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Logics
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Logics

• Considered by humans as the knowledge representation (and processing) 
method of computers

• Clear mathematical foundation:
syntax describes formulas; axioms what is considered true; inference rules how 
to get other true formulas

• Many different kinds of logics
• Meaning of a formula usually not easy to determine by humans (rather formal 

semantics)
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General Definitions (I)

Syntax:

Terms (without sorts): 𝑭𝑭 = 𝐹𝐹 (function symbols) ⋃ 𝑉𝑉 (function variables); 

τ 𝑓𝑓 ∈ ℕ multiplicity   where 𝑓𝑓 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑭𝑭) recursively defined by
if 𝑓𝑓 ∈ 𝑭𝑭 with 𝜏𝜏 𝑓𝑓 = 𝑛𝑛 and 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑭𝑭

then 𝑓𝑓 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑭𝑭)
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General Definitions (I)

Example function symbols f,g,h (but also a,b,c)
Example function variables x,y,z

f(x), g(x,y), h(x,y,z) 
f(a), g(b,y), h(x,c,d)

Also note,
Note a() = a, b()=b, c() = c
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General Definitions (I)

Syntax:

Atoms: P = 𝑃𝑃 predicate symbols ∪
𝑃𝑃𝑃𝑃 (interpreted predicate symbols) ∪ 𝑃𝑃𝑉𝑉 (predicate variables); 

τ 𝐴𝐴 ∈ ℕ multiplicity        where 𝐴𝐴 ∈ 𝐴𝐴𝑡𝑡𝐴𝐴𝑇𝑇

𝐴𝐴𝑡𝑡𝐴𝐴𝑇𝑇 = 𝐴𝐴𝑡𝑡𝐴𝐴𝑇𝑇 𝑷𝑷,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑭𝑭

= 𝐴𝐴 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛 | 𝐴𝐴 ∈ 𝑷𝑷, 𝜏𝜏 𝐴𝐴 = 𝑛𝑛, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑭𝑭
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General Definitions (I)

Example Atoms:

Predicate Symbols P,Q,R

Inter. Predicate Symbols EQ (equality)

Predicate Variables X,Y,Z

P(x), Q(x,y), R(f(x),z)

EQ(x,y)

X(x), Y(a), Z(x,c,f(a))
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General Definitions (II)

Formulas: sets 𝐽𝐽 (Junctors),𝑄𝑄 (Quantifiers); 

τ ⋆ ∈ ℕ multiplicity   where ⋆∈ 𝐽𝐽

τ □ ∈ ℕ multiplicity   where □ ∈ 𝑄𝑄

𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇 = 𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇 𝐽𝐽,𝑄𝑄,𝐴𝐴𝑡𝑡𝐴𝐴𝑇𝑇 𝑷𝑷,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑭𝑭
recursively def.
• 𝐴𝐴 ∈ 𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇 if 𝐴𝐴 ∈ 𝐴𝐴𝑡𝑡𝐴𝐴𝑇𝑇
• ⋆∈ 𝐽𝐽, 𝜏𝜏 ⋆ = 𝑛𝑛,𝐴𝐴1, … ,𝐴𝐴𝑛𝑛 ∈ 𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇 then ⋆ 𝐴𝐴1, … ,𝐴𝐴𝑛𝑛 ∈ 𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇
• □ ∈ 𝑄𝑄,𝐴𝐴 ∈ 𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 𝑉𝑉 ∪ 𝑃𝑃𝑉𝑉 then □𝑥𝑥1, … , 𝑥𝑥𝑛𝑛.𝐴𝐴 ∈ 𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇
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General Definitions (II)

Formulas: sets 𝐽𝐽 (Junctors),𝑄𝑄 (Quantifiers); 

τ ⋆ ∈ ℕ multiplicity   where ⋆∈ 𝐽𝐽

τ □ ∈ ℕ multiplicity   where □ ∈ 𝑄𝑄
Example Junctors
∧,∨, ¬,→,

Example Quantifiers
∀,∃

∀𝑥𝑥.∃𝑦𝑦.𝑃𝑃 𝑥𝑥,𝑦𝑦 ∨ 𝑄𝑄(𝑥𝑥) ∧ 𝐸𝐸𝑄𝑄(𝑓𝑓(𝑥𝑥),𝑦𝑦)
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General Definitions (III)

Adding Meaning:

Interpretation: Given 𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇 𝐽𝐽,𝑄𝑄,𝐴𝐴𝑡𝑡𝐴𝐴𝑇𝑇 𝑷𝑷,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑭𝑭 , set 𝐷𝐷 of objects 
(domain), set 𝑊𝑊 of truth values

Interpretation 𝑃𝑃
• Assigns to each 𝑓𝑓 ∈ 𝑭𝑭 a function over 𝐷𝐷 and to each 𝐴𝐴 ∈ 𝑷𝑷 a predicate over 𝐷𝐷 in the truth 

values of W
• Assigns to each ⋆∈ 𝐽𝐽, 𝜏𝜏 ⋆ = 𝑛𝑛, a function 𝑊𝑊𝑛𝑛 → 𝑊𝑊
• Assigns to each □ ∈ 𝑄𝑄 a combination rule for truth values in 𝑊𝑊, such that 𝑃𝑃 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛.𝐵𝐵 is 

determined by combining the truth values of all the formulas that are generated by 
substituting the variables 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 in 𝐵𝐵 by arbitrary (but fitting) combinations of functions 
and/or predicates over 𝐷𝐷
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General Definitions (IV)

All together:

Logic: 𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇, 𝑃𝑃 = 𝑃𝑃1, 𝑃𝑃2, … a set of interpretations with
• 𝑃𝑃𝑖𝑖 ⋆ = 𝑃𝑃𝑗𝑗 ⋆ ∀𝑖𝑖, 𝑗𝑗 and ⋆∈ 𝐽𝐽
• 𝑃𝑃𝑖𝑖 □ = 𝑃𝑃𝑗𝑗 □ ∀𝑖𝑖, 𝑗𝑗 and □ ∈ 𝑄𝑄
• 𝑃𝑃𝑖𝑖 𝐴𝐴 = 𝑃𝑃𝑗𝑗 𝐴𝐴 ∀𝑖𝑖, 𝑗𝑗 and 𝐴𝐴 ∈ 𝑃𝑃𝑃𝑃 (interpreted predicates)

 𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇, 𝑃𝑃 logic

Note: there are many different logics!
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Working with a Logic

Calculus:
(𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇, 𝑃𝑃) logic to 𝑊𝑊.𝐴𝐴𝑥𝑥 ⊆ 𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇 set of Axioms; 𝑅𝑅 set of rules:

(𝐴𝐴𝑥𝑥,𝑅𝑅) calculus to (𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇, 𝑃𝑃) and 𝑤𝑤 ∈ 𝑊𝑊, if
𝐵𝐵 ∈ 𝐹𝐹𝐴𝐴𝑇𝑇𝑇𝑇 with I 𝐵𝐵 = 𝑤𝑤 for all I ∈ 𝑃𝑃 can be
transformed into subset of 𝐴𝐴𝑥𝑥 by applying the 
rules of 𝑅𝑅

Note: this still allows for different search models using the calculus rules!
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Propositional Logic
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Propositional logic

General idea:
• Formulas describe combinations of statements (propositions) that are either 

truth or false and this way build statements themselves.
• No parameterized statements!
• Basis of the logics of gates, circuits and micro chips
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Basic knowledge structures

• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑭𝑭 = ∅ there are no terms (only predicates)
• 𝑷𝑷 = 𝑃𝑃 and 𝜏𝜏 𝐴𝐴 = 0 ∀𝐴𝐴 ∈ 𝑃𝑃 There are only predicates (not PV or PI) and 

there are no arguments to any predicate (we often just use lower case for our 
predicates)

• (elements of 𝑃𝑃 sometimes called propositional variables; very unfortunate naming!)

• 𝐽𝐽 = ¬,∨,∧,→, ,𝑄𝑄 = ∅
• 𝑊𝑊 = true, false
• 𝑃𝑃 = all possible interpretations

(Interpretation here is an assignment of truth values to the propositions in 𝑃𝑃)
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Semantics

• Look for tautologies, i.e. formulas that are interpreted to true by all I ∈ 𝑃𝑃
• if 𝑃𝑃 𝑝𝑝 = false then 𝑃𝑃 ¬𝑝𝑝 = true, otherwise false
• if 𝑃𝑃 𝑝𝑝 ∨ 𝑃𝑃(𝑞𝑞) = true then 𝑃𝑃 𝑝𝑝 ∨ 𝑞𝑞 = true, otherwise false
• if 𝑃𝑃 𝑝𝑝 ∧ 𝑃𝑃(𝑞𝑞) = true then 𝑃𝑃 𝑝𝑝 ∧ 𝑞𝑞 = true, otherwise false
• if 𝑃𝑃 𝑝𝑝 = 𝑡𝑡𝑇𝑇𝑡𝑡𝑇𝑇 ∧ 𝑃𝑃(𝑞𝑞) = false then 𝑃𝑃 𝑝𝑝 → 𝑞𝑞 = false, otherwise true
• if 𝑃𝑃 𝑝𝑝 = 𝑃𝑃(𝑞𝑞) then 𝑃𝑃 𝑝𝑝 𝑞𝑞 = true, otherwise false
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How to get knowledge into the representation 
structure
• assign predicate symbols to simple positive statements
• Connect them to form complicated statements
• But be careful: “tertium non datur” (no third possibility is given)

• The car is green =: 𝑝𝑝
• The car is red =: 𝑞𝑞
• We need in addition:

𝑞𝑞 ¬𝑝𝑝
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Discussion

• Decidable, NP complete 
• Decidable

• there exists an effective method for deriving the correct answer
• but NP complete 

• nondeterministic polynomial time complete
• quick to verify solutions, can be brute forced and can simulate all others in NP-complete class; 

− not very expressive
− knowledge bases get very large
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And what about processing data?

• Calculus used in most (best) systems:
Davis-Putnam (working on clauses; special case of Modelelimination)

• Each formula can be transformed into equivalent set of clauses (remember:
formula with 𝐽𝐽 = ¬,∨ )

• "defining" equations for → and 
• DeMorgan's laws to move negation inward

• For deciding tautologies, we use and-tree-based search
• For testing for satisfiability, we see clauses as constraints and use or-tree-based 

search
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Propositional Logic Example
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Example

• Represent the following statements in propositional logic:
• A Porsche is a black car.
• Black cars are fast cars.
• Bad cars are slow cars.

• Home exercise:
Show that the following statement is a logical consequence of the statements 
above:

• A Porsche is a good car.
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Example

• Represent the following statements in propositional logic:
• A Porsche is a black car.  𝑝𝑝𝐴𝐴𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑇𝑇 ∧ 𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑏𝑏
• Black cars are fast cars. 𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑏𝑏 → 𝑓𝑓𝑏𝑏𝑝𝑝𝑡𝑡
• Bad cars are slow cars. 𝑏𝑏𝑏𝑏𝑏𝑏 → ¬ 𝑓𝑓𝑏𝑏𝑝𝑝𝑡𝑡

• Home exercise:
Show that the following statement is a logical consequence of the statements 
above:

• A Porsche is a good car. 
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Example

• 𝑝𝑝𝐴𝐴𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑇𝑇 ∧ 𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑏𝑏
• 𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑏𝑏 → 𝑓𝑓𝑏𝑏𝑝𝑝𝑡𝑡
• 𝑏𝑏𝑏𝑏𝑏𝑏 → ¬ 𝑓𝑓𝑏𝑏𝑝𝑝𝑡𝑡
• A Porsche is a good car. 
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Example

• 𝑝𝑝 ∧ 𝑏𝑏𝑏𝑏
• 𝑏𝑏𝑏𝑏 → 𝑓𝑓
• 𝑏𝑏 → ¬ 𝑓𝑓
• A Porsche is a good car. 
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Example

• 𝑝𝑝 ∧ 𝑏𝑏𝑏𝑏
• 𝑏𝑏𝑏𝑏 → 𝑓𝑓
• 𝑏𝑏 → ¬ 𝑓𝑓
• 𝑝𝑝 ∧ ¬𝑏𝑏
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Example

• 𝑝𝑝 ∧ 𝑏𝑏𝑏𝑏
• 𝑏𝑏𝑏𝑏 → 𝑓𝑓
• 𝑏𝑏 → ¬ 𝑓𝑓
• ¬ 𝑝𝑝 ∧ ¬𝑏𝑏 = ¬𝑝𝑝 ∨ 𝑏𝑏
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Example

• 𝑝𝑝 ∧ 𝑏𝑏𝑏𝑏
• 𝑏𝑏𝑏𝑏 → 𝑓𝑓
• 𝑏𝑏 → ¬ 𝑓𝑓
• ¬𝑝𝑝 ∨ 𝑏𝑏
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Example

• 𝑝𝑝
• 𝑏𝑏𝑏𝑏
• 𝑏𝑏𝑏𝑏 → 𝑓𝑓
• 𝑏𝑏 → ¬ 𝑓𝑓
• ¬𝑝𝑝 ∨ 𝑏𝑏
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Example

• 𝑝𝑝
• 𝑏𝑏𝑏𝑏
• ¬𝑏𝑏𝑏𝑏 ∨ 𝑓𝑓
• ¬𝑏𝑏 ∨ ¬ 𝑓𝑓
• ¬𝑝𝑝 ∨ 𝑏𝑏
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Example

• 𝑝𝑝
• 𝑏𝑏𝑏𝑏
• ¬𝑏𝑏𝑏𝑏 ∨ 𝑓𝑓
• ¬𝑏𝑏 ∨ ¬ 𝑓𝑓
• ¬𝑝𝑝 ∨ 𝑏𝑏

𝑝𝑝
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Example

• 𝑝𝑝
• 𝑏𝑏𝑏𝑏
• ¬𝑏𝑏𝑏𝑏 ∨ 𝑓𝑓
• ¬𝑏𝑏 ∨ ¬ 𝑓𝑓
• ¬𝑝𝑝 ∨ 𝑏𝑏

𝑝𝑝

𝑝𝑝
𝑏𝑏𝑏𝑏
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Example

• 𝑝𝑝
• 𝑏𝑏𝑏𝑏
• ¬𝑏𝑏𝑏𝑏 ∨ 𝑓𝑓
• ¬𝑏𝑏 ∨ ¬ 𝑓𝑓
• ¬𝑝𝑝 ∨ 𝑏𝑏

𝑝𝑝

𝑝𝑝
𝑏𝑏𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏

¬ 𝑏𝑏𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓
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Example

• 𝑝𝑝
• 𝑏𝑏𝑏𝑏
• ¬𝑏𝑏𝑏𝑏 ∨ 𝑓𝑓
• ¬𝑏𝑏 ∨ ¬ 𝑓𝑓
• ¬𝑝𝑝 ∨ 𝑏𝑏

𝑝𝑝

𝑝𝑝
𝑏𝑏𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏

¬ 𝑏𝑏𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓
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Example

• 𝑝𝑝
• 𝑏𝑏𝑏𝑏
• ¬𝑏𝑏𝑏𝑏 ∨ 𝑓𝑓
• ¬𝑏𝑏 ∨ ¬ 𝑓𝑓
• ¬𝑝𝑝 ∨ 𝑏𝑏

𝑝𝑝

𝑝𝑝
𝑏𝑏𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏

¬ 𝑏𝑏𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

¬𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

¬𝑓𝑓
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Example

• 𝑝𝑝
• 𝑏𝑏𝑏𝑏
• ¬𝑏𝑏𝑏𝑏 ∨ 𝑓𝑓
• ¬𝑏𝑏 ∨ ¬ 𝑓𝑓
• ¬𝑝𝑝 ∨ 𝑏𝑏

𝑝𝑝

𝑝𝑝
𝑏𝑏𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏

¬ 𝑏𝑏𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

¬𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

¬𝑓𝑓
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Example

• 𝑝𝑝
• 𝑏𝑏𝑏𝑏
• ¬𝑏𝑏𝑏𝑏 ∨ 𝑓𝑓
• ¬𝑏𝑏 ∨ ¬ 𝑓𝑓
• ¬𝑝𝑝 ∨ 𝑏𝑏

𝑝𝑝

𝑝𝑝
𝑏𝑏𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏

¬𝑏𝑏𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

¬𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

¬𝑓𝑓

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

¬𝑏𝑏
¬𝑝𝑝

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

¬𝑏𝑏
b
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Example

• 𝑝𝑝
• 𝑏𝑏𝑏𝑏
• ¬𝑏𝑏𝑏𝑏 ∨ 𝑓𝑓
• ¬𝑏𝑏 ∨ ¬ 𝑓𝑓
• ¬𝑝𝑝 ∨ 𝑏𝑏

𝑝𝑝

𝑝𝑝
𝑏𝑏𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏

¬ 𝑏𝑏𝑏𝑏

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

𝑝𝑝
𝑏𝑏𝑏𝑏
𝑓𝑓

¬𝑏𝑏

𝑝𝑝
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• 𝑝𝑝
• 𝑏𝑏𝑏𝑏
• ¬𝑏𝑏𝑏𝑏 ∨ 𝑓𝑓
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• ¬𝑝𝑝 ∨ 𝑏𝑏
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• 𝑝𝑝
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Example

• 𝑝𝑝
• 𝑏𝑏𝑏𝑏
• ¬𝑏𝑏𝑏𝑏 ∨ 𝑓𝑓
• ¬𝑏𝑏 ∨ ¬ 𝑓𝑓
• ¬𝑝𝑝 ∨ 𝑏𝑏
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• A Porsche is a good car.
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First-Order Logic
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First-order logic

General ideas:
• Introduce terms (complex structures) and data element variables into formulas
 parameters (formula represents a whole set of 
   more specialized ones)

• Talk about the existence of a certain data element and about properties of all 
possible data elements
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Basic knowledge structures

• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑭𝑭): 𝐹𝐹 not restricted, 𝜏𝜏 𝑥𝑥 = 0 f. a. 𝑥𝑥 ∈ 𝑉𝑉 
• 𝑷𝑷: 𝑃𝑃 unrestricted, 𝑃𝑃𝑉𝑉 = ∅, 𝑃𝑃𝑃𝑃 depends on what is required (desired)

Example for predicates in 𝑃𝑃𝑃𝑃 ≔ 𝐸𝐸𝑄𝑄
• 𝐽𝐽 = ¬,∧,∨,→, , 𝑄𝑄 = ∀,∃
• 𝑊𝑊 = true, false
• 𝑃𝑃 = all possible (imaginable) interpretations (within the limits given by 𝑃𝑃𝑃𝑃)
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Semantics

• Look for tautologies, again.
• Interpret terms and atoms as described earlier.
• Interpret junctors as for propositional logic.
• Let Ix,d(B) be the interpretation that assigns to x the data element d ∈ D, i.e. 

Ix,d(x) = d.
• if Ix,d(B) = true for all d ∈ D then I(∀x.B) = true; otherwise false.
• if Ix,d(B) = true for one d ∈ D then I(∃x.B) = true; otherwise false.
• Quite some freedom for elements of PI (as long as all interpretations agree in 

it).
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How to get knowledge into the representation 
structure
• Define data objects, functions and predicates you are interested in and map 

them into terms and atoms.
• Select predicates you want to be treated special  PI

Note that usually you have then to provide a way to process these special 
predicates!

• Define all “laws” that you want your objects to obey and make them into 
formulas, resp. axioms.
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Discussion

• Semi-decidable
• there is a deterministic algorithm such that 

• (a) if an element is a member of the set, the algorithm halts with the result "positive", and
• (b) if an element is not a member of the set, (i) the algorithm does not halt, or (ii) if it does, 

then with the result "negative".

• A lot of other logics can be transformed into PL1
but: formulas are then not easily readable (and understandable) by humans

− Usually all possible interpretations are more than what we really want
 axioms needed to narrow the true formulas down!
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And what about processing data?

• Two types of calculi dominant:
• Resolution-based (superposition-based)
• Modelelimination-based

• In both, formula is negated and transformed into set of clauses

• Resolution  set-based search for empty clause
Modelelimination 
  usually realized with iterative deepening and 
  backtracking in and-tree as control
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First-Order Logic Example
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Example

• Use PL1 for the example for propositional logic (2!)
• Home exercise:

Show that the statements
• Everyone who lies is a bad person
• I know a politician who lies
implies the statement
• There is a politician who is a bad person
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Example

• Represent the following statements in propositional logic:
• A Porsche is a black car. black(p)
• Black cars are fast cars. for all x black(x) -> fast(x)
• Bad cars are slow cars. for all x bad(x) -> not fast(x)

• Home exercise:
Show that the following statement is a logical consequence of the statements 
above:

• A Porsche is a good car. good(p)
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Example

• Represent the following statements in propositional logic:
• A Porsche is a black car. black(p)
• Black cars are fast cars. for all x black(x) -> fast(x)
• Bad cars are slow cars. for all x bad(x) -> not fast(x)

• Home exercise:
Show that the following statement is a logical consequence of the statements 
above:

• A Porsche is a good car. not bad(p)
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Example

• black(p)
• for all x black(x) -> fast(x)
• for all x bad(x) -> not fast(x)
• not bad(p)
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Example

• black(p)
• for all x black(x) -> fast(x)
• for all x bad(x) -> not fast(x)
• not bad(p)
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Example

• black(p)
• for all x black(x) -> fast(x)
• for all x bad(x) -> not fast(x)
• bad(p)
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Example

• black(p)
• not black(x) or fast(x)
• not bad(x) or not fast(x)
• bad(p)
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Example

• black(p)
• not black(x) or fast(x)
• not bad(x) or not fast(x)
• bad(p)

black(p)

black(p)
not black(x)

black(p)
fast(x)
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Example

• black(p)
• not black(x) or fast(x)
• not bad(x) or not fast(x)
• bad(p)

black(p)

black(p)
not black(x)

black(p)
fast(x)

mgu = {x = p}
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Example

• black(p)
• not black(x) or fast(x)
• not bad(x) or not fast(x)
• bad(p)

black(p)

black(p)
not black(x)

black(p)
fast(x)

mgu = {x = p}
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Example

• black(p)
• not black(x) or fast(x)
• not bad(x) or not fast(x)
• bad(p)

black(p)

black(p)
not black(x)

black(p)
fast(x)

mgu = {x = p}

black(p)
fast(x)

not bad(x)

black(p)
fast(x)

not fast(x)
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Example

• black(p)
• not black(x) or fast(x)
• not bad(x) or not fast(x)
• bad(p)

black(p)

black(p)
not black(x)

black(p)
fast(x)

mgu = {x = p}

black(p)
fast(x)

not bad(x)

black(p)
fast(x)

not fast(x)

black(p)
fast(x)

not bad(x)
bad(p)
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Example

• black(p)
• not black(x) or fast(x)
• not bad(x) or not fast(x)
• bad(p)

black(p)

black(p)
not black(x)

black(p)
fast(x)

mgu = {x = p}

black(p)
fast(x)

not bad(x)

black(p)
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not fast(x)

black(p)
fast(x)

not bad(x)
bad(p)
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Example

• black(p)
• not black(x) or fast(x)
• not bad(x) or not fast(x)
• not bad(p)

black(p)

black(p)
not black(x)

black(p)
fast(x)

mgu = {x = p}

black(p)
fast(x)

not bad(x)

black(p)
fast(x)

not fast(x)

black(p)
fast(x)

not bad(x)
bad(p)
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Example

• black(p)
• not black(x) or fast(x)
• not bad(x) or not fast(x)
• A Porsche is a good car.

black(p)

black(p)
not black(x)

black(p)
fast(x)

mgu = {x = p}

black(p)
fast(x)

not bad(x)

black(p)
fast(x)

not fast(x)

black(p)
fast(x)

not bad(x)
bad(p)
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Other Logics
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Other logics

There are a lot of concepts that cannot be easily expressed in propositional logic 
or first-order predicate logic:

• Time
• Changes in the world
• Default values and overriding them
• Vagueness of information, fuzzy definitions and expressions, probabilities as 

truth values
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"Modern" logics

• Modal logics: deal with time, changing worlds by having symbols based on a 
possible world structure (possible-world semantics)

• Nonmonotonic logics: allow for dealing with assumptions that later might be 
detected as false and then deals with the consequences of this by reevaluating 
everything that has been deduced so far (uses truth-maintenance systems)

• Multi-valued logics/fuzzy logics: allow for probabilistic reasoning, avoiding a 
black-and-white view of things



Onward to … 
rule systems

Jonathan Hudson, Ph.D.
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