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Other Search Models and Processes

• Problems with the models/processes so far:

1. What about elements of Prob that appear repeatedly in a tree? Can we get 
rid of duplication and resulting redundancy?
• Graph-based search!

2. What if our problem solution requires alternatives of problem divisions and 
we want this represented in the model?
• And-or-tree-based search!



3

Graph-Based Search



4

Graph Search
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Tree Search: Extra Work!

o Failure to detect repeated states can cause exponentially more work.  

Search TreeState Graph
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Graph Search

o In BFS, for example, we shouldn’t bother expanding the pink circled 
nodes (why?)

S

d

e

r

f

a a
p

q

h

f

r

q

c G

a

q

qp

q

a

e p

h

c

b c

G



7

Graph Search

o Idea: never expand a state twice

o How to implement: 
o Tree search + set of expanded states (“closed set”)
o Expand the search tree node-by-node, but…
o Before expanding a node, check to make sure its state has never been expanded before
o If not new, skip it, if new add to closed set

o Important: store the closed set as a set, not a list

o Can graph search wreck completeness?  Why/why not?

o How about optimality?
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Graph-based search

• "Improvement" of tree-based search
• Achieves that every element of Prob occurs in only one node
• Graph described as set of nodes with set of arcs (directed connections)
• Transitions extend nodes that have no arcs going out
• Transitions as in trees, except that we check if a certain node is already there 

and if yes, we do not create it again, we just add an arc
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Graph-Based-search: Blocks World
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Example (Sketch): 
Planning in the Blocks World (I) 
Problem: Given a set of blocks in certain relations to each other (situation), the 

same blocks in a different relation and a robot arm, determine a set of actions 
of the arm that transform the first situation into the second one

Idea: Do an or-tree-based search using the different possible actions of the robot 
arm as the alternatives

Start Goal
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Example (Sketch): 
Planning in the Blocks World (II) 
Observation: A lot of different action combinations lead to the same result (since 

for each action there is an action with exactly the opposite effect)
a lot of problem descriptions occur in several nodes in the or-tree 
Switching from a tree to a graph avoids redundant work and takes a lot of 

pressure from the search control
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Pros and Cons

• Less memory consumption
• No redundant work
- Some help ( overhead) necessary to quickly detect already represented 

elements of Prob
- Graphs are more difficult to debug

Use only, if quite some duplication of nodes occurs in a tree 
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And-Or-Tree-based Search
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And-or-tree-based search

• Combines and- and or-trees to represent all alternative divisions of problems in 
the current state

• Formal description very complex, especially end condition:
For each collection of alternatives, one division (i.e. one alternative) has to be 
solved by compatible subsolutions ( recursive definition)

• And-or-transitions: Extend leaf by adding nodes representing alternative lists of 
nodes representing a division of the leaf's problem
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Multiplayer Games
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Playing multi-player games

Problem: How to determine the best next 
move in a game like chess or checkers 
given a limited amount of computing time.

Idea: Search among the possible alternative 
moves and their consequences

  use and-or-trees to represent search 
state

• and-part: select one of your possible moves
• or-part: considering all possible counter-moves 

of your opponent(s)
• problems: game situations 
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Playing multi-player games (II)

P0  ?

. . .

Pk,1 ?P1,1 ? P1,n ?. . . Pk,m?. . .

possible own moves

all opponent
         responses

Problem: usually we can not search all branches until game
is decided
 search control decides based on current situation where to
     go deeper
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New: Cost -> Utility! 

• no longer minimizing cost! 
• agent now wants to maximize its score/utility! 
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Types of Games
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Types of Games

• Many different kinds of games!

• Axes:
• Deterministic or stochastic?
• One, two, or more players?
• Zero sum?
• Perfect information (can you see the state)?
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Types of Games

• General Games
• Agents have independent utilities (values on 

outcomes)
• Cooperation, indifference, competition, and more 

are all possible
• We don’t make AI to act in isolation, it should a) work 

around people and b) help people
• That means that every AI agent needs to solve a game

• Zero-Sum Games
• Agents have opposite utilities (values on 

outcomes)
• Lets us think of a single value that one maximizes 

and the other minimizes
• Adversarial, pure competition
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Zero-Sum Game Games 

• Checkers: 1950: First computer player.  1994: First 
computer champion: Chinook ended 40-year-reign 
of human champion Marion Tinsley using complete 
8-piece endgame. 2007: Checkers solved!

• Chess: 1997: Deep Blue defeats human champion 
Gary Kasparov in a six-game match.  Deep Blue 
examined 200M positions per second, used very 
sophisticated evaluation and undisclosed methods 
for extending some lines of search up to 40 ply.  
Current programs are even better, if less historic.

• Go :2016: Google’s AlphaGo defeated 9-dan 
professional (highest rank) Lee Sedol (live-
streamed on YouTube) Branches at one action 
choice can be greater than 30
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Adversarial Games
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Games vs. Search

• “Unpredictable” opponent ⇒ solution is a strategy  specifying a move for every 
possible opponent reply

• Time limits ⇒ unlikely to find goal, must approximate  
• Plan of attack:

1. Computer considers possible lines of play (Babbage, 1846)
2. Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)
3. Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950)
4. First chess program (Turing, 1951)
5. Machine learning to improve evaluation accuracy (Samuel, 1952–57)
6. Pruning to allow deeper search (McCarthy, 1956)



25

Types of Games
deterministic chance

perfect

imperfect

This Photo by Unknown Author is 
licensed under CC BY - POKER

This Photo by Unknown Author is 
licensed under CC BY-SA - 
BACKGAMMON

This Photo by Unknown Author is 
licensed under CC BY-SA - GO

This Photo by Unknown 
Author is licensed under CC BY 
- BATTLESHIPS

https://foto.wuestenigel.com/red-dice-on-a-blurry-background-of-playing-cards/
https://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Backgammon
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikiquote.org/wiki/Go
https://creativecommons.org/licenses/by-sa/3.0/
http://www.flickr.com/photos/jking89/1363983280/
https://creativecommons.org/licenses/by/3.0/
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Types of Games
deterministic chance

perfect

imperfect
This Photo by Unknown Author is 
licensed under CC BY

This Photo by Unknown Author is 
licensed under CC BY-SAThis Photo by Unknown Author is 

licensed under CC BY-SA

This Photo by Unknown 
Author is licensed under CC BY

https://foto.wuestenigel.com/red-dice-on-a-blurry-background-of-playing-cards/
https://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Backgammon
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikiquote.org/wiki/Go
https://creativecommons.org/licenses/by-sa/3.0/
http://www.flickr.com/photos/jking89/1363983280/
https://creativecommons.org/licenses/by/3.0/
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Types of Games
deterministic chance

perfect chess, checkers, 
othello, go, tic tac toe

backgammon, 
monopoly

imperfect battleships, 
blind tic tac toe

bridge, poker, 
scrabble, nuclear war
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Game Trees
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Single-Agent Trees (Good for and-tree)

8

2 0 2 6 4 6… …
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Value of a State

Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state: 
The best achievable 

outcome (utility) 
from that state
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Adversarial Game Trees (could be and-tree, better as 
and-or-tree)

-20 -8 -18 -5 -10 +4… … -20 +8
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Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:
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Tic-Tac-Toe Game Tree
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MiniMax
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Minimax
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Adversarial Search (Minimax)

• Deterministic, zero-sum games:
• Tic-tac-toe, chess, checkers
• One player maximizes result
• The other minimizes result

• Minimax search:
• A state-space search tree
• Players alternate turns
• Compute each node’s minimax value: 

the best achievable utility against a 
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game 

Minimax values:
computed recursively
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Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v
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Minimax Example

12 8 5 23 2 144 6

3 2 2

3
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Minimax Properties

Optimal against a perfect player.  Otherwise?

10 10 9 100

max

min
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Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

• Cartoon of search tree:
• b is the branching factor
• m is the maximum depth
• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + …. bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers
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Minimax Efficiency

• How efficient is minimax?
• Just like (exhaustive) DFS
• Time: O(bm)
• Space: O(bm)

• Example: For chess, b ≈ 35, m ≈ 100
• Exact solution is completely infeasible
• But, do we need to explore the whole tree?
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Considerations
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Resource Limits
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Pruning
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Game Tree Pruning 𝒇𝒇𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
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Game Tree Pruning 𝒇𝒇𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃

• 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is an additional f-function used in tree controls to 
• sol-entry yes a leaf in And-Trees or And-Or-Trees
• When considering a leaf, if a 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 returns true a leaf is change to sol-sentry yes even if it 

is an incomplete solution
• Generally used in optimization problems to stop exploration of a tree path where a 

solutions in it will not be better than a currently found complete solution
• These f-bound yes leaf nodes are still part of the complete and-tree consideration at the 

end, it was simply unnecessary to finish exploring them to determine (in an optimization 
problem) that any further exploration was necessary (the leaf nodes would be order as not 
as optimal as another sol-entry yes completion solution we already have)

• We can apply this idea to minimax (to prune the and-or-tree it creates)
• It is common way to improve the runtime performance of tree algorithms so that they are less 

costly than simply an exhaustive exploration of all possible combinations (now we can skip 
repetitive, invalid, or already more costly sub-branches)
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Example

12 8 5 23 2 14

3 <=2 2

3
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Alpha-Beta Pruning

• General configuration (MIN version)
• We’re computing the MIN-VALUE at some node n
• We’re looping over n’s children
• n’s estimate of the childrens’ min is dropping
• Who cares about n’s value?  MAX
• Let a be the best value that MAX can get at any choice 

point along the current path from the root
• If n becomes worse than a, MAX will avoid it, so we can 

stop considering n’s other children (it’s already bad 
enough that it won’t be played)

• MAX version is symmetric

MAX

MIN

MAX

MIN

a

n
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Alpha-Beta Implementation

α: MAX’s best option on path to root
β: MIN’s best option on path to root

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v
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Alpha-Beta Pruning Properties

• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong
• Important: children of the root may have the wrong value
• So the most naïve version won’t let you do action selection

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
• Time complexity drops to O(bm/2)
• Doubles solvable depth!
• Full search of, e.g. chess, is still hopeless…

• This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min



52

Depth Limit
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Resource Limits

• Problem: In realistic games, cannot search to leaves!

• Solution: Depth-limited search
• Instead, search only to a limited depth in the tree
• Replace terminal utilities with an evaluation function for non-

terminal positions

• Example:
• Suppose we have 100 seconds, can explore 10K nodes / sec
• So can check 1M nodes per move
• α-β reaches about depth 8 – decent chess program

• Guarantee of optimal play is gone
• More plies makes a BIG difference
• Use iterative deepening for an anytime algorithm

? ? ? ?

-1 -2 4 9

4

min

max

-2 4
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Depth Matters

• Evaluation functions are always 
imperfect

• The deeper in the tree the 
evaluation function is buried, the 
less the quality of the evaluation 
function matters

• An important example of the 
tradeoff between complexity of 
features and complexity of 
computation
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Other Game Types
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Other Game Types
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Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

• Generalization of minimax:
• Terminals have utility tuples
• Node values are also utility tuples
• Each player maximizes its own component
• Can give rise to cooperation and
 competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

1,6,6
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Uncertain Outcomes
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Why not minimax?

• Worst case reasoning is too conservative
• Need average case reasoning
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Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!
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Expectimax Search
• Why wouldn’t we know what the result of an action will be?

• Explicit randomness: rolling dice
• Unpredictable opponents: the ghosts respond randomly
• Unpredictable humans: humans are not perfect
• Actions can fail: when moving a robot, wheels might slip

• Values should now reflect average-case (expectimax) outcomes, 
not worst-case (minimax) outcomes

• Expectimax search: compute the average score under optimal play
• Max nodes as in minimax search
• Chance nodes are like min nodes but the outcome is uncertain
• Calculate their expected utilities
• I.e. take weighted average (expectation) of children

• Later, we’ll learn how to formalize the underlying uncertain-result 
problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100
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The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely
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Remarks
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And-Or-Tree Pros and Cons

And-or-trees a very general search model
Every alternative and its consequences are visible in state 

 control knows more than in and-trees with backtracking and thus can be more 
intelligent

Needed to model certain applications (min-max search, for example)
- For some applications too complex

(why buy an apple tree if you just want an apple)
- Finding good controls is difficult

(there can be too much knowledge)



66

Graph-based Search

• Some authors have suggested and-or-graph-based search with problems in 
nodes represented as sets of constraints as ultimate search model

• Since or-tree- and or-graph-based search processes often use an estimate on 
how good (with respect to distance to a solution) a leaf is, some people see 
them as special and-trees, resp. and-graphs (without backtracking) for 
optimization
 A*-algorithm (graph-based variant of branch-and-
 bound search)



Onward to … 
search controls

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/
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