
Or-Tree-based Search
CPSC 433: Artificial Intelligence
Fall 2024

Jonathan Hudson, Ph.D.
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

August 8, 2024

Copyright © 2024

2

Or-tree-based Search

Basic Idea:
1. If every solution is okay, represent the different possibilities that might lead

to a solution in the search state (as successors of a node)
Examples for solution possibilities:
• The different actions a robot can do
• The different instantiations for a variable

• Backtracking is messy so throw it away!
• Not used for optimization!
• Good for finding one valid solution (like hard constraint satisfaction), but unlike

set based search designed so we can keep a history so that we don’t repeat
steps when one path of search fails, less space than and-tree generally

3

Model

4

Formal Definitions: Search Model

Or-tree-based Search Model
𝐴𝐴∨ = 𝑆𝑆∨,𝑇𝑇∨
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 set of problem descriptions
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏+ alternatives relation (1 option per unique (pr,?) unlike Div)

𝑆𝑆∨ ⊆ 𝑶𝑶𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 set of possible states, is subset tree structures
where 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶 is recursively defined by
(𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠) ∈ 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶 for

𝑝𝑝𝑝𝑝 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝑦𝑦𝑦𝑦𝑦𝑦, ? ,𝒏𝒏𝒏𝒏}
𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 ∈ 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶 for

𝑝𝑝𝑝𝑝 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝑦𝑦𝑦𝑦𝑦𝑦, ? ,𝒏𝒏𝒏𝒏}, 𝑏𝑏𝑖𝑖 ∈ 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶

5

Formal Definitions: Search Model

Or-tree-based Search Model
𝐴𝐴∨ = 𝑆𝑆∨,𝑇𝑇∨
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 set of problem descriptions
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 ⊆ 𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏+ alternatives relation

𝑇𝑇∨ ⊆ 𝑆𝑆∨ × 𝑆𝑆∨ transitions between states, but more specifically
𝑇𝑇∨ = 𝑠𝑠1 , 𝑠𝑠2 | 𝑠𝑠1, 𝑠𝑠2 ∈ 𝑆𝑆∨ and 𝐸𝐸𝐸𝐸𝑤𝑤∨ 𝑠𝑠1, 𝑠𝑠2 or 𝐸𝐸𝐸𝐸𝑤𝑤∨∗ 𝑠𝑠1, 𝑠𝑠2

6

Less formally: Search Model

• The search model looks very similar to and-trees. Only differences:
1. we can model that an alternative (subproblem) is unsolvable (sol-entry

no)
2. relation Altern instead of Div
3. no backtracking

• The search control only has to compare the leafs of the tree and the
(theoretically) one transition that has the problem of the leaf as the problem to
work on

7

Extension function
(tree expansion and

contraction)

8

Formal Definitions: Erw (Extension function)

Erw∨ is a relation on Otree defined by
• 𝐸𝐸𝐸𝐸𝐸𝐸∨((𝑝𝑝𝑝𝑝, ?), (𝑝𝑝𝑝𝑝,𝑦𝑦𝑦𝑦𝑦𝑦)) if pr is solved
• 𝑬𝑬𝑬𝑬𝑬𝑬∨((𝒑𝒑𝒑𝒑, ?), (𝒑𝒑𝒑𝒑,𝒏𝒏𝒏𝒏)) if pr is unsolvable
• 𝐸𝐸𝐸𝐸𝐸𝐸∨((𝑝𝑝𝑝𝑝, ?), (𝑝𝑝𝑝𝑝, ? , (𝑝𝑝𝑝𝑝1, ?), … , (𝑝𝑝𝑟𝑟𝑛𝑛, ?)))

if 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝1, … ,𝑝𝑝𝑟𝑟𝑛𝑛) holds
• 𝐸𝐸𝐸𝐸𝐸𝐸∨((𝑝𝑝𝑝𝑝, ? , 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛), (𝑝𝑝𝑝𝑝, ? , 𝑏𝑏1′, … ,𝑏𝑏𝑛𝑛′))

if for an 𝑖𝑖: 𝐸𝐸𝐸𝐸𝐸𝐸∨(𝑏𝑏𝑖𝑖 , 𝑏𝑏𝑖𝑖′) and 𝑏𝑏𝑗𝑗 = 𝑏𝑏𝑗𝑗′ for 𝑖𝑖≠𝑗𝑗

9

Formal Definitions: Erw (Extension function)

Erw∨ is a relation on Otree defined by
• 𝐸𝐸𝐸𝐸𝐸𝐸∨((𝑝𝑝𝑝𝑝, ?), (𝑝𝑝𝑝𝑝,𝑦𝑦𝑦𝑦𝑦𝑦)) leaf node is answer
• 𝑬𝑬𝑬𝑬𝑬𝑬∨((𝒑𝒑𝒑𝒑, ?), (𝒑𝒑𝒑𝒑,𝒏𝒏𝒏𝒏)) leaf node is not answer
• 𝐸𝐸𝐸𝐸𝐸𝐸∨((𝑝𝑝𝑝𝑝, ?), (𝑝𝑝𝑝𝑝, ? , (𝑝𝑝𝑝𝑝1, ?), … , (𝑝𝑝𝑟𝑟𝑛𝑛, ?))) leaf expansion

• 𝐸𝐸𝐸𝐸𝐸𝐸∨((𝑝𝑝𝑝𝑝, ? , 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛), (𝑝𝑝𝑝𝑝, ? , 𝑏𝑏1′, … ,𝑏𝑏𝑛𝑛′)) allow above leaf rules to apply to
more than root of tree

10

Process

11

Formal Definitions: Search Process

Or-tree-based Search Process
𝑃𝑃∨ = (𝐴𝐴∨,𝐸𝐸𝐸𝐸𝐸𝐸,𝐾𝐾∨)

Nothing new from And Tree

What is selected is the leaf to expand.

12

Instance

13

Formal Definitions: Search Instance

Or-tree-based Search Instance
𝐼𝐼𝐼𝐼𝑠𝑠∨ = (𝑠𝑠0,𝐺𝐺∨)

If the given problem to solve is pr, then we have
• 𝑠𝑠0 = (𝑝𝑝𝑝𝑝, ?)
• 𝐺𝐺∨(𝑠𝑠) = 𝒚𝒚𝒚𝒚𝒚𝒚, if and only if

• 𝑠𝑠 = (𝑝𝑝𝑝𝑝𝑝,𝒚𝒚𝒚𝒚𝒚𝒚) or
• 𝑠𝑠 = (𝑝𝑝𝑝𝑝𝑝, ? , 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛),𝐺𝐺∨(𝑏𝑏𝑖𝑖) = 𝒚𝒚𝒚𝒚𝒚𝒚 for an 𝑖𝑖 or
• All leafs of s have either the sol-entry no or cannot be processed using 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

14

Formal Definitions: Search Instance

Or-tree-based Search Instance
𝐼𝐼𝐼𝐼𝑠𝑠∨ = (𝑠𝑠0,𝐺𝐺∨)

If the given problem to solve is pr, then we have
• 𝑠𝑠0 = (𝑝𝑝𝑝𝑝, ?)
• 𝐺𝐺∨(𝑠𝑠) = 𝒚𝒚𝒚𝒚𝒚𝒚, if and only if

• The root is yes
• A leaf has a yes in it
• We have tried all possibilities and they are all no or we have no options left to try

Not used for optimization, but useful if all you need is one valid solution

15

Less formally

• If all alternative decisions to a leaf are guaranteed to lead to a solution, we
often do not want the alternatives showing up in the search state
( no temptation to change choices and do therefore

redundant work).
•

Then we combine this first decision with the next decision and have several
transitions to a leaf (see example).

• The search is finished, if the problem in one leaf has sol-entry yes (or all
alternatives have proven to fail).

16

Visualize

17

Conceptual Example (III):
Or-tree-based Search

P0 ?

.

Pj ? Pk ?Pi ?

unsolvable

0 74

18

Conceptual Example (III):
Or-tree-based Search

P0 ?

.

Pj No Pk ?Pi ?
74

19

Conceptual Example (III):
Or-tree-based Search

P0 ?

.

Pj No Pk ?Pi ?
7

0 12
Pi1 ? Pi2 ?

solvable

20

Conceptual Example (III):
Or-tree-based Search

P0 ?

.

Pj No Pk ?Pi ?

Pi1Yes Pi2 ?

 finished

21

Design

22

Designing or-tree-based search models

1. Identify how you can describe a problem (resp. what is needed to describe
steps towards a solution)
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

2. Define how to identify if a problem is solved
3. Define how to identify if a problem is unsolvable
4. Identify the basic methods how a problem can be brought nearer to a

solution; collect all these ideas for each problem  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
5. Check if you really need all methods or if finding a solution can be already

guaranteed without a particular one  you might get rid of it

23

Designing or-tree-based search processes

1. Identify how you can measure the problem in a leaf regarding how far away
from a solution it is
 Priority to problems that are solved or unsolvable

2. Use 1. to select the leaf nearest a solution (if necessary, define tiebreakers)
3. If you have alternative collections of alternatives (i.e. several transitions with

the same first problem in 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴), select one of them either using 1. for all
successor problems or some other criteria (see and-trees for ideas)

Onward to …
constraint satisfaction via
and-tree-based search

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/

	Or-Tree-based Search
	Or-tree-based Search
	Model
	Formal Definitions: Search Model
	Formal Definitions: Search Model
	Less formally: Search Model
	Slide Number 7
	Formal Definitions: Erw (Extension function)
	Formal Definitions: Erw (Extension function)
	Process
	Formal Definitions: Search Process
	Instance
	Formal Definitions: Search Instance
	Formal Definitions: Search Instance
	Less formally
	Visualize
	Conceptual Example (III):�Or-tree-based Search
	Conceptual Example (III):�Or-tree-based Search
	Conceptual Example (III):�Or-tree-based Search
	Conceptual Example (III):�Or-tree-based Search
	Design
	Designing or-tree-based search models
	Designing or-tree-based search processes
	Onward to … �constraint satisfaction via and-tree-based search

