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Search Controls
Control Yourself!
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Search Controls

General tasks:
• Determining all possible transitions, i.e. 

{(s1,s2) ∈ T | s1 is actual state}
• By selecting the next state

Transitions are usually based on applying general rules to parts of the actual state
Examples:

- extension rules in set-based search
- processing a leaf in tree- or graph-based search
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Determining all possible transitions

Many general rules that were applicable in the last state usually are applicable in 
the current

Therefore
1. Have list of potential transitions from last state
2. Delete from list potential transitions not possible any more
3. Update remaining transitions if necessary (we are in new state)
4. Add newly possible transitions (that are not already in the list)

List of all candidates for next transition and let control K select one
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Selecting the next state

Have to find best transition
 evaluation necessary

• Store evaluation with transition so that evaluation can be reused (but not 
always reusable, remember min-max search)

• Organize list of transitions as heap (priority queue!), since always the transition 
with best evaluation is looked for

• Finding best transition takes constant time
• Inserting new transitions much faster than in ordered list
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Evaluating transitions

Candidates for measuring
• Result state
• Parts of actual state enabling general rule for transition
• Parts new in the result state vs actual state

What to use?
Depends on how difficult it is to compute needed data
(i.e. resulting state resp. parts)
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General Ideas for What to Measure

• Distance to a goal state or parts of it
• Best that can be achieved from a state (using an approximation, used for 

optimization problems)
• Difficulty of new problems in state (needs knowledge about problems)
• Number of transitions that become possible
• Size of state
• History of search
• Use of similar search experiences
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General Problems 
(and solution approaches)
• States get too big

 local search, backtracking, forget history

• Measuring states too time consuming
 abstract to significant parts, use less complex measures

• Combining pieces of knowledge
 normalizing weights + weighted sums

• Contradicting control knowledge
 distributed search approaches, competition
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Simple Tree Search Controls
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Search Algorithm Properties
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Queueing
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The One Queue

• All these search algorithms are the 
same except for fringe strategies

• Conceptually, all fringes are priority 
queues (i.e. collections of nodes with 
attached priorities)

• Practically, for DFS and BFS, you can 
avoid the log(n) overhead from an 
actual priority queue, by using stacks 
and queues

• Can even code one implementation 
that takes a variable queuing object
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Properties
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Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

• Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + …. bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers
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Search Algorithm Properties

• Reminder we have two types of trees
• And-trees

• Need all leafs yes
• Or-trees

• Need one leaf as yes

• The following performance of tree search controls will be examining OR-TREE where we 
can end without exploring the whole tree. 

• And-trees gain more from pruning (bounding by 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏), usually the best pairing is a some variant of 
depth preferring search (to find good bounds, followed by deep exploration that can now be pruned 
well), so one of the variants of DFS that will follow
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DFS
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Depth-First Search
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Depth-First Search
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Depth-First Search (DFS) Properties (OR-tree)

• What nodes DFS expand?
• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, takes time O(bm)

• How much space for fringe (OR-tree)?
• Only has siblings on path to root, so O(bm)

• Full expansion down left to farthest leaf is length 
m, and for each tier there are b branches

• Is it complete (OR-tree)?
• m could be infinite, so only if we prevent cycles 

(more later)

• Is it optimal (OR-tree)?
• No, it finds the “leftmost” solution, regardless of 

depth or cost

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers
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BFS
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search (BFS) Properties (OR-tree)

• What nodes does BFS expand?
• Processes all nodes above shallowest solution
• Let depth of shallowest solution be s
• Search takes time O(bs)

• How much space for fringe (OR-tree)?
• Has roughly the last tier, so O(bs)

• Is it complete (OR-tree)?
• s must be finite if a solution exists

• Is it optimal (OR-tree)?
• Only if costs are all 1 (more on costs later)

…
b

1 node
b nodes

b2 nodes

bm nodes

s tiers

bs nodes
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DFS vs BFS
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Iterative Deepening
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Iterative Deepening

• Idea: get DFS’s space advantage with BFS’s time / 
shallow-solution advantages

• Run a DFS with depth limit 1.  If no solution dispose each DFS 
• Run a DFS with depth limit 2.  If no solution…
• Run a DFS with depth limit 3.  …..

• Isn’t that wastefully redundant?
• If depth is reasonably shallow, not too bad
• Generally, most work happens in the lowest level searched, so 

not so bad!

…
b
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Costs!



28

Cost-Sensitive Search
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Uniform Cost
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Uniform Cost Search
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Uniform Cost Search
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…

Uniform Cost Search (UCS) Properties (OR-tree)
• What nodes does UCS expand?

• Processes all nodes with cost less than cheapest solution!

• How much space for fringe (OR-tree)?
• Has roughly the last tier, so O(bC*/ε)

• Is it complete (OR-tree)?
• Assuming best solution has a finite cost and minimum arc cost 

is positive, yes!

• Is it optimal (OR-tree)?
• Yes!  (A*)

b

C*/ε  “tiers”

Cost tiers as 
contoured by 
epsilon ε tier

c ≤ 3

c ≤ 2

c ≤ 1
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Uniform Cost Issues

• Remember: UCS explores increasing cost 
contours

• The good: UCS is complete and optimal!

• The bad:
• Explores options in every “direction”
• No information about goal location Start Goal

…

c ≤ 3
c ≤ 2

c ≤ 1
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Informed Search
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Informed Search

o Uninformed Search
o DFS
o BFS
o UCS

▪ Informed Search
▪ Heuristics
▪ Greedy Search
▪ A* Search
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Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal
▪ Designed for a particular search problem
▪ Pathing? 
▪ Examples: Manhattan distance, Euclidean distance for pathing

10

5
11.2



37

Example: Heuristic Function

h(x)
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Greedy Search
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Greedy Search

• Evaluation function h (heuristic)

• Estimate value of node expansion to solution and perform it 
next

• Variant of uniform but costing is not heuristic and based on 
specific problem instance being explored

• Greedy search expands the node that appears to be closest to 
goal
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Example: Romania

• Currently in Arad.  
• Need to get to Bucharest

• Formulate goal:
• be in Bucharest

• Formulate problem
• states: various cities  
• actions: drive between cities

• Find solution
• sequence of cities
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Greedy search example

Arad  
366

E.g., hSLD(n) = straight-line distance from n to Bucharest
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Arad

Sibiu  
253

Timisoara  
329

Zerind  
374

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest
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Arad

Sibiu Timisoara  
329

Zerind  
374

Arad  
366

Fagaras  
176

Oradea  
380

RimnicuVilcea
193

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest
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Arad

Sibiu

Fagaras

Timisoara  
329

Zerind  
374

Arad  
366

Oradea  
380

RimnicuVilcea
193

Sibiu  
253

Bucharest  
0

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest
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Arad

Sibiu

Fagaras

Timisoara  
329

Zerind  
374

Arad  
366

Oradea  
380

RimnicuVilcea
193

Sibiu  
253

Bucharest  
0

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest

140+99+211
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Arad

Sibiu

Fagaras

Timisoara  
329

Zerind  
374

Arad  
366

Oradea  
380

RimnicuVilcea
193

Sibiu  
253

Bucharest  
0

Greedy search example
E.g., hSLD(n) = straight-line distance from n to Bucharest

But 140+99+211 is more than
140+80+97+101

By following a local optima via 
heuristic we missed the global optima
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Greedy Search Properties (OR-tree)
• What nodes does Greedy expand?

• Processes node closest to solution (forward looking)!

• Time (Or-tree):
• exponential 𝑏𝑏𝑚𝑚 (if bad heuristic could take whole tree)
• But good heuristic can give dramatic improvement  

• Space (Or-tree): 
• Keeps all nodes in memory until found destination

• Is it complete (OR-tree)?
• Can get stuck in loops
• But complete in finite space with repeated-state checking

• Is it optimal (OR-tree)?
• No (ex. we reached Bucharest and didn’t explore other paths)
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A* Search
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A* search

• Idea: Start greedy (only forward looking was an issue)
• Add backwards looking, confirm one property about new heuristic

• Evaluation function f (n) = g(n) + h(n)  
• g(n) = cost so far to reach n (backwards looking)
• h(n) = estimated cost to goal from n (greedy forward-looking part)
• f (n) = estimated total cost of path (A* heuristic)

• A∗  search requires an admissible heuristic (fully defined later)
• Short defn: never overestimates the cost

• Theorem: A∗  search is optimal
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A* search example

Arad 
366=0+366

E.g., hSLD(n) = straight-line distance from n to Bucharest
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Arad

Timisoara 
447=118+329

A* search example

Zerind 
449=75+374

Sibiu 
393=140+253

E.g., hSLD(n) = straight-line distance from n to Bucharest
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Arad

Sibiu

RimnicuVilceaArad Fagaras Oradea

Timisoara 
447=118+329

A* search example

Chapter4,Sections1 2
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Zerind 
449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

E.g., hSLD(n) = straight-line distance from n to Bucharest

Here we are different than Greedy as we 
explore Rimnicu Vilcea instead of Faragas next 
due to heuristic
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Arad

Sibiu Timisoara 
447=118+329

Zerind 
449=75+374

RimnicuVilcea

Craiova Pitesti Sibiu 
526=366+160 417=317+100 553=300+253

A* search example

Arad Fagaras Oradea 
646=280+366 415=239+176 671=291+380

E.g., hSLD(n) = straight-line distance from n to Bucharest

We return to look at Faragas because paths out 
of Rimnicu Vilcea aren’t clearly better
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Arad

Sibiu

RimnicuVilceaFagaras

Timisoara 
447=118+329

A* search example

Zerind 
449=75+374

Arad 
646=280+366

Sibiu 
591=338+253

Bucharest 
450=450+0

Sibiu 
553=300+253

Craiova Pitesti 
526=366+160 417=317+100

Oradea 
671=291+380

E.g., hSLD(n) = straight-line distance from n to Bucharest

We go back to Rimnicu Vilcea to explore as at 
path there is more intriguing than through 
Faragas (at the moment)
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Arad

Sibiu

RimnicuVilceaFagaras

Pitesti

Bucharest 
418=418+0

A* search example

Timisoara 
447=118+329

Zerind 
449=75+374

Arad 
646=280+366

Sibiu 
591=338+253

Bucharest 
450=450+0

Craiova 
526=366+160

Sibiu 
553=300+253

Craiova 
615=455+160

RimnicuVilcea

607=414+193

Oradea 
671=291+380

E.g., hSLD(n) = straight-line distance from n to Bucharest

Expand Pitesti
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Arad

Sibiu

RimnicuVilceaFagaras

Pitesti

Bucharest 
418=418+0

A* search example

Timisoara 
447=118+329

Zerind 
449=75+374

Arad 
646=280+366

Sibiu 
591=338+253

Bucharest 
450=450+0

Craiova 
526=366+160

Sibiu 
553=300+253

Craiova 
615=455+160

RimnicuVilcea

607=414+193

Oradea 
671=291+380

E.g., hSLD(n) = straight-line distance from n to Bucharest

We go to Bucharest as minimal next transition 
(but out of Pitesti instead of Faragas!) and find 
the shortest path!



58

Combining UCS and Greedy

o Uniform-cost orders by path cost, or backward cost  g(n)
o Greedy orders by goal proximity, or forward cost  h(n)

o A* Search orders by the sum: f(n) = g(n) + h(n)
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A* Search Properties (OR-tree)
• What nodes does Greedy expand?

• Processes all nodes with heuristic cost less than optimal 
solution! (does it in cost tiers)

• Time (Or-tree):
• exponential 𝑏𝑏𝑚𝑚

• but only in regard to heuristic error relative to solution

• Space (Or-tree): 
• Keeps all nodes in memory until found destination

• Is it complete (OR-tree)?
• Yes, unless infinite expansion

• Is it optimal (OR-tree)?
• Yes (Cannot move to a greater cost contour until smaller one is 

checked, i.e. will always find smallest first)
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When should A* terminate?

o Should we stop when we enqueue a goal?

o No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

S       0 3 3

g h +

S->A    2 2 4

S->B    2 1 3

S->B->G 5 0 5

S->A->G 4 0 4
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Is A* Optimal?

o What went wrong?
o Actual bad goal cost < estimated good goal cost
o We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7

g h +

S       0 7 7
S->A    1 6 7
S->G    5 0 5
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Admissable Heuristics
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Admissable Heuristic

• An optimistic cost guess
• Evaluation function f = g + h  

• g = cost so far to reach n
• h = estimated cost to goal
• f  = estimated total cost goal

• Never overestimates (thinks things that turn out bad are better than they are)
• This means it doesn’t eliminate them from exploration too early

• But some estimate of cost allows rational limiting of what to explore first

• A good admissible heuristic will be more accurate, a useless one would 
estimate 0 and have no benefit to search
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Admissible Heuristics

o A heuristic h is admissible (optimistic) if:

 where               is the true cost to a nearest goal

o Examples:

o Coming up with admissible heuristics is most of what’s involved in using A* in practice.

15 11.5
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Optimality of A* Tree Search

Assume:
o A is an optimal goal node
o B is a suboptimal goal node
o h is admissible

Claim:
o A will exit the fringe before B

…
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Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe, 

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost
Admissibility of h

…

h = 0 at a goal
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Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe, 

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

B is suboptimal
h = 0 at a goal

…
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Optimality of A* Tree Search: Blocking

Proof:
o Imagine B is on the fringe
o Some ancestor n of A is on the fringe, 

too (maybe A!)
o Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3.  n expands before B

o All ancestors of A expand before B
o A expands before B
o A* search is optimal

…
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Optimality of A∗ (more useful)

• Lemma: A∗ expands nodes in order of increasing f value
• Gradually adds “f -contours” of nodes (lowest cost breadth like expansion)
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Properties of A*

…
b

…
b

Uniform-Cost A*
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UCS vs A* Contours

o Uniform-cost expands equally in all “directions”

o A* expands mainly toward the goal, but does 
hedge its bets to ensure optimality

Start Goal

Start Goal
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Comparison

Greedy Uniform Cost A*
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Generating Admissable 
Heuristic
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• E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance

• (i.e., no. of squares from desired location of each tile)

• h1(S) =
• h2(S) =

Start State Goal State

51 2 3

4 5 6

7 8

7 2 4

5 6

8 3 1

Admissible heuristics

https://murhafsousli.github.io/8puzzle/#/
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• E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance

• (i.e., no. of squares from desired location of each tile)

• h1(S) =?? 6
• h2(S) =?? 4+0+3+3+1+0+2+1 = 14

Start State Goal State

51 2 3

4 5 6

7 8

7 2 4

5 6

8 3 1

Admissible heuristics
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Dominance

• If h2(n) ≥ h1(n) for all n (both admissible),  then h2 dominates h1 and is 
better for search
• Typical search costs:
• d = 14 

• IDS = 3,473,941 nodes
• A∗(h1) = 539 nodes  A∗(h2) = 113 nodes

• d = 24 
• IDS ≈ 54,000,000,000 nodes
• A∗(h1) = 39,135 nodes  A∗(h2) = 1,641 nodes
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Dominance

• If h2(n) ≥ h1(n) for all n (both admissible),  then h2 dominates h1 and is 
better for search

• Given any admissible heuristics ha, hb,  h(n) = max(ha(n), hb(n))
• is also admissible and dominates ha, hb
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Relaxed problems

• Admissible heuristics can be derived from the exact
• solution cost of a relaxed version of the problem

• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,  then 
h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent square,  then 
h2(n) gives the shortest solution

• Key point: the optimal solution cost of a relaxed problem
• is no greater than the optimal solution cost of the real problem
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A* Summary
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A*: Summary

o A* uses both backward costs and (estimates of) forward costs

o A* is optimal with admissible / consistent heuristics

o Heuristic design is key: often use relaxed problems
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Local Search
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Local Search
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Local Search (I)

General Idea:
After selecting a transition, do not consider any transitions that were possible in 

previous states
 “Never-look-back-Heuristic”
Example: trees (works for sets also  one-element sets)

eliminate older
possibilities
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Local Search (II)

Advantages:
• Less decisions
• Complexity can be bound by depth of tree (number of solution steps)
• Each transition contributes to found solution
• Predictable behavior with regard to run time

Disadvantages
- No guarantee for optimality of solution
- No guarantee for optimality of number of necessary transitions
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Local Search

• Tree search keeps unexplored alternatives on the fringe (ensures 
completeness)

• Local search: improve a single option until you can’t make it better (no fringe!)

• New successor function: local changes

• Generally much faster and more memory efficient (but incomplete and 
suboptimal)
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Simple Local Search



89

Hill Climbing

• Simple, general idea:
• Start wherever
• Repeat: move to the best neighboring state
• If no neighbors better than current, quit

• What’s bad about this approach?

• What’s good about it?
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Hill Climbing Diagram
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Hill Climbing Quiz

Starting from X, where do you end up ?
 
Starting from Y, where do you end up ?

Starting from Z, where do you end up ?
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Advanced Local Search
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Simulated Annealing

• Idea:  Escape local maxima by allowing downhill moves
• But make them rarer as time goes on

93
This Photo by Unknown Author is licensed under CC BY-SA

https://en.wikipedia.org/wiki/Simulated_annealing
https://creativecommons.org/licenses/by-sa/3.0/
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Simulated Annealing

• Theoretical guarantee:
• If ‘Temperature’ decreased slowly enough,
 will converge to optimal state!

• Is this an interesting guarantee?

• Sounds like magic, but reality is reality:
• The more downhill steps you need to escape a local 

optimum, the less likely you are to ever make them all in 
a row

• People think hard about ridge operators which let you 
jump around the space in better ways
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Particle Swarm Optimization

• Design complexity grows.
• Think of particles as having ‘gravity’. The better the 

solution the more ‘gravity’.
• Particles also have momentum.
• Have many particles.
• Each step, particles follow their current direction of change 

with influence of the nearby local optima and global 
optima.

• Less touchy to parameters and good at exploration. Often 
cooling principle included to help find best at end.

• Challenges with discrete problems.
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Genetic Algorithms

• Genetic algorithms use a natural selection metaphor
• Survival of the fittest (fit being best solution value)

• Keep best N hypotheses at each step (selection) based on a fitness function
• Create next generation by combining ‘DNA’ of the previous

• Crossover operators (two parents) and mutation operators

• Possibly the most misunderstood, misapplied (and even maligned) technique around
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Search Summary
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Search and Models

• Search operates over models of 
the world

• The agent doesn’t actually try all the 
plans out in the real world!

• Planning is all “in simulation”
• Your search is only as good as your 

models…
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Search Gone Wrong?



Onward to … 
neural networks

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/
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