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Genetic Algorithms
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Genetic Algorithms

• Genetic algorithms use a natural selection metaphor
• Keep best N hypotheses at each step (selection) based on a fitness function
• Also have pairwise crossover operators, with optional mutation to give variety

• Possibly the most misunderstood, misapplied (and even maligned) technique 
around

(not a representation for our knapsack problem)
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Encoding

• (could be used for knapsack as alternatives to our Extension rules)
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Knapsack Problem
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Knapsack Problem

• Problem: Filling a knapsack with fixed capacity with items. Each item has a 
given weight and value to you. (0/1 Knapsack Problem)

• We have items 𝐼𝐼 we will index from 1 to 𝑛𝑛
• We have associated weights W and values V
• 𝑊𝑊 = 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛 , 𝑤𝑤𝑖𝑖 > 0
• 𝑉𝑉 = 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 , 𝑣𝑣𝑖𝑖 > 0
• To simplify each 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 ∈ 𝐼𝐼 can be considered as a pair 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 = (𝑤𝑤𝑖𝑖, 𝑣𝑣𝑖𝑖)
• We have a max capacity of 𝐶𝐶

• What ways can we do this?
• Hill climbing? Dynamic programming? Set-based search?
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Knapsack Solutions

• Hill climbing
• Estimation (just add best ratio of value to weight of things until you run out of space), 

quick, low memory, simple
• Greedy algorithm (*413*)
• Could be done via a set-based search

• Dynamic Programming (DP):
• *413*, Exact algorithm (optimal solution for sure), Long running time as problem grows, 

lots of memory to store sub-problem expansions, very simple to design, 𝑂𝑂 𝑛𝑛2  time and 
O(n) space if we treat every item as unique
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Knapsack Solutions

• Genetic Algorithm (GA):
• Estimation, never know if you found the best solution
• Runs quickly as the problem explodes in complexity
• memory usage rather small with basic implementation
• quality can be highly variable with no guarantees
• harder to design unless you know GAs
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Examples
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Example problem with hill climb

• We have a 1-0 knapsack with maximum capacity of 7. We have the set of items 
I = {(3,4), (4,5),(5,7)} where every item is a pair such that i = (weight, value).

• Hill climb – get a ratio of each item, sort by descending ratio, add each item 
that you can.

• This is best solution….for this instance of problem.
• Hill-climbing uses flawed heursistic.

Ratio (w/v) Weight (w) Value (v) Knapsack W Include?

0.8 4 5 0 + 4 = 4 Yes (val=5)

0.75 3 4 4 + 3 = 7 Yes (val=9)

0.72~ 5 7 7 + 5 = 12 No, max reached
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Example problem with hill climb

• Estimation can cause problems. 
• Add item (1,1). 
• We have a 1-0 knapsack with maximum capacity of 7. We have the set of items 

I = {(1,1), (3,4), (4,5),(5,7)}

• {(1,1),{4,5}) has value 6 but there is a solution value 9 with {(3,4),(4,5)}!

Ratio (w/v) Weight (w) Value (v) Knapsack W Include?

1 1 1 0 + 1 = 1 Yes (val=1)

0.8 4 5 1 + 4 = 5 Yes (val=6)

0.75 3 4 5 + 3 = 8 No, max reached
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Example problem with hill climb

• We have a 1-0 knapsack with maximum capacity of 7. We have the set of items 
I = {(3,4), (4,5),(5,7)} where every item is a pair such that i = (weight, value).

• Is the problem the ratio direction?

• No.
• An inverted ratio would also lead to sub-optimal solution {(5,7)} which has 

value 5 but there is a solution value 9 with {(3,4),(4,5)}!

Ratio (v/w) Weight (w) Value (v) Knapsack W Include?

1.4 5 7 0 + 5 = 5 Yes (val=5)

1.333… 3 4 5 + 3 = 8 No, max reached
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Example problem with dynamic programming

• We have a 1-0 knapsack with maximum capacity of 7 and a set of items I = {(1,1),(3,4), (4,5),(5,7)}, s.t. 
item = (weight, value)

 Start from 0 and fill in the table, for each row in order add column first. Knapsack limit (top row) will be 
called i, current item will be j.

 If weight(j) is bigger then i, write value at T[j-1][i],

 Else select the maximum( value(j) + value at T[j-1][I – weight(j)], T[j-1][i] )

 Maximum value will be at the lowest row, on the last index. (9 in this case)

Item 
value

Item 
weight

0 1 2 3 4 5 6 7

1 1 0 1 1 1 1 1 1 1

4 3 0 1 1 4 5 5 5 5

5 4 0 1 1 4 5 6 6 9

7 5 0 1 1 4 5 7 8 9

i

j
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GA Solution
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What do we need to design set-based solution?

• Facts
• Extension Rules
• Search Control Direction (the choice of extension rules)
• Search Instance
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What do we need to design set-based solution?

Want Model 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠
• Facts

• Parts that will fill our state set 
1. Parts of a single solution (like in resolution)
2. Different possible full solutions (like in genetic/evolutionary algorithms)

• We get for free 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ⊆ 2𝐹𝐹  (also know as the power set of 𝐹𝐹 -> all subsets of 𝐹𝐹)
• Extension Rules
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What do we need to design set-based solution?

Want Model 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠
• Facts (Sset)
• Extension Rules

• How we move between subsets of facts
• If we are in some state 𝑠𝑠 and moving to 𝑠𝑠𝑠, both are subsets of F
• We take some subset A of facts from s and replace with another subset of facts 𝐵𝐵
• Extension rules are how the 𝐵𝐵 is determined based on which 𝐴𝐴 is used
• 𝐸𝐸𝐸𝐸𝐸𝐸 ⊆ 𝐴𝐴 → 𝐵𝐵 𝐴𝐴, 𝐵𝐵 ⊆ 𝐹𝐹}
• We get for free 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = { 𝑠𝑠, 𝑠𝑠′ |∃𝐴𝐴 → 𝐵𝐵 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝐴𝐴 ⊆ 𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠′ = 𝑠𝑠 − 𝐴𝐴 ∪ 𝐵𝐵}



18

What do we need to design set-based solution?

Have 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)
• Facts (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠)
• Extension Rules (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)
Want 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 to complete 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = (𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠, 𝐸𝐸𝐸𝐸𝐸𝐸 , 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠)
• Search Control Direction (the choice of extension rules)

• 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠, 𝑒𝑒 = 𝑠𝑠 − 𝐴𝐴 ∪ 𝐵𝐵
• 𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 deal with choosing the  A → 𝐵𝐵 ∈ 𝐸𝐸𝐸𝐸𝐸𝐸
• 𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 gives a value to each extension rule in current state
• 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 chooses between ties

• Search Instance
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What do we need to design set-based solution?

Have 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)
• Facts (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠)
• Extension Rules (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)
Have 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 to complete 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = (𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠, 𝐸𝐸𝐸𝐸𝐸𝐸 , 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠)
• Search Control Direction (the choice of extension rules) (𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠)
Want where to start
•  Search Instance

• Some initial set of facts 𝑠𝑠0 ∈ 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠, and a goal 𝐺𝐺 to decide when done (ex. time passing, 
quality of set of facts stops improving, no more extension rules apply [i.e. resolution] )
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Facts
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What do we need to design evolutionary algorithm 
solution to 0/1 knapsack?
• Facts

• We will deal with facts that are possible full solutions to the problem
• That is each fact is some selection of items below the capacity 𝐶𝐶
• (this is our choice, we could allow invalid solutions (too high capacity) as an alternative

• 𝐹𝐹 = (𝑥𝑥1, . . , 𝑥𝑥𝑚𝑚) 𝑥𝑥𝑖𝑖 ∈ {0,1} 𝑎𝑎𝑎𝑎𝑎𝑎 ∑𝑖𝑖=1..𝑚𝑚𝑤𝑤𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 ≤ 𝐶𝐶}
• We have chosen to presume some consistent ordering of the available items in set 𝐼𝐼
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What do we need to design evolutionary algorithm 
solution to 0/1 knapsack?
• Facts

• If 𝐼𝐼 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚2, 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚3 = {(3,4), (4,5),(5,7)}

• Then a f ∈ 𝐹𝐹 could be f = 1,1,0  which would mean choosing 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚1 = (3,4) and 
𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚2 = (4,5) but not the first item f = 0,1,1  would not be valid fact as it is over 
capacity



23

Extension Rules
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What do we need to design evolutionary algorithm 
solution to 0/1 knapsack?
• Extension Rules

• Extension rules create new solutions from some subset of solutions
• We use two biologically inspired rules (mutation, crossover)
• 𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴 → 𝐵𝐵 

𝐴𝐴, 𝐵𝐵 ⊆ 𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴, 𝐵𝐵  𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴, 𝐵𝐵 }
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Mutation
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Mutation

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴, 𝐵𝐵
• 𝐴𝐴 = { 𝑥𝑥1, . . , 𝑥𝑥𝑚𝑚 }
• 𝐵𝐵 = { 𝑥𝑥1, . . , 𝑥𝑥𝑚𝑚 , 𝑦𝑦1, . . , 𝑦𝑦𝑚𝑚 }
• where 

• 𝑥𝑥1 = 𝑦𝑦1 except for some 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 we will make 𝑦𝑦𝑖𝑖 =  ¬𝑥𝑥𝑖𝑖
• We will flip one 0 to 1, or vice versa to add or remove an item from new knapsack solution

• Also known as single-point mutation
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Mutation Example

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴, 𝐵𝐵

• If 𝐼𝐼 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚2, 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚3 = {((3,4), (4,5),(5,7)}
𝐶𝐶 = 7

𝐴𝐴 = (0,1,0)
𝐵𝐵 = 0,1,0 , (1,1,0)

Or even
𝐵𝐵 = 0,1,0 , (0,0,0)
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Crossover
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Crossover

• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴, 𝐵𝐵
• 𝐴𝐴 = { 𝑥𝑥1, . . , 𝑥𝑥𝑚𝑚 , 𝑦𝑦1, . . , 𝑦𝑦𝑚𝑚 }
• 𝐵𝐵 = { 𝑥𝑥1, . . , 𝑥𝑥𝑚𝑚 , 𝑦𝑦1, . . , 𝑦𝑦𝑚𝑚 , 𝑧𝑧1, . . , 𝑧𝑧𝑚𝑚 }
• where 

• Each 𝑧𝑧𝑖𝑖  is selected by flipping a coin and selecting either 𝑥𝑥𝑖𝑖 or 𝑦𝑦𝑖𝑖
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Crossover Example

• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴, 𝐵𝐵

• If 𝐼𝐼 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚2, 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚3 = {((3,4), (4,5),(5,7)}
𝐶𝐶 = 7

𝐴𝐴 = 0,1,0 , (1,0,0)
𝐵𝐵 = 0,1,0 , 1,0,0 , (1,1,0)

Or even one of the following

𝐵𝐵 = 0,1,0 , 1,0,0 , (0,0,0)
𝐵𝐵 = 0,1,0 , 1,0,0 , (1,0,0)
𝐵𝐵 = 0,1,0 , 1,0,0 , (0,1,0)
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Search Control
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What do we need to design evolutionary algorithm 
solution to 0/1 knapsack?
• Search Control Direction (the choice of extension rules)

• RNG function to produce values
• 𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 set to constant
• 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 technically has all rules possible

• We will choose to define it procedurally
• 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 will pick mutation x% of time, mutation y% of time
• x+y = 100%
• 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 also picks which individuals A are used by Mut/Cross to produce 𝐵𝐵 

• Fitness-based (value individuals by quality of solution (i.e. total value of items) and bias selection 
of A towards more fit individuals)
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Search Instance
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What do we need to design evolutionary algorithm 
solution to 0/1 knapsack?
• Search Instance

• A generated set of random individuals (valid knapsack solutions) of some chosen 
population size (size of 𝑠𝑠0) 

• For each random individual 
• select random knapsack items to add until capacity is reached

• Goal function 
• Time-based? 

• Run for x minutes of real-world time
• Counter-based? 

• Make x new solutions
• Improvement-based?

• Run until we aren’t finding better solutions often enough
• Often involves predicting a log curve of improvement and stopping when it flattens too much
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Remarks
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Considerations

• Do you always select the single top fittest individual?
• Rank-based selection (odds based on fitness order)
• Roulette wheel selection (odds based on fitness portion of total)

• How do you manage the growing population?
• Do you delete one/multiple each time
• Who do you delete

• What about diversity?
• What if population stagnates, can you enforce valuable diversity?

• What about invalid solutions?
• Do you define F to allow invalid facts (can move through invalid fact to better valid ones), 

or do you disallow valid facts but possibly make it harder to move around search space



Onward to … 
and-tree-based search

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/
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