
Search Controls
CPSC 433: Artificial Intelligence
Fall 2024

Jonathan Hudson, Ph.D.
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

August 8, 2024

Copyright © 2024

2

Search Controls
Control Yourself!

3

Search Controls

General tasks:
• Determining all possible transitions, i.e.

{(s1,s2) ∈ T | s1 is actual state}
• By selecting the next state

Transitions are usually based on applying general rules to parts of the actual state
Examples:

- extension rules in set-based search
- processing a leaf in tree- or graph-based search

4

Determining all possible transitions

Many general rules that were applicable in the last state usually are applicable in
the current

Therefore
1. Have list of potential transitions from last state
2. Delete from list potential transitions not possible any more
3. Update remaining transitions if necessary (we are in new state)
4. Add newly possible transitions (that are not already in the list)

List of all candidates for next transition and let control K select one

5

Selecting the next state

Have to find best transition
 evaluation necessary

• Store evaluation with transition so that evaluation can be reused (but not
always reusable, remember min-max search)

• Organize list of transitions as heap (priority queue!), since always the transition
with best evaluation is looked for

• Finding best transition takes constant time
• Inserting new transitions much faster than in ordered list

6

Evaluating transitions

Candidates for measuring
• Result state
• Parts of actual state enabling general rule for transition
• Parts new in the result state vs actual state

What to use?
Depends on how difficult it is to compute needed data
(i.e. resulting state resp. parts)

7

General Ideas for What to Measure

• Distance to a goal state or parts of it
• Best that can be achieved from a state (using an approximation, used for

optimization problems)
• Difficulty of new problems in state (needs knowledge about problems)
• Number of transitions that become possible
• Size of state
• History of search
• Use of similar search experiences

8

General Problems
(and solution approaches)
• States get too big

 local search, backtracking, forget history

• Measuring states too time consuming
 abstract to significant parts, use less complex measures

• Combining pieces of knowledge
 normalizing weights + weighted sums

• Contradicting control knowledge
 distributed search approaches, competition

9

Simple Tree Search Controls

10

Search Algorithm Properties

11

Queueing

12

The One Queue

• All these search algorithms are the
same except for fringe strategies

• Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

• Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

• Can even code one implementation
that takes a variable queuing object

13

Properties

14

Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

• Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + …. bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

15

Search Algorithm Properties

• Reminder we have two types of trees
• And-trees

• Need all leafs yes
• Or-trees

• Need one leaf as yes

• The following performance of tree search controls will be examining OR-TREE where we
can end without exploring the whole tree.

• And-trees gain more from pruning (bounding by 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), usually the best pairing is a some variant of
depth preferring search (to find good bounds, followed by deep exploration that can now be pruned
well), so one of the variants of DFS that will follow

16

DFS

17

Depth-First Search

18

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

19

Depth-First Search (DFS) Properties (OR-tree)

• What nodes DFS expand?
• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, takes time O(bm)

• How much space for fringe (OR-tree)?
• Only has siblings on path to root, so O(bm)

• Full expansion down left to farthest leaf is length
m, and for each tier there are b branches

• Is it complete (OR-tree)?
• m could be infinite, so only if we prevent cycles

(more later)

• Is it optimal (OR-tree)?
• No, it finds the “leftmost” solution, regardless of

depth or cost

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

20

BFS

21

Breadth-First Search

22

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

23

Breadth-First Search (BFS) Properties (OR-tree)

• What nodes does BFS expand?
• Processes all nodes above shallowest solution
• Let depth of shallowest solution be s
• Search takes time O(bs)

• How much space for fringe (OR-tree)?
• Has roughly the last tier, so O(bs)

• Is it complete (OR-tree)?
• s must be finite if a solution exists

• Is it optimal (OR-tree)?
• Only if costs are all 1 (more on costs later)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes

24

DFS vs BFS

25

Iterative Deepening

26

Iterative Deepening

• Idea: get DFS’s space advantage with BFS’s time /
shallow-solution advantages

• Run a DFS with depth limit 1. If no solution dispose each DFS
• Run a DFS with depth limit 2. If no solution…
• Run a DFS with depth limit 3. …..

• Isn’t that wastefully redundant?
• If depth is reasonably shallow, not too bad
• Generally, most work happens in the lowest level searched, so

not so bad!

…
b

27

Costs!

28

Cost-Sensitive Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

How?

29

Uniform Cost

30

Uniform Cost Search

31

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

32

…

Uniform Cost Search (UCS) Properties (OR-tree)
• What nodes does UCS expand?

• Processes all nodes with cost less than cheapest solution!

• How much space for fringe (OR-tree)?
• Has roughly the last tier, so O(bC*/ε)

• Is it complete (OR-tree)?
• Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

• Is it optimal (OR-tree)?
• Yes! (A*)

b

C*/ε “tiers”

Cost tiers as
contoured by
epsilon ε tier

c ≤ 3

c ≤ 2

c ≤ 1

33

Uniform Cost Issues

• Remember: UCS explores increasing cost
contours

• The good: UCS is complete and optimal!

• The bad:
• Explores options in every “direction”
• No information about goal location Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1

34

Informed Search

35

Informed Search

o Uninformed Search
o DFS
o BFS
o UCS

▪ Informed Search
▪ Heuristics
▪ Greedy Search
▪ A* Search

36

Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal
▪ Designed for a particular search problem
▪ Pathing?
▪ Examples: Manhattan distance, Euclidean distance for pathing

10

5
11.2

37

Example: Heuristic Function

h(x)

39

Greedy Search

40

Greedy Search

• Evaluation function h (heuristic)

• Estimate value of node expansion to solution and perform it
next

• Variant of uniform but costing is not heuristic and based on
specific problem instance being explored

• Greedy search expands the node that appears to be closest to
goal

41

Example: Romania

• Currently in Arad.
• Need to get to Bucharest

• Formulate goal:
• be in Bucharest

• Formulate problem
• states: various cities
• actions: drive between cities

• Find solution
• sequence of cities

42

Greedy search example

Arad
366

E.g., hSLD(n) = straight-line distance from n to Bucharest

43

Arad

Sibiu
253

Timisoara
329

Zerind
374

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest

44

Arad

Sibiu Timisoara
329

Zerind
374

Arad
366

Fagaras
176

Oradea
380

RimnicuVilcea
193

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest

45

Arad

Sibiu

Fagaras

Timisoara
329

Zerind
374

Arad
366

Oradea
380

RimnicuVilcea
193

Sibiu
253

Bucharest
0

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest

46

Arad

Sibiu

Fagaras

Timisoara
329

Zerind
374

Arad
366

Oradea
380

RimnicuVilcea
193

Sibiu
253

Bucharest
0

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest

140+99+211

47

Arad

Sibiu

Fagaras

Timisoara
329

Zerind
374

Arad
366

Oradea
380

RimnicuVilcea
193

Sibiu
253

Bucharest
0

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest

But 140+99+211 is more than
140+80+97+101

By following a local optima via
heuristic we missed the global optima

48

Greedy Search Properties (OR-tree)
• What nodes does Greedy expand?

• Processes node closest to solution (forward looking)!

• Time (Or-tree):
• exponential 𝑏𝑏𝑚𝑚 (if bad heuristic could take whole tree)
• But good heuristic can give dramatic improvement

• Space (Or-tree):
• Keeps all nodes in memory until found destination

• Is it complete (OR-tree)?
• Can get stuck in loops
• But complete in finite space with repeated-state checking

• Is it optimal (OR-tree)?
• No (ex. we reached Bucharest and didn’t explore other paths)

49

A* Search

50

A* search

• Idea: Start greedy (only forward looking was an issue)
• Add backwards looking, confirm one property about new heuristic

• Evaluation function f (n) = g(n) + h(n)
• g(n) = cost so far to reach n (backwards looking)
• h(n) = estimated cost to goal from n (greedy forward-looking part)
• f (n) = estimated total cost of path (A* heuristic)

• A∗ search requires an admissible heuristic (fully defined later)
• Short defn: never overestimates the cost

• Theorem: A∗ search is optimal

51

A* search example

Arad
366=0+366

E.g., hSLD(n) = straight-line distance from n to Bucharest

52

Arad

Timisoara
447=118+329

A* search example

Zerind
449=75+374

Sibiu
393=140+253

E.g., hSLD(n) = straight-line distance from n to Bucharest

53

Arad

Sibiu

RimnicuVilceaArad Fagaras Oradea

Timisoara
447=118+329

A* search example

Chapter4,Sections1 2

53

Zerind
449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

E.g., hSLD(n) = straight-line distance from n to Bucharest

Here we are different than Greedy as we
explore Rimnicu Vilcea instead of Faragas next
due to heuristic

54

Arad

Sibiu Timisoara
447=118+329

Zerind
449=75+374

RimnicuVilcea

Craiova Pitesti Sibiu
526=366+160 417=317+100 553=300+253

A* search example

Arad Fagaras Oradea
646=280+366 415=239+176 671=291+380

E.g., hSLD(n) = straight-line distance from n to Bucharest

We return to look at Faragas because paths out
of Rimnicu Vilcea aren’t clearly better

55

Arad

Sibiu

RimnicuVilceaFagaras

Timisoara
447=118+329

A* search example

Zerind
449=75+374

Arad
646=280+366

Sibiu
591=338+253

Bucharest
450=450+0

Sibiu
553=300+253

Craiova Pitesti
526=366+160 417=317+100

Oradea
671=291+380

E.g., hSLD(n) = straight-line distance from n to Bucharest

We go back to Rimnicu Vilcea to explore as at
path there is more intriguing than through
Faragas (at the moment)

56

Arad

Sibiu

RimnicuVilceaFagaras

Pitesti

Bucharest
418=418+0

A* search example

Timisoara
447=118+329

Zerind
449=75+374

Arad
646=280+366

Sibiu
591=338+253

Bucharest
450=450+0

Craiova
526=366+160

Sibiu
553=300+253

Craiova
615=455+160

RimnicuVilcea

607=414+193

Oradea
671=291+380

E.g., hSLD(n) = straight-line distance from n to Bucharest

Expand Pitesti

57

Arad

Sibiu

RimnicuVilceaFagaras

Pitesti

Bucharest
418=418+0

A* search example

Timisoara
447=118+329

Zerind
449=75+374

Arad
646=280+366

Sibiu
591=338+253

Bucharest
450=450+0

Craiova
526=366+160

Sibiu
553=300+253

Craiova
615=455+160

RimnicuVilcea

607=414+193

Oradea
671=291+380

E.g., hSLD(n) = straight-line distance from n to Bucharest

We go to Bucharest as minimal next transition
(but out of Pitesti instead of Faragas!) and find
the shortest path!

58

Combining UCS and Greedy

o Uniform-cost orders by path cost, or backward cost g(n)
o Greedy orders by goal proximity, or forward cost h(n)

o A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0
c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

59

A* Search Properties (OR-tree)
• What nodes does Greedy expand?

• Processes all nodes with heuristic cost less than optimal
solution! (does it in cost tiers)

• Time (Or-tree):
• exponential 𝑏𝑏𝑚𝑚

• but only in regard to heuristic error relative to solution

• Space (Or-tree):
• Keeps all nodes in memory until found destination

• Is it complete (OR-tree)?
• Yes, unless infinite expansion

• Is it optimal (OR-tree)?
• Yes (Cannot move to a greater cost contour until smaller one is

checked, i.e. will always find smallest first)

60

When should A* terminate?

o Should we stop when we enqueue a goal?

o No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

S 0 3 3

g h +

S->A 2 2 4

S->B 2 1 3

S->B->G 5 0 5

S->A->G 4 0 4

61

Is A* Optimal?

o What went wrong?
o Actual bad goal cost < estimated good goal cost
o We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7

g h +

S 0 7 7
S->A 1 6 7
S->G 5 0 5

62

Admissable Heuristics

63

Admissable Heuristic

• An optimistic cost guess
• Evaluation function f = g + h

• g = cost so far to reach n
• h = estimated cost to goal
• f = estimated total cost goal

• Never overestimates (thinks things that turn out bad are better than they are)
• This means it doesn’t eliminate them from exploration too early

• But some estimate of cost allows rational limiting of what to explore first

• A good admissible heuristic will be more accurate, a useless one would
estimate 0 and have no benefit to search

64

Admissible Heuristics

o A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

o Examples:

o Coming up with admissible heuristics is most of what’s involved in using A* in practice.

15 11.5

65

Optimality of A* Tree Search

Assume:
o A is an optimal goal node
o B is a suboptimal goal node
o h is admissible

Claim:
o A will exit the fringe before B

…

66

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe,

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost
Admissibility of h

…

h = 0 at a goal

67

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe,

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…

68

Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe,

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

o All ancestors of A expand before B
o A expands before B
o A* search is optimal

…

69

Optimality of A∗ (more useful)

• Lemma: A∗ expands nodes in order of increasing f value
• Gradually adds “f -contours” of nodes (lowest cost breadth like expansion)

70

Properties of A*

…
b

…
b

Uniform-Cost A*

71

UCS vs A* Contours

o Uniform-cost expands equally in all “directions”

o A* expands mainly toward the goal, but does
hedge its bets to ensure optimality

Start Goal

Start Goal

72

Comparison

Greedy Uniform Cost A*

75

Generating Admissable
Heuristic

76

• E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance

• (i.e., no. of squares from desired location of each tile)

• h1(S) =
• h2(S) =

Start State Goal State

51 2 3

4 5 6

7 8

7 2 4

5 6

8 3 1

Admissible heuristics

https://murhafsousli.github.io/8puzzle/#/

77

• E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance

• (i.e., no. of squares from desired location of each tile)

• h1(S) =?? 6
• h2(S) =?? 4+0+3+3+1+0+2+1 = 14

Start State Goal State

51 2 3

4 5 6

7 8

7 2 4

5 6

8 3 1

Admissible heuristics

78

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible), then h2 dominates h1 and is
better for search
• Typical search costs:
• d = 14

• IDS = 3,473,941 nodes
• A∗(h1) = 539 nodes A∗(h2) = 113 nodes

• d = 24
• IDS ≈ 54,000,000,000 nodes
• A∗(h1) = 39,135 nodes A∗(h2) = 1,641 nodes

79

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible), then h2 dominates h1 and is
better for search

• Given any admissible heuristics ha, hb, h(n) = max(ha(n), hb(n))
• is also admissible and dominates ha, hb

80

Relaxed problems

• Admissible heuristics can be derived from the exact
• solution cost of a relaxed version of the problem

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then
h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent square, then
h2(n) gives the shortest solution

• Key point: the optimal solution cost of a relaxed problem
• is no greater than the optimal solution cost of the real problem

81

A* Summary

82

A*: Summary

o A* uses both backward costs and (estimates of) forward costs

o A* is optimal with admissible / consistent heuristics

o Heuristic design is key: often use relaxed problems

83

Local Search

84

Local Search

85

Local Search (I)

General Idea:
After selecting a transition, do not consider any transitions that were possible in

previous states
 “Never-look-back-Heuristic”
Example: trees (works for sets also one-element sets)

eliminate older
possibilities

86

Local Search (II)

Advantages:
• Less decisions
• Complexity can be bound by depth of tree (number of solution steps)
• Each transition contributes to found solution
• Predictable behavior with regard to run time

Disadvantages
- No guarantee for optimality of solution
- No guarantee for optimality of number of necessary transitions

87

Local Search

• Tree search keeps unexplored alternatives on the fringe (ensures
completeness)

• Local search: improve a single option until you can’t make it better (no fringe!)

• New successor function: local changes

• Generally much faster and more memory efficient (but incomplete and
suboptimal)

88

Simple Local Search

89

Hill Climbing

• Simple, general idea:
• Start wherever
• Repeat: move to the best neighboring state
• If no neighbors better than current, quit

• What’s bad about this approach?

• What’s good about it?

90

Hill Climbing Diagram

91

Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

92

Advanced Local Search

93

Simulated Annealing

• Idea: Escape local maxima by allowing downhill moves
• But make them rarer as time goes on

93
This Photo by Unknown Author is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Simulated_annealing
https://creativecommons.org/licenses/by-sa/3.0/

94

Simulated Annealing

• Theoretical guarantee:
• If ‘Temperature’ decreased slowly enough,
 will converge to optimal state!

• Is this an interesting guarantee?

• Sounds like magic, but reality is reality:
• The more downhill steps you need to escape a local

optimum, the less likely you are to ever make them all in
a row

• People think hard about ridge operators which let you
jump around the space in better ways

95

Particle Swarm Optimization

• Design complexity grows.
• Think of particles as having ‘gravity’. The better the

solution the more ‘gravity’.
• Particles also have momentum.
• Have many particles.
• Each step, particles follow their current direction of change

with influence of the nearby local optima and global
optima.

• Less touchy to parameters and good at exploration. Often
cooling principle included to help find best at end.

• Challenges with discrete problems.

96

Genetic Algorithms

• Genetic algorithms use a natural selection metaphor
• Survival of the fittest (fit being best solution value)

• Keep best N hypotheses at each step (selection) based on a fitness function
• Create next generation by combining ‘DNA’ of the previous

• Crossover operators (two parents) and mutation operators

• Possibly the most misunderstood, misapplied (and even maligned) technique around

97

Search Summary

98

Search and Models

• Search operates over models of
the world

• The agent doesn’t actually try all the
plans out in the real world!

• Planning is all “in simulation”
• Your search is only as good as your

models…

99

Search Gone Wrong?

Onward to …
neural networks

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/

	Search Controls
	Search Controls
	Search Controls
	Determining all possible transitions
	Selecting the next state
	Evaluating transitions
	General Ideas for What to Measure
	General Problems �(and solution approaches)
	Simple Tree Search Controls
	Search Algorithm Properties
	Slide Number 11
	The One Queue
	Slide Number 13
	Search Algorithm Properties
	Search Algorithm Properties
	Slide Number 16
	Depth-First Search
	Depth-First Search
	Depth-First Search (DFS) Properties (OR-tree)
	Slide Number 20
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search (BFS) Properties (OR-tree)
	DFS vs BFS
	Slide Number 25
	Iterative Deepening
	Slide Number 27
	Cost-Sensitive Search
	Slide Number 29
	Uniform Cost Search
	Uniform Cost Search
	Uniform Cost Search (UCS) Properties (OR-tree)
	Uniform Cost Issues
	Informed Search
	Informed Search
	Search Heuristics
	Example: Heuristic Function
	Slide Number 39
	Greedy Search
	Example:	Romania
	Greedy search example
	Greedy search example
	Greedy search example
	Greedy search example
	Greedy search example
	Greedy search example
	Greedy Search Properties (OR-tree)
	Slide Number 49
	A* search
	A* search example
	A* search example
	A* search example
	A* search example
	A* search example
	A* search example
	A* search example
	Combining UCS and Greedy
	A* Search Properties (OR-tree)
	When should A* terminate?
	Is A* Optimal?
	Slide Number 62
	Admissable Heuristic
	Admissible Heuristics
	Optimality of A* Tree Search
	Optimality of A* Tree Search: Blocking
	Optimality of A* Tree Search: Blocking
	Optimality of A* Tree Search: Blocking
	Optimality of A∗ (more useful)
	Properties of A*
	UCS vs A* Contours
	Comparison
	Slide Number 75
	Admissible heuristics
	Admissible heuristics
	Dominance
	Dominance
	Relaxed problems
	Slide Number 81
	A*: Summary
	Local Search
	Local Search
	Local Search (I)
	Local Search (II)
	Local Search
	Slide Number 88
	Hill Climbing
	Hill Climbing Diagram
	Hill Climbing Quiz
	Slide Number 92
	Simulated Annealing
	Simulated Annealing
	Particle Swarm Optimization
	Genetic Algorithms
	Search Summary
	Search and Models
	Search Gone Wrong?
	Onward to … �neural networks

