Convolutional Neural Networks

CPSC 433: Artificial Intelligence Fall 2024

Jonathan Hudson, Ph.D. Assistant Professor (Teaching) Department of Computer Science University of Calgary

August 8, 2024

Copyright © 2024

Outlines

- ImageNet
- Convolution
- Pooling
- Examples
- Batch Normalization
- Pre-processing
- Reflection on ImageNet
- Other Network Types

Deep Learning/ Convolutional Neural Networks

• Classify an image into 1000 possible classes:

e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, Chickadee, red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.

cat, tabby cat (0.71) Egyptian cat (0.22) red fox (0.01)

The Data: ILSVRC

- Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Annual Competition
- 2010->2017

1000 Categories

~1000 training images per Category

~1 million images in total for training

~50k images for validation

Only images released for the test set but no annotations, evaluation is performed centrally by the organizers

Top-5 error on this competition (2012 when things changed)

conv. neural network symbolic

Context (2011-2015 things changed)

• Deep learning big successes

7

Team	Year	Place	Error (top-5)
XRCE (pre-neural-net explosion)	2011	1st	25.8%
Supervision (AlexNet)	2012	1st	16.4%
Clarifai	2013	1st	11.7%
GoogLeNet (Inception)	2014	1st	6.66%
Andrej Karpathy (human)	2014	N/A	5.1%
BN-Inception (Arxiv)	2015	N/A	4.9%
Inception-v3 (Arxiv)	2015	N/A	3.46%

Imagenet challenge classification task

From: http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdfz

Alexnet

https://www.saagie.com/fr/blog/object-detection-part1

GoogLeNet

Keras: https://gist.github.com/joelouismarino/a2ede9ab3928f999575423b9887abd14

Szegedy et al. 2014

Sorry, does not fit in slide.

http://felixlaumon.github.io/assets/kaggle-right-whale/resnet.png

Keras: https://github.com/raghakot/keras-resnet/blob/master/resnet.py

Convolution

Model of vision in animals

[Hubel & Wiesel 1962]:

- simple cells detect local features
- complex cells "pool" the outputs of simple cells within a retinotopic neighborhood.

Consider learning an image:

• Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Detectors

 Same pattern appears in different places: They can be compressed! What about training a lot of such "small" detectors and each detector must "move around".

A convolutional layer

 A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

What is happening?

https://www.saagie.com/fr/blog/object-detection-part1

How do we convolve an image with an ANN?

Note that the parameters in the matrix defining the convolution are **tied** across all places that it is used

input neurons

000000000000000000000000000000000000000	first hidden layer
000000	00000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	

How do we do many convolutions of an image with an ANN?

Pooling

Why Pooling

• Subsampling pixels will not change the object

We can subsample the pixels to make image smaller

fewer parameters to characterize the image

Convolved Pooled feature feature

Examples CNN

AlphaGo

CNN in speech recognition

Only modified the *network structure* and *input format (vector -> 3-D array)*

Alexnet

https://www.saagie.com/fr/blog/object-detection-part1

Alexnet in Keras

model = Sequential()
model.add(Convolution2D(64, 3, 11, 11, border_mode='full'))
model.add(BatchNormalization((64,226,226)))
model.add(Activation('relu'))
model.add(MaxPooling2D(poolsize=(3, 3)))

model.add(Convolution2D(128, 64, 7, 7, border_mode='full'))
model.add(BatchNormalization((128,115,115)))
model.add(Activation('relu'))
model.add(MaxPooling2D(poolsize=(3, 3)))

```
model.add(Convolution2D(192, 128, 3, 3, border_mode='full'))
model.add(BatchNormalization((128,112,112)))
model.add(Activation('relu'))
model.add(MaxPooling2D(poolsize=(3, 3)))
```

```
model.add(Convolution2D(256, 192, 3, 3, border_mode='full'))
model.add(BatchNormalization((128,108,108)))
model.add(Activation('relu'))
model.add(MaxPooling2D(poolsize=(3, 3)))
```

```
model.add(Flatten())
model.add(Dense(12*12*256, 4096, init='normal'))
model.add(BatchNormalization(4096))
model.add(Activation('relu'))
model.add(Dense(4096, 4096, init='normal'))
model.add(BatchNormalization(4096))
model.add(Activation('relu'))
model.add(Dense(4096, 1000, init='normal'))
model.add(BatchNormalization(1000))
model.add(Activation('softmax'))
```


- Neural networks learn the problem using BackPropagation algorithm. •
- BackPropagation involves computing gradients for each layer
- In deep networks this time explodes for training

- Normalization brings all the inputs centered around 0.
- This way, there is not much change in each layer input.
- So, layers in the network can learn from the back-propagation simultaneously, without waiting for the previous layer to learn.
- This speeds up the training of networks.

- Neural networks learn the problem using BackPropagation algorithm. •
- BackPropagation involves computing gradients for each layer
- In deep networks this time explodes for training

- Normalization brings all the inputs centered around 0.
- This way, there is not much change in each layer input.
- So, layers in the network can learn from the back-propagation simultaneously, without waiting for the previous layer to learn.
- This speeds up the training of networks.

Pre-Processing

224x224

224x224

True label: Abyssinian cat

Reflection on ImageNet

- Not designed for people
- Recently went viral
- Sept 23, 2019
- "ImageNet will remove 600,000 images of people stored on its database after an art project exposed racial bias in the program's artificial intelligence system."

- First presented as a research poster in 2009
- Scraped a collection of many millions of images from the internet
- Trained through images categorized by Amazon Mechanical Turk workers
- Crowdsourcing platform through which people can earn money performing small tasks
- Sorted an average of 50 images per minute into thousands of categories
- In 2012, a team from the University of Toronto used a Convolutional Neural Network to handily win the top prize
- Final year 2017, and accuracy in classifying objects in the limited subset had risen from 71.8% to 97.3%. (That did not include "Person" category)

- Al researcher Kate Crawford and artist Trevor Paglen
 - Training Humans an exhibition that at the Prada Foundation in Milan
 - Part of their experiment also lives online at ImageNet Roulette, a website where users can upload their own photographs to see how the database might categorize them.
 - https://www.excavating.ai/
- Example of the complexities and dangers of human classification
- The sliding spectrum between supposedly unproblematic labels like "trumpeter" or "tennis player" to concepts like "spastic," "mulatto," or "redneck."
- ImageNet is an object lesson in what happens when people are categorized like objects.
 - Not all 'nouns' are equal

Other Network Types

Recurrent Neural Networks

- 1901"recurrent semicircles" observed in the cerebellar cortex
- 1940s, multiple people proposed the existence of feedback in the brain, in contrast to previous presumptions of feedforward structure.
- The McCulloch and Pitts paper (1943), which proposed the McCulloch-Pitts neuron model, considered networks that contains cycles
- 1960s Rosenblatt 3-layered network with cycles
- Modern RNN networks are mainly LSTM (1995)
 - and BRNN (bi-directional).
- 2006, BRNN started to revolutionize speech recognition
- Early 2010s encoder-decoder sequence (two RNN) to do machine translation
 - Led to development of Transformers

- Long short-term memory (LSTM) is the most widely used RNN architecture
- The unit acts as a storage buffer
- Ex. Instead of a NN that predicts one point unique each time for one input
 - You can feed a sequence of inputs through it, and the prior points will also be used to influence the ones that follow
 - Good for prediction of things with history
 - Words, paths, data signals

Encoder-Decoder

- Seq2seq problems require one sequence to be changed into another 2014
- In NN, encoder captures input to latent vector state
- Decoder takes a latent vector and generates output

ho

RNN

Cell 0

Encoder

h₁

RNN

Cell 0

X₁

- retains consideration of prior symbols in sequence
- Issues with long input
- Standard until 2017 Transformers

Auto-encoders

- When input/output the same, subset of encoder-decoder
- An autoencoder learns two functions:
 - 1. an encoding function that transforms the input data
 - 2. a decoding function that recreates the input data from the encoded representation.
- Can be used for facial recognition, feature detection, anomaly detection, and learning the meaning of words
- Randomly generate new data that is similar to the input (training) data
 - Even to do compression images, audio
 - <u>https://arstechnica.com/information-</u> <u>technology/2022/09/better-than-jpeg-researcher-discovers-that-</u> <u>stable-diffusion-can-compress-images/</u>

Transformers

- Encoder-decoder transformer model (2017)
- Instead of one-sequence at a time can operate in parallel on sequence
 - This comes with quadratic scale in costs
- 2018 OpenAI GPT (Generative Pre-trained Transformer) for NLP generation
- 2019 google using it on search queries
- 2020 google translate using it
- 2020 GPT-3 visibility booms LLMs
- (also usable with images)
 - DALL-E (2021), Stable Diffusion and others

Latent Diffusion Model

- Latent Diffusion Model (2015)
- Trained by gradually adding noise to the training images. The model is then trained to reverse this process, starting with a noisy image and gradually removing the noise until it recovers the original image
 - Like a sequence of denoising autoencoders
- The resulting embeds within itself a 'latent' or neural network concept of an image (this can be connected to text input as well for prompting)
- And LDM is used by asking for the idea of a latent output, the LDM then runs on some noisy input until the output is 'denoised' sufficiently

Generative Adversarial Networks

- Generative adversarial network (GAN)
- two neural networks contest with each other in the form of a zero-sum game,
 - where one agent's gain is another agent's loss.
 - Discriminator (labeler), Generator (maker)
- GANs are similar to mimicry in evolutionary biology, with an evolutionary arms race between both networks.

Discussion

Discussion

- Decentralized knowledge representation
 possibility to parallelize (GPUs!)
- Can find pattern outside of human understanding
- Currently best way to deal with sensory data
- Network structure determines what can be learned
 must be provided by user
- Represented knowledge not understandable by humans
- Learning can take very long
- Too many learning procedures: when to choose which?

NN Bonus! -> Subgraphs Let us use Compute Units

Possible to break graphs into several chunks and run them parallelly across multiple CPUs, GPUs, TPUs, or other devices

Graph from Hands-On Machine Learning with Scikit-Learn and TensorFlow

- **1**.Save computation. Only run subgraphs that lead to the values you want to fetch.
- 2.Break computation into small, differential pieces to facilitate auto-differentiation
- **3.**Facilitate distributed computation, spread the work across multiple CPUs, GPUs, TPUs, or other devices
- 4. Many common machine learning models are taught and visualized as directed graphs

Figure 3: This image captures how multiple sigmoid units are stacked on the right, all of which receive the same input *x*.

Onward to ... other knowledge representations

Jonathan Hudson, Ph.D. jwhudson@ucalgary.ca https://cspages.ucalgary.ca/~jwhudson/

