
Other Search Models
CPSC 433: Artificial Intelligence
Fall 2024

Jonathan Hudson, Ph.D.
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

August 8, 2024

Copyright © 2024

2

Other Search Models and Processes

• Problems with the models/processes so far:

1. What about elements of Prob that appear repeatedly in a tree? Can we get
rid of duplication and resulting redundancy?
• Graph-based search!

2. What if our problem solution requires alternatives of problem divisions and
we want this represented in the model?
• And-or-tree-based search!

3

Graph-Based Search

4

Graph Search

5

Tree Search: Extra Work!

o Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

6

Graph Search

o In BFS, for example, we shouldn’t bother expanding the pink circled
nodes (why?)

S

d

e

r

f

a a
p

q

h

f

r

q

c G

a

q

qp

q

a

e p

h

c

b c

G

7

Graph Search

o Idea: never expand a state twice

o How to implement:
o Tree search + set of expanded states (“closed set”)
o Expand the search tree node-by-node, but…
o Before expanding a node, check to make sure its state has never been expanded before
o If not new, skip it, if new add to closed set

o Important: store the closed set as a set, not a list

o Can graph search wreck completeness? Why/why not?

o How about optimality?

8

Graph-based search

• "Improvement" of tree-based search
• Achieves that every element of Prob occurs in only one node
• Graph described as set of nodes with set of arcs (directed connections)
• Transitions extend nodes that have no arcs going out
• Transitions as in trees, except that we check if a certain node is already there

and if yes, we do not create it again, we just add an arc

9

Graph-Based-search: Blocks World

10

Example (Sketch):
Planning in the Blocks World (I)
Problem: Given a set of blocks in certain relations to each other (situation), the

same blocks in a different relation and a robot arm, determine a set of actions
of the arm that transform the first situation into the second one

Idea: Do an or-tree-based search using the different possible actions of the robot
arm as the alternatives

Start Goal

11

Example (Sketch):
Planning in the Blocks World (II)
Observation: A lot of different action combinations lead to the same result (since

for each action there is an action with exactly the opposite effect)
a lot of problem descriptions occur in several nodes in the or-tree
Switching from a tree to a graph avoids redundant work and takes a lot of

pressure from the search control

12

Pros and Cons

• Less memory consumption
• No redundant work
- Some help ( overhead) necessary to quickly detect already represented

elements of Prob
- Graphs are more difficult to debug

Use only, if quite some duplication of nodes occurs in a tree

13

And-Or-Tree-based Search

14

And-or-tree-based search

• Combines and- and or-trees to represent all alternative divisions of problems in
the current state

• Formal description very complex, especially end condition:
For each collection of alternatives, one division (i.e. one alternative) has to be
solved by compatible subsolutions ( recursive definition)

• And-or-transitions: Extend leaf by adding nodes representing alternative lists of
nodes representing a division of the leaf's problem

15

Multiplayer Games

16

Playing multi-player games

Problem: How to determine the best next
move in a game like chess or checkers
given a limited amount of computing time.

Idea: Search among the possible alternative
moves and their consequences

  use and-or-trees to represent search
state

• and-part: select one of your possible moves
• or-part: considering all possible counter-moves

of your opponent(s)
• problems: game situations

17

Playing multi-player games (II)

P0 ?

. . .

Pk,1 ?P1,1 ? P1,n ?. . . Pk,m?. . .

possible own moves

all opponent
 responses

Problem: usually we can not search all branches until game
is decided
 search control decides based on current situation where to
 go deeper

18

New: Cost -> Utility!

• no longer minimizing cost!
• agent now wants to maximize its score/utility!

19

Types of Games

20

Types of Games

• Many different kinds of games!

• Axes:
• Deterministic or stochastic?
• One, two, or more players?
• Zero sum?
• Perfect information (can you see the state)?

21

Types of Games

• General Games
• Agents have independent utilities (values on

outcomes)
• Cooperation, indifference, competition, and more

are all possible
• We don’t make AI to act in isolation, it should a) work

around people and b) help people
• That means that every AI agent needs to solve a game

• Zero-Sum Games
• Agents have opposite utilities (values on

outcomes)
• Lets us think of a single value that one maximizes

and the other minimizes
• Adversarial, pure competition

22

Zero-Sum Game Games 

• Checkers: 1950: First computer player. 1994: First
computer champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete
8-piece endgame. 2007: Checkers solved!

• Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply.
Current programs are even better, if less historic.

• Go :2016: Google’s AlphaGo defeated 9-dan
professional (highest rank) Lee Sedol (live-
streamed on YouTube) Branches at one action
choice can be greater than 30

23

Adversarial Games

24

Games vs. Search

• “Unpredictable” opponent ⇒ solution is a strategy specifying a move for every
possible opponent reply

• Time limits ⇒ unlikely to find goal, must approximate
• Plan of attack:

1. Computer considers possible lines of play (Babbage, 1846)
2. Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
3. Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
4. First chess program (Turing, 1951)
5. Machine learning to improve evaluation accuracy (Samuel, 1952–57)
6. Pruning to allow deeper search (McCarthy, 1956)

25

Types of Games
deterministic chance

perfect

imperfect

This Photo by Unknown Author is
licensed under CC BY - POKER

This Photo by Unknown Author is
licensed under CC BY-SA -
BACKGAMMON

This Photo by Unknown Author is
licensed under CC BY-SA - GO

This Photo by Unknown
Author is licensed under CC BY
- BATTLESHIPS

https://foto.wuestenigel.com/red-dice-on-a-blurry-background-of-playing-cards/
https://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Backgammon
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikiquote.org/wiki/Go
https://creativecommons.org/licenses/by-sa/3.0/
http://www.flickr.com/photos/jking89/1363983280/
https://creativecommons.org/licenses/by/3.0/

26

Types of Games
deterministic chance

perfect

imperfect
This Photo by Unknown Author is
licensed under CC BY

This Photo by Unknown Author is
licensed under CC BY-SAThis Photo by Unknown Author is

licensed under CC BY-SA

This Photo by Unknown
Author is licensed under CC BY

https://foto.wuestenigel.com/red-dice-on-a-blurry-background-of-playing-cards/
https://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Backgammon
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikiquote.org/wiki/Go
https://creativecommons.org/licenses/by-sa/3.0/
http://www.flickr.com/photos/jking89/1363983280/
https://creativecommons.org/licenses/by/3.0/

27

Types of Games
deterministic chance

perfect chess, checkers,
othello, go, tic tac toe

backgammon,
monopoly

imperfect battleships,
blind tic tac toe

bridge, poker,
scrabble, nuclear war

28

Game Trees

29

Single-Agent Trees (Good for and-tree)

8

2 0 2 6 4 6… …

30

Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state:
The best achievable

outcome (utility)
from that state

31

Adversarial Game Trees (could be and-tree, better as
and-or-tree)

-20 -8 -18 -5 -10 +4… … -20 +8

32

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

33

Tic-Tac-Toe Game Tree

34

MiniMax

35

Minimax

36

Adversarial Search (Minimax)

• Deterministic, zero-sum games:
• Tic-tac-toe, chess, checkers
• One player maximizes result
• The other minimizes result

• Minimax search:
• A state-space search tree
• Players alternate turns
• Compute each node’s minimax value:

the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

38

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

39

Minimax Example

12 8 5 23 2 144 6

3 2 2

3

40

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

41

Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

• Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + …. bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

42

Minimax Efficiency

• How efficient is minimax?
• Just like (exhaustive) DFS
• Time: O(bm)
• Space: O(bm)

• Example: For chess, b ≈ 35, m ≈ 100
• Exact solution is completely infeasible
• But, do we need to explore the whole tree?

43

Considerations

44

Resource Limits

45

Pruning

46

Game Tree Pruning 𝒇𝒇𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃

47

Game Tree Pruning 𝒇𝒇𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃

• 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is an additional f-function used in tree controls to
• sol-entry yes a leaf in And-Trees or And-Or-Trees
• When considering a leaf, if a 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 returns true a leaf is change to sol-sentry yes even if it

is an incomplete solution
• Generally used in optimization problems to stop exploration of a tree path where a

solutions in it will not be better than a currently found complete solution
• These f-bound yes leaf nodes are still part of the complete and-tree consideration at the

end, it was simply unnecessary to finish exploring them to determine (in an optimization
problem) that any further exploration was necessary (the leaf nodes would be order as not
as optimal as another sol-entry yes completion solution we already have)

• We can apply this idea to minimax (to prune the and-or-tree it creates)
• It is common way to improve the runtime performance of tree algorithms so that they are less

costly than simply an exhaustive exploration of all possible combinations (now we can skip
repetitive, invalid, or already more costly sub-branches)

48

Example

12 8 5 23 2 14

3 <=2 2

3

49

Alpha-Beta Pruning

• General configuration (MIN version)
• We’re computing the MIN-VALUE at some node n
• We’re looping over n’s children
• n’s estimate of the childrens’ min is dropping
• Who cares about n’s value? MAX
• Let a be the best value that MAX can get at any choice

point along the current path from the root
• If n becomes worse than a, MAX will avoid it, so we can

stop considering n’s other children (it’s already bad
enough that it won’t be played)

• MAX version is symmetric

MAX

MIN

MAX

MIN

a

n

50

Alpha-Beta Implementation

α: MAX’s best option on path to root
β: MIN’s best option on path to root

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

51

Alpha-Beta Pruning Properties

• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong
• Important: children of the root may have the wrong value
• So the most naïve version won’t let you do action selection

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
• Time complexity drops to O(bm/2)
• Doubles solvable depth!
• Full search of, e.g. chess, is still hopeless…

• This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min

52

Depth Limit

53

Resource Limits

• Problem: In realistic games, cannot search to leaves!

• Solution: Depth-limited search
• Instead, search only to a limited depth in the tree
• Replace terminal utilities with an evaluation function for non-

terminal positions

• Example:
• Suppose we have 100 seconds, can explore 10K nodes / sec
• So can check 1M nodes per move
• α-β reaches about depth 8 – decent chess program

• Guarantee of optimal play is gone
• More plies makes a BIG difference
• Use iterative deepening for an anytime algorithm

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

54

Depth Matters

• Evaluation functions are always
imperfect

• The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation
function matters

• An important example of the
tradeoff between complexity of
features and complexity of
computation

55

Other Game Types

56

Other Game Types

57

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

• Generalization of minimax:
• Terminals have utility tuples
• Node values are also utility tuples
• Each player maximizes its own component
• Can give rise to cooperation and
 competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

1,6,6

58

Uncertain Outcomes

59

Why not minimax?

• Worst case reasoning is too conservative
• Need average case reasoning

60

Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

62

Expectimax Search
• Why wouldn’t we know what the result of an action will be?

• Explicit randomness: rolling dice
• Unpredictable opponents: the ghosts respond randomly
• Unpredictable humans: humans are not perfect
• Actions can fail: when moving a robot, wheels might slip

• Values should now reflect average-case (expectimax) outcomes,
not worst-case (minimax) outcomes

• Expectimax search: compute the average score under optimal play
• Max nodes as in minimax search
• Chance nodes are like min nodes but the outcome is uncertain
• Calculate their expected utilities
• I.e. take weighted average (expectation) of children

• Later, we’ll learn how to formalize the underlying uncertain-result
problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100

63

The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely

64

Remarks

65

And-Or-Tree Pros and Cons

And-or-trees a very general search model
Every alternative and its consequences are visible in state

 control knows more than in and-trees with backtracking and thus can be more
intelligent

Needed to model certain applications (min-max search, for example)
- For some applications too complex

(why buy an apple tree if you just want an apple)
- Finding good controls is difficult

(there can be too much knowledge)

66

Graph-based Search

• Some authors have suggested and-or-graph-based search with problems in
nodes represented as sets of constraints as ultimate search model

• Since or-tree- and or-graph-based search processes often use an estimate on
how good (with respect to distance to a solution) a leaf is, some people see
them as special and-trees, resp. and-graphs (without backtracking) for
optimization
 A*-algorithm (graph-based variant of branch-and-
 bound search)

Onward to …
search controls

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/

	Other Search Models
	Other Search Models and Processes
	Graph-Based Search
	Graph Search
	Tree Search: Extra Work!
	Graph Search
	Graph Search
	Graph-based search
	Graph-Based-search: Blocks World
	Example (Sketch): �Planning in the Blocks World (I)
	Example (Sketch): �Planning in the Blocks World (II)
	Pros and Cons
	And-Or-Tree-based Search
	And-or-tree-based search
	Multiplayer Games
	Playing multi-player games
	Playing multi-player games (II)
	New: Cost -> Utility!
	Types of Games
	Types of Games
	Types of Games
	Zero-Sum Game Games 
	Adversarial Games
	Games vs. Search
	Types of Games
	Types of Games
	Types of Games
	Game Trees
	Single-Agent Trees (Good for and-tree)
	Value of a State
	Adversarial Game Trees (could be and-tree, better as and-or-tree)
	Minimax Values
	Tic-Tac-Toe Game Tree
	MiniMax
	Minimax
	Adversarial Search (Minimax)
	Minimax Implementation (Dispatch)
	Minimax Example
	Minimax Properties
	Search Algorithm Properties
	Minimax Efficiency
	�Considerations
	Resource Limits
	Pruning
	Game Tree Pruning 𝒇 𝒃𝒐𝒖𝒏𝒅
	Game Tree Pruning 𝒇 𝒃𝒐𝒖𝒏𝒅
	Example
	Alpha-Beta Pruning
	Alpha-Beta Implementation
	Alpha-Beta Pruning Properties
	Depth Limit
	Resource Limits
	Depth Matters
	Other Game Types
	Other Game Types
	Multi-Agent Utilities
	Uncertain Outcomes
	Why not minimax?
	Worst-Case vs. Average Case
	Expectimax Search
	The Dangers of Optimism and Pessimism
	Remarks
	And-Or-Tree Pros and Cons
	Graph-based Search
	Onward to … �search controls

