(X,Y):-mother(X,Z),parent(Z,Y).
grandfather(X,Y):-father(X,Z),parent(Z,Y).
mother(anna,peter).
mother(anna,clara).
father(joe,peter).
father(jim,clara).
mother(mary,anna).
father(tom,joe).

?-grandfather(tom,X).
X=peter

https://swish.swi-prolog.org/

27

Examples 2 – Goal 1

parent(X,Y):-mother(X,Y).
parent(X,Y):-father(X,Y).
grandmother(X,Y):-mother(X,Z),parent(Z,Y).
grandfather(X,Y):-father(X,Z),parent(Z,Y).
mother(anna,peter).
mother(anna,clara).
father(joe,peter).
father(jim,clara).
mother(mary,anna).
father(tom,joe).

?-grandmother(X,peter).
?-mother(X,Z),parent(Z,Y). {Y/peter}
?-parent(Z,Y). {Y/peter,X/anna,Z/peter}
?-mother(Z,Y). {Y/peter,X/anna,Z/peter}
?-father(Z,Y). {Y/peter,X/anna,Z/peter}
?-parent(Z,Y). {Y/peter,X/anna,Z/clara}
?-mother(Z,Y). {Y/peter,X/anna,Z/clara}
?-father(Z,Y). {Y/peter,X/anna,Z/clara}
?-parent(Z,Y). {Y/peter,X/mary,Z/anna}
?-mother(Z,Y). {Y/peter,X/mary,Z/anna}
?-∎

X=mary

28

MYCIN/EMYCIN

29

MYCIN / EMYCIN

General ideas:
• Deal with unsure/uncertain knowledge
• Use in expert system
 dialog with user

• MYCIN: medical expert system
• EMYCIN: expert system shell employing logic, semantics, calculus and control of

MYCIN, not the particular knowledge

30

Basic data structures

• Object-attribute-value triples as base logic:
for all a ∈ F: τ(a) = 0 (objects and values)
for all x ∈ V: τ(x) = 0 (object and value variables)
for all A ∈ PI: τ(A) = 2 (attributes)
P = PV = {}

31

Basic data structures

• Object-attribute-value triples as base logic:
• realized as A(e,v):

• attribute A of object e has value v

• Production rules form the formulas:
J = {¬,∧} ∪ {→i|i = 1,…,n, if there are n production rules}
Q = {}

• Deal with uncertain knowledge by using W=[-1,1]
• (resp. discrete representation {-1,-0.9,…,0.9,1})

32

Semantics

• Interpret all symbols for a fixed domain D

• Start with given interpretation for selected object-attribute-value-triples (input-
data) and given truth values for all production rules

• Use operational semantics based on computing
• Measure of belief (MB)
• Measure of disbelief (MD)

33

Measures of belief/disbelief

Let h be an object-attribute-value triple and e a set of production rules.

If P1∧…∧Pn →i h is the only rule in e, then we get

 MB(h,e) =
 I(P1∧…∧Pn →i h) ∗ max(0,min(I(P1),…,I(Pn))

34

Measures of belief/disbelief

If e = {e1,e2}, then we get

MB(h,{e1,e2}) = 0, if MD(h,{e1,e2}) = 1

MB(h,{e1,e2}) = MB(h,{e1}) + MB(h,{e2})∗(1-MB(h,{e1}))

35

Measures of belief/disbelief

If e = {e1,e2}, then we get

MB(h,{e1,e2}) = 0, if MD(h,{e1,e2}) = 1

MB(h,{e1,e2}) = MB(h,{e1}) + MB(h,{e2})∗(1-MB(h,{e1}))

For more elements just iterate this.
MD is computed similarily, except that e contains all production rules of the form

P1∧…∧Pn →i ¬h
 application of Bayes formula for conditional probabilities

36

How to get knowledge into the representation
structure
• The rules are defined by an expert, who also defines what objects and

attributes are of interest and what values they can have.
• The expert also has to provide the interpretation for the rules, by expressing

how confident he/she is in this rule
• The interpretation for the input data is provided by observation/measuring of

the world (in MYCIN, by a doctor interpreting the examinations of the patient).

37

Discussion

• Allows to deal with uncertainty
• Successful in several applications

- Application domain has to be small
- Hands-on approach to probability theory
- Hides the need for TMS (Truth Maintenance System)
- Gets very complicated for large rule sets with the same conclusion

38

And what about processing data?

• Very similar to PROLOG
• Rules are applied backwards:

• Select an object-attribute-value-triple for which an interpretation is sought and add it to
the goal list:

• Repeat:
• Select h from goal list
• Find a rule e with h or ¬h as consequence
• Add premises to goal list and update interpretation of h by MB(h,e) - MD(h,e), resp. combine

values for h from other rules

39

MYCIN/EMYCIN Examples

40

Examples (I)

• Construct MYCIN rules for the following knowledge:
• If the preparation for the exam is good and the student slept well, then there is a good

chance (0.7) that the student will pass the exam.
• If the student’s contribution to the team effort is high and the workload of the student is

low, then there is a good chance (0.8) that the student will pass the exam.
• If the workload of the student is high and the extra-curricular activities are high, then

there is a good chance (0.6) that the student will fail the exam.

41

Examples (I)

• Construct MYCIN rules for the following knowledge:
• If the preparation for the exam is good and the student slept well, then there is a good

chance (0.7) that the student will pass the exam.

42

Examples (I)

• Construct MYCIN rules for the following knowledge:
• If the preparation for the exam is good and the student slept well, then there is a good

chance (0.7) that the student will pass the exam.
• 𝑒𝑒1 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑋𝑋,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∧ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 →1 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝐼𝐼(𝑒𝑒1) = 0.7

43

Examples (I)

• Construct MYCIN rules for the following knowledge:
• If the preparation for the exam is good and the student slept well, then there is a good

chance (0.7) that the student will pass the exam.
• 𝑒𝑒1 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑋𝑋,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∧ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 →1 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝐼𝐼(𝑒𝑒1) = 0.7
• If the student’s contribution to the team effort is high and the workload of the student is

low, then there is a good chance (0.8) that the student will pass the exam.
• 𝑒𝑒2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,ℎ𝑖𝑖𝑖𝑖𝑖 ∧ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑋𝑋, 𝑙𝑙𝑙𝑙𝑙𝑙 →2 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝐼𝐼(𝑒𝑒2) = 0.8

44

Examples (I)

• Construct MYCIN rules for the following knowledge:
• If the preparation for the exam is good and the student slept well, then there is a good

chance (0.7) that the student will pass the exam.
• 𝑒𝑒1 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑋𝑋,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∧ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 →1 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝐼𝐼(𝑒𝑒1) = 0.7
• If the student’s contribution to the team effort is high and the workload of the student is

low, then there is a good chance (0.8) that the student will pass the exam.
• 𝑒𝑒2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,ℎ𝑖𝑖𝑖𝑖𝑖 ∧ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑋𝑋, 𝑙𝑙𝑙𝑙𝑙𝑙 →2 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝐼𝐼(𝑒𝑒2) = 0.8
• If the workload of the student is high and the extra-curricular activities are high, then

there is a good chance (0.6) that the student will fail the exam.
• 𝑒𝑒3 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑋𝑋,ℎ𝑖𝑖𝑖𝑖𝑖 ∧ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑋𝑋,ℎ𝑖𝑖𝑖𝑖𝑖 →3 ¬ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝐼𝐼(𝑒𝑒3) = 0.6

45

Examples (I)

• Construct MYCIN rules for the following knowledge:
• If the preparation for the exam is good and the student slept well, then there is a good

chance (0.7) that the student will pass the exam.
• 𝑒𝑒1 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑋𝑋,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∧ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 →1 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝐼𝐼(𝑒𝑒1) = 0.7
• If the student’s contribution to the team effort is high and the workload of the student is

low, then there is a good chance (0.8) that the student will pass the exam.
• 𝑒𝑒2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,ℎ𝑖𝑖𝑖𝑖𝑖 ∧ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑋𝑋, 𝑙𝑙𝑙𝑙𝑙𝑙 →2 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝐼𝐼(𝑒𝑒2) = 0.8
• If the workload of the student is high and the extra-curricular activities are high, then

there is a good chance (0.6) that the student will fail the exam.
• 𝑒𝑒3 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑋𝑋,ℎ𝑖𝑖𝑖𝑖𝑖 ∧ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑋𝑋,ℎ𝑖𝑖𝑖𝑖𝑖 →3 ¬ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝐼𝐼(𝑒𝑒3) = 0.6

46

Examples (II)

• Interpret the statement
 Joe passes the exam
if you know that

• I(prep(Joe,good)) = 0.7
• I(sleep(Joe, well)) = 0.6
• I(contr(Joe,high)) = 0.9
• I(work(Joe,low)) = 0.6
• I(extra(Joe,high)) = 0.3

47

Examples (II)

• Interpret the statement
 Joe passes the exam

I(exam(Joe,pass)) = ?

• if you know that
• I(prep(Joe,good)) = 0.7
• I(sleep(Joe, well)) = 0.6
• I(contr(Joe,high)) = 0.9
• I(work(Joe,low)) = 0.6
• I(extra(Joe,high)) = 0.3

48

Examples (II)

• Interpret the statement
 Joe passes the exam

I(exam(Joe,pass)) = ?
𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒1 , 𝑒𝑒2}) −𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒3})

• if you know that
• I(prep(Joe,good)) = 0.7
• I(sleep(Joe, well)) = 0.6
• I(contr(Joe,high)) = 0.9
• I(work(Joe,low)) = 0.6
• I(extra(Joe,high)) = 0.3

49

Examples (II)

• Interpret the statement
 Joe passes the exam

I(exam(Joe,pass)) = ?
𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒1 , 𝑒𝑒2}) −𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒3})
𝑀𝑀𝑀𝑀 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑒𝑒1 + 𝑀𝑀𝑀𝑀 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑒𝑒2 ∗ (1 −𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑒𝑒1))
−𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒3}

• if you know that
• I(prep(Joe,good)) = 0.7
• I(sleep(Joe, well)) = 0.6
• I(contr(Joe,high)) = 0.9
• I(work(Joe,low)) = 0.6
• I(extra(Joe,high)) = 0.3

50

Examples (II)

• Interpret the statement
 Joe passes the exam

I(exam(Joe,pass)) = ?
𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒1 , 𝑒𝑒2}) −𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒3})
𝑀𝑀𝑀𝑀 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑒𝑒1 + 𝑀𝑀𝑀𝑀 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑒𝑒2 ∗ (1 −𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑒𝑒1))
−𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒3}

 MB(h,e) = I(P1∧…∧Pn →i h) ∗ max(0,min(I(P1),…,I(Pn))
 𝑒𝑒1 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑋𝑋,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∧ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 →1 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝐼𝐼(𝑒𝑒1) = 0.7

𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), 𝑒𝑒1) = 0.7 ∗ max(0, min(0.7,0.6)) = 0.42

• if you know that
• I(prep(Joe,good)) = 0.7
• I(sleep(Joe, well)) = 0.6
• I(contr(Joe,high)) = 0.9
• I(work(Joe,low)) = 0.6
• I(extra(Joe,high)) = 0.3

51

Examples (II)

• Interpret the statement
 Joe passes the exam

I(exam(Joe,pass)) = ?
𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒1 , 𝑒𝑒2}) −𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒3})
0.42 + 𝑀𝑀𝑀𝑀 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑒𝑒2 ∗ 0.58 −𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒3}

 MB(h,e) = I(P1∧…∧Pn →i h) ∗ max(0,min(I(P1),…,I(Pn))
• 𝑒𝑒2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑋𝑋,ℎ𝑖𝑖𝑖𝑖𝑖 ∧ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑋𝑋, 𝑙𝑙𝑙𝑙𝑙𝑙 →2 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝐼𝐼(𝑒𝑒2) = 0.8

𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), 𝑒𝑒2) = 0.8 ∗ max(0, min(0.9,0.6)) = 0.48

• if you know that
• I(prep(Joe,good)) = 0.7
• I(sleep(Joe, well)) = 0.6
• I(contr(Joe,high)) = 0.9
• I(work(Joe,low)) = 0.6
• I(extra(Joe,high)) = 0.3

52

Examples (II)

• Interpret the statement
 Joe passes the exam

I(exam(Joe,pass)) = ?
𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒1 , 𝑒𝑒2}) −𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒3})
0.42 + 0.48 ∗ 0.58 −𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒3}

 MB(h,e) = I(P1∧…∧Pn →i h) ∗ max(0,min(I(P1),…,I(Pn))
• 𝑒𝑒3 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑋𝑋,ℎ𝑖𝑖𝑖𝑖𝑖 ∧ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑋𝑋,ℎ𝑖𝑖𝑖𝑖𝑖 →3 ¬ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝐼𝐼(𝑒𝑒3) = 0.6

𝑀𝑀𝐷𝐷(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), 𝑒𝑒3) = 0.6 ∗ max(0, min(0.4,0.3)) = 0.18

• if you know that
• I(prep(Joe,good)) = 0.7
• I(sleep(Joe, well)) = 0.6
• I(contr(Joe,high)) = 0.9
• I(work(Joe,low)) = 0.6
• I(extra(Joe,high)) = 0.3

53

Examples (II)

• Interpret the statement
 Joe passes the exam

I(exam(Joe,pass)) = ?
𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒1 , 𝑒𝑒2}) −𝑀𝑀𝑀𝑀(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝐽𝐽𝐽𝐽, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), {𝑒𝑒3})
0.42 + 0.48 ∗ 0.58 − 0.18
0.5184

• if you know that
• I(prep(Joe,good)) = 0.7
• I(sleep(Joe, well)) = 0.6
• I(contr(Joe,high)) = 0.9
• I(work(Joe,low)) = 0.6
• I(extra(Joe,high)) = 0.3

54

General Discussion

55

General Discussion

• Production rule systems can be seen as special logics based on operational
semantics that take away the search aspect of the logics in 3.1.

• When using production systems, dealing with the control therefore requires
more than just application knowledge and makes defining the knowledge base
difficult.

• Newer approach: learning of rules by providing input-output pairs for the
intended behavior

Onward to …
frame systems

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/

	Rule Systems
	Rule Systems
	Rule Sets / Production Systems
	Rule Sets / Production Systems
	PROLOG
	PROLOG
	Basic data structures
	Database
	Goal Stack
	Semantics
	Semantics
	Semantics
	Semantics (II)
	How to get knowledge into the representation structure
	Discussion
	And what about processing data?
	PROLOG Examples
	Examples
	Examples
	Examples
	Examples
	Examples 1
	Examples 2
	Examples 2 - Database
	Examples 2 – Goal 1
	Examples 2 – Goal 2
	Examples 2 – Goal 1
	MYCIN/EMYCIN
	MYCIN / EMYCIN
	Basic data structures
	Basic data structures
	Semantics
	Measures of belief/disbelief
	Measures of belief/disbelief
	Measures of belief/disbelief
	How to get knowledge into the representation structure
	Discussion
	And what about processing data?
	MYCIN/EMYCIN Examples
	Examples (I)
	Examples (I)
	Examples (I)
	Examples (I)
	Examples (I)
	Examples (I)
	Examples (II)
	Examples (II)
	Examples (II)
	Examples (II)
	Examples (II)
	Examples (II)
	Examples (II)
	Examples (II)
	General Discussion
	General Discussion
	Onward to … �frame systems

