
And-Tree-based Search
CPSC 433: Artificial Intelligence
Fall 2024

Jonathan Hudson, Ph.D.
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

August 8, 2024

Copyright © 2024

2

And-tree-based Search

Basic Idea:
1. Divide a problem into subproblems, whose solutions can be put together into

a solution for the initial problem.

Examples of subproblem division:
• Construction of something: different parts of it
• Optimization problems: different instantiations of free variables; putting

solution together by comparing all possibilities

3

And-tree-based Search

Good for optimization problems
In simplest form they are exhaustive earch

search for all options and then return the optimal option
Tree can be bounded (pruned)

branch-and-bound algorithms

Good for problems where you need to solve all sub-problems and combine
them

Divide-and-conquer algorithms
Recursive algorithms

Take a lot of space and computation (but that’s how we get optimal results)

4

Tree Search

5

Tree Search

6

Search Example: Romania

7

Searching with a Search Tree

• Search:
• Expand out potential plans (tree nodes)
• Maintain a fringe of partial plans under consideration
• Try to expand as few tree nodes as possible

8

General Tree Search

• Important ideas:
• Fringe
• Expansion
• Exploration strategy

• Main question: which fringe nodes to explore?

9

Model

10

Formal Definitions: Model

And-tree-based Search Model
𝐴𝐴∧ = (𝑆𝑆∧,𝑇𝑇∧)
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 set of problem descriptions
𝑫𝑫𝑫𝑫𝑫𝑫 ⊆ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷+ division relation (𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷+ → things that can be generated

by dividing problems in 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷)
𝑆𝑆∧ ⊆ 𝑨𝑨𝑨𝑨𝑷𝑷𝑨𝑨𝑨𝑨 set of possible states, is subset tree structures

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is recursively defined by
𝑝𝑝𝐴𝐴, 𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑨𝑨𝑨𝑨𝑷𝑷𝑨𝑨𝑨𝑨 for 𝑝𝑝𝐴𝐴 ∈ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷, 𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝒚𝒚𝑨𝑨𝒚𝒚, ? }
𝑝𝑝𝐴𝐴, 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 ∈ 𝑨𝑨𝑨𝑨𝑷𝑷𝑨𝑨𝑨𝑨 for 𝑝𝑝𝐴𝐴 ∈ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷, 𝑠𝑠𝑠𝑠𝑠𝑠 ∈ {𝒚𝒚𝑨𝑨𝒚𝒚, ? }, 𝑏𝑏𝑖𝑖 ∈ 𝑨𝑨𝑨𝑨𝑷𝑷𝑨𝑨𝑨𝑨

𝑇𝑇∧ ⊆ 𝑆𝑆∧ × 𝑆𝑆∧ transitions between states, but more specifically
𝑇𝑇∧ = 𝑠𝑠1 , 𝑠𝑠2 | 𝑠𝑠1, 𝑠𝑠2 ∈ 𝑆𝑆∧ and 𝐸𝐸𝐴𝐴𝑤𝑤∧ 𝑠𝑠1, 𝑠𝑠2 or 𝐸𝐸𝐴𝐴𝑤𝑤∧∗ 𝑠𝑠1, 𝑠𝑠2

11

Formal Definitions: Model

And-tree-based Search Model
𝐴𝐴∧ = (𝑆𝑆∧,𝑇𝑇∧)
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 set of problem descriptions
𝑫𝑫𝑫𝑫𝑫𝑫 ⊆ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷+ division relation (𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷+ → things that can be generated

by dividing problems in 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷)
𝑆𝑆∧ ⊆ 𝑨𝑨𝑨𝑨𝑷𝑷𝑨𝑨𝑨𝑨 set of possible states, is subset tree structures

where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is recursively defined by
𝑝𝑝𝐴𝐴, 𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑨𝑨𝑨𝑨𝑷𝑷𝑨𝑨𝑨𝑨 Leaf nodes
𝑝𝑝𝐴𝐴, 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 ∈ 𝑨𝑨𝑨𝑨𝑷𝑷𝑨𝑨𝑨𝑨 Internal nodes

𝑇𝑇∧ ⊆ 𝑆𝑆∧ × 𝑆𝑆∧ transitions between states, but more specifically
𝑇𝑇∧ = 𝑠𝑠1 , 𝑠𝑠2 | 𝑠𝑠1, 𝑠𝑠2 ∈ 𝑆𝑆∧ and 𝑨𝑨𝑷𝑷𝑨𝑨𝑨𝑨 𝑨𝑨𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒚𝒚𝑫𝑫𝑷𝑷𝒆𝒆 or 𝑨𝑨𝑷𝑷𝑨𝑨𝑨𝑨 𝒄𝒄𝑷𝑷𝒆𝒆𝑨𝑨𝑷𝑷𝒆𝒆𝒄𝒄𝑨𝑨𝑫𝑫𝑷𝑷𝒆𝒆

12

Formal Definitions: Model

And-tree-based Search Model
𝐴𝐴∧ = (𝑆𝑆∧,𝑇𝑇∧)

You need to make
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷
𝑫𝑫𝑫𝑫𝑫𝑫 ⊆ 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷+

Comes for free by model definition
𝑆𝑆∧ ⊆ 𝑨𝑨𝑨𝑨𝑷𝑷𝑨𝑨𝑨𝑨 set of possible states, is subset tree structures
𝑇𝑇∧ ⊆ 𝑆𝑆∧ × 𝑆𝑆∧ transitions between states, but more specifically

13

Less formally: Model

• 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 usually is described using an additional data structure: a set of formulas
describing the world, a matrix describing distances to remaining cities, and so
on.

• 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 can also just remember all decisions made so far
• Obviously, different problems produce different sets 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷

• 𝑫𝑫𝑫𝑫𝑫𝑫 formally describes what divisions of problems into subproblems are
possible; also absolutely dependent on the problem we want to solve.

14

Less formally: Model (II)

• A node containing a problem and a sol-entry is an and-tree (Atree).
• If we have several (i.e. n) and-trees, then putting them as successors to a node

representing a problem and a sol-entry also produces an and-tree.

Note: this does not say anything about the connection between the problems in
such a tree; in fact, most elements of 𝑨𝑨𝑨𝑨𝑷𝑷𝑨𝑨𝑨𝑨 will never be used as search states,
because they do not make sense for the application.

(There are a lot of expansions defined, but many are useless to be chosen
by a useful search control)

15

Extension function
(tree expansion and

contraction)

16

Formal Definitions: Erw (Extension function)

𝐸𝐸𝐴𝐴𝑤𝑤∧ and 𝐸𝐸𝐴𝐴𝑤𝑤∧∗ are relations on 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 defined by

• 𝐸𝐸𝐴𝐴𝑤𝑤∧ 𝑝𝑝𝐴𝐴, ? , 𝑝𝑝𝐴𝐴,𝒚𝒚𝑨𝑨𝒚𝒚 if pr is solved

• 𝐸𝐸𝐴𝐴𝑤𝑤∧ 𝑝𝑝𝐴𝐴, ? , 𝑝𝑝𝐴𝐴, ? , 𝑝𝑝𝐴𝐴1, ? , … , 𝑝𝑝𝐴𝐴𝑛𝑛, ? if D𝑖𝑖𝑖𝑖(𝑝𝑝𝐴𝐴,𝑝𝑝𝐴𝐴1, … ,𝑝𝑝𝐴𝐴𝑛𝑛) holds

• 𝐸𝐸𝐴𝐴𝑤𝑤∧ 𝑝𝑝𝐴𝐴, ? , 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝐴𝐴, ? , 𝑏𝑏1′ , … , 𝑏𝑏𝑛𝑛′

if for an 𝑖𝑖: 𝐸𝐸𝐴𝐴𝑤𝑤∧(𝑏𝑏𝑖𝑖 , 𝑏𝑏𝑖𝑖′) and b𝑗𝑗 = 𝑏𝑏𝑗𝑗′ for 𝑖𝑖≠𝑗𝑗
• 𝐸𝐸𝐴𝐴𝑤𝑤∧⊆ 𝐸𝐸𝐴𝐴𝑤𝑤∧∗

• 𝐸𝐸𝐴𝐴𝑤𝑤∧∗ 𝑝𝑝𝐴𝐴, ? , 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝐴𝐴, ? , 𝑏𝑏1′, … , 𝑏𝑏𝑛𝑛′
if for all 𝑖𝑖 either 𝐸𝐸𝐴𝐴𝑤𝑤∧∗(𝑏𝑏𝑖𝑖, 𝑏𝑏𝑖𝑖′) or b𝑖𝑖 = 𝑏𝑏𝑖𝑖′ holds

17

Formal Definitions: Erw (Extension function)

𝐸𝐸𝐴𝐴𝑤𝑤∧ and 𝐸𝐸𝐴𝐴𝑤𝑤∧∗ are relations on 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 defined by

• 𝐸𝐸𝐴𝐴𝑤𝑤∧ 𝑝𝑝𝐴𝐴, ? , 𝑝𝑝𝐴𝐴,𝒚𝒚𝑨𝑨𝒚𝒚 leaf node is done

• 𝐸𝐸𝐴𝐴𝑤𝑤∧ 𝑝𝑝𝐴𝐴, ? , 𝑝𝑝𝐴𝐴, ? , 𝑝𝑝𝐴𝐴1, ? , … , 𝑝𝑝𝐴𝐴𝑛𝑛, ? leaf expansion

• 𝐸𝐸𝐴𝐴𝑤𝑤∧ 𝑝𝑝𝐴𝐴, ? , 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝐴𝐴, ? , 𝑏𝑏1′ , … , 𝑏𝑏𝑛𝑛′ allow above leaf rules to apply to
more than root of tree

• 𝐸𝐸𝐴𝐴𝑤𝑤∧⊆ 𝐸𝐸𝐴𝐴𝑤𝑤∧∗ backtracking exists (can reverse expansion)

• 𝐸𝐸𝐴𝐴𝑤𝑤∧∗ 𝑝𝑝𝐴𝐴, ? , 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝐴𝐴, ? , 𝑏𝑏1′, … , 𝑏𝑏𝑛𝑛′ backtracking can undo multiple

18

Less formally: Erw (Extension function)

• 𝐸𝐸𝐴𝐴𝑤𝑤∧ connects and-trees that reflect the idea of dividing problems into
subproblems

• if we know the solution to a problem in a leaf node (i.e. it is solved for us), we mark it (sol-
entry yes)

• else, if we know the division of a problem in a (leaf) node into subproblems, then we
generate successors to this node for each subproblem

• else, if we know the division of a problem in a (internal) node into subproblems, then we
generate successors to this node for each subproblem

• else, see remarks about back-tracking (𝐸𝐸𝐴𝐴𝑤𝑤∧∗)

19

Back-tracking (tree
contraction)

20

Less formally: Erw* (Extension function)

• 𝐸𝐸𝐴𝐴𝑤𝑤∧∗ is for intelligent backtracking (note the sequence of arguments in the
definition of 𝑇𝑇∧). It allows us to take away the results of several applications of
𝐸𝐸𝐴𝐴𝑤𝑤∧ as one transition (therefore "intelligent").

• Backtracking is necessary, if you reach a tree with a leaf that neither represents
a solved problem nor has a problem that can be divided into subproblems (or
we already have unsuccessfully tried out all of its divisions defined by 𝑫𝑫𝑫𝑫𝑫𝑫).

• If we have (pr,?) and no remaining Div option at a leaf
• Remember we need all leafs to reach (pr, yes) -> then we back-track
• We back-track (by collapsing the tree upwards to internal nodes)
• Until we reach an internal node where we have another Div option we can select instead of the

prior Div option we had selected, then we chose this next Div option instead

• Controls usually employ backtracking only in very clearly defined (special)
cases.

21

Process

22

Formal Definitions: Search Process

And-tree-based Search Process
𝑃𝑃∧ = (𝐴𝐴∧,𝐸𝐸𝑛𝑛𝑖𝑖,𝐾𝐾∧)

Not more specific than general definition given previously

But: often control uses two functions
• one function 𝒇𝒇𝒍𝒍𝑨𝑨𝒆𝒆𝒇𝒇 that compares all leaves of the tree representing the state

and selecting one
• one function 𝒇𝒇𝑨𝑨𝑷𝑷𝒆𝒆𝒆𝒆𝒚𝒚 that selects one of the transitions that deal with the

selected leaf

23

Less formally: Search Process

• Due to the possibility of having several divisions of the same problem in 𝑫𝑫𝑫𝑫𝑫𝑫,
first determining a leaf to "expand" and then selecting the division is often
sensible.

• But sometimes the availability of certain divisions determines what leaf to
select next, so that 𝒇𝒇𝒍𝒍𝑨𝑨𝒆𝒆𝒇𝒇 and 𝒇𝒇𝑨𝑨𝑷𝑷𝒆𝒆𝒆𝒆𝒚𝒚 are not always used.

• An and-tree-based search starts with putting the problem instance to solve into
the root of an and-tree.

• If we have found a solution to every subproblem represented by a leaf, then it
is still possible that the solutions are not compatible. Then other solutions have
to be found (backtracking).

24

Instance

25

Formal Definitions: Search Instance (IV)

And-tree-based Search Instance
𝐼𝐼𝑛𝑛𝑠𝑠∧ = (𝑠𝑠0,𝐺𝐺∧)

If the given problem to solve is 𝑝𝑝𝐴𝐴, then we have
• 𝑠𝑠0 = (𝑝𝑝𝐴𝐴, ?)
• 𝐺𝐺∧(𝑠𝑠) = 𝑦𝑦𝐴𝐴𝑠𝑠, if and only if

1. 𝑠𝑠 = (𝑝𝑝𝐴𝐴′,𝒚𝒚𝑨𝑨𝒚𝒚) or
2. 𝑠𝑠 = (𝑝𝑝𝐴𝐴′, ? , 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛),𝐺𝐺∧(𝑏𝑏1) = ⋯ = 𝐺𝐺∧(𝑏𝑏𝑛𝑛) = 𝒚𝒚𝑨𝑨𝒚𝒚 and the solutions to 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 are

compatible with each other or
3. there is no transition that has not been tried out already

26

Formal Definitions: Search Instance (IV)

And-tree-based Search Instance
𝐼𝐼𝑛𝑛𝑠𝑠∧ = (𝑠𝑠0,𝐺𝐺∧)

If the given problem to solve is 𝑝𝑝𝐴𝐴, then we have
• 𝑠𝑠0 = (𝑝𝑝𝐴𝐴, ?)
• 𝐺𝐺∧(𝑠𝑠) = 𝑦𝑦𝐴𝐴𝑠𝑠, if and only if

1. Root is yes
2. All branches are yes and compatible
3. We’ve tried everything, all remaining leaves are ?, and we’ve tried all back-tracking and

alternate Div expansions

Common for optimization as we either need to find the best of all valid solutions, or find no
valid solution

27

Visualize

28

Conceptual Example (II):
And-tree-based Search

P0 ?

.

Pj ? Pk ?Pi ?

3 Div Choices 3 Div Choices2 Div Choices
One is sol=yes

74 0

Yes

29

Conceptual Example (II):
And-tree-based Search

P0 ?

.

PjYes Pk ?Pi ?
74

4611

30

Conceptual Example (II):
And-tree-based Search

P0 ?

.

PjYes Pk ?Pi ?

Pi1 ? Pi2 ?

7

0 12

unsolvable

 backtracking

31

Conceptual Example (II):
And-tree-based Search

P0 ?

.

PjYes Pk ?Pi ?
76

611

32

Design

33

Designing and-tree-based search models

1. Identify how you can describe a problem (resp. what is needed to describe
sub-problems) 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷

2. Define how to identify if a problem is solved
3. Identify the basic ideas how to divide a problem into subproblems 𝑫𝑫𝑫𝑫𝑫𝑫
4. Determine if it is possible that you run into deadends (i.e. can there be leafs

that neither are solved nor appear in 𝑫𝑫𝑫𝑫𝑫𝑫 as first argument). If yes, we need
backtracking, if no, we do not need backtracking.

34

Designing and-tree-based search processes

1. Identify how you can measure a problem in a leaf
1. Priority to problems that are solved
2. See other slides for criteria

2. Use 1. to come up with a 𝒇𝒇𝒍𝒍𝑨𝑨𝒆𝒆𝒇𝒇-function comparing the leaves in an and-tree.
3. For the 𝒇𝒇𝑨𝑨𝑷𝑷𝒆𝒆𝒆𝒆𝒚𝒚-function that determines the transition you are doing:

1. If there is an unsolvable problem in a leaf then backtrack
2. If the selected leaf can be solved, do it
3. Determine the different divisions of the leaf problem and measure them

Onward to …
model-elimination via and-
tree-based search

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/

	And-Tree-based Search
	And-tree-based Search
	And-tree-based Search
	Tree Search
	Tree Search
	Search Example: Romania
	Searching with a Search Tree
	General Tree Search
	Model
	Formal Definitions: Model
	Formal Definitions: Model
	Formal Definitions: Model
	Less formally: Model
	Less formally: Model (II)
	Slide Number 15
	Formal Definitions: Erw (Extension function)
	Formal Definitions: Erw (Extension function)
	Less formally: Erw (Extension function)
	Slide Number 19
	Less formally: Erw* (Extension function)
	Process
	Formal Definitions: Search Process
	Less formally: Search Process
	Instance
	Formal Definitions: Search Instance (IV)
	Formal Definitions: Search Instance (IV)
	Visualize
	Conceptual Example (II):�And-tree-based Search
	Conceptual Example (II):�And-tree-based Search
	Conceptual Example (II):�And-tree-based Search
	Conceptual Example (II):�And-tree-based Search
	Design
	Designing and-tree-based search models
	Designing and-tree-based search processes
	Onward to … �model-elimination via and-tree-based search

