
Set-based Search Example:
Genetic Algorithms
CPSC 433: Artificial Intelligence
Fall 2024

Jonathan Hudson, Ph.D.
Assistant Professor (Teaching)
Department of Computer Science
University of Calgary

August 8, 2024

Copyright © 2024

2

Genetic Algorithms

3

Genetic Algorithms

• Genetic algorithms use a natural selection metaphor
• Keep best N hypotheses at each step (selection) based on a fitness function
• Also have pairwise crossover operators, with optional mutation to give variety

• Possibly the most misunderstood, misapplied (and even maligned) technique
around

(not a representation for our knapsack problem)

4

Encoding

• (could be used for knapsack as alternatives to our Extension rules)

5

Knapsack Problem

6

Knapsack Problem

• Problem: Filling a knapsack with fixed capacity with items. Each item has a
given weight and value to you. (0/1 Knapsack Problem)

• We have items 𝐼𝐼 we will index from 1 to 𝑛𝑛
• We have associated weights W and values V
• 𝑊𝑊 = 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛 , 𝑤𝑤𝑖𝑖 > 0
• 𝑉𝑉 = 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 , 𝑣𝑣𝑖𝑖 > 0
• To simplify each 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 ∈ 𝐼𝐼 can be considered as a pair 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖 = (𝑤𝑤𝑖𝑖, 𝑣𝑣𝑖𝑖)
• We have a max capacity of 𝐶𝐶

• What ways can we do this?
• Hill climbing? Dynamic programming? Set-based search?

7

Knapsack Solutions

• Hill climbing
• Estimation (just add best ratio of value to weight of things until you run out of space),

quick, low memory, simple
• Greedy algorithm (*413*)
• Could be done via a set-based search

• Dynamic Programming (DP):
• *413*, Exact algorithm (optimal solution for sure), Long running time as problem grows,

lots of memory to store sub-problem expansions, very simple to design, 𝑂𝑂 𝑛𝑛2 time and
O(n) space if we treat every item as unique

8

Knapsack Solutions

• Genetic Algorithm (GA):
• Estimation, never know if you found the best solution
• Runs quickly as the problem explodes in complexity
• memory usage rather small with basic implementation
• quality can be highly variable with no guarantees
• harder to design unless you know GAs

9

Examples

10

Example problem with hill climb

• We have a 1-0 knapsack with maximum capacity of 7. We have the set of items
I = {(3,4), (4,5),(5,7)} where every item is a pair such that i = (weight, value).

• Hill climb – get a ratio of each item, sort by descending ratio, add each item
that you can.

• This is best solution….for this instance of problem.
• Hill-climbing uses flawed heursistic.

Ratio (w/v) Weight (w) Value (v) Knapsack W Include?

0.8 4 5 0 + 4 = 4 Yes (val=5)

0.75 3 4 4 + 3 = 7 Yes (val=9)

0.72~ 5 7 7 + 5 = 12 No, max reached

11

Example problem with hill climb

• Estimation can cause problems.
• Add item (1,1).
• We have a 1-0 knapsack with maximum capacity of 7. We have the set of items

I = {(1,1), (3,4), (4,5),(5,7)}

• {(1,1),{4,5}) has value 6 but there is a solution value 9 with {(3,4),(4,5)}!

Ratio (w/v) Weight (w) Value (v) Knapsack W Include?

1 1 1 0 + 1 = 1 Yes (val=1)

0.8 4 5 1 + 4 = 5 Yes (val=6)

0.75 3 4 5 + 3 = 8 No, max reached

12

Example problem with hill climb

• We have a 1-0 knapsack with maximum capacity of 7. We have the set of items
I = {(3,4), (4,5),(5,7)} where every item is a pair such that i = (weight, value).

• Is the problem the ratio direction?

• No.
• An inverted ratio would also lead to sub-optimal solution {(5,7)} which has

value 5 but there is a solution value 9 with {(3,4),(4,5)}!

Ratio (v/w) Weight (w) Value (v) Knapsack W Include?

1.4 5 7 0 + 5 = 5 Yes (val=5)

1.333… 3 4 5 + 3 = 8 No, max reached

13

Example problem with dynamic programming

• We have a 1-0 knapsack with maximum capacity of 7 and a set of items I = {(1,1),(3,4), (4,5),(5,7)}, s.t.
item = (weight, value)

 Start from 0 and fill in the table, for each row in order add column first. Knapsack limit (top row) will be
called i, current item will be j.

 If weight(j) is bigger then i, write value at T[j-1][i],

 Else select the maximum(value(j) + value at T[j-1][I – weight(j)], T[j-1][i])

 Maximum value will be at the lowest row, on the last index. (9 in this case)

Item
value

Item
weight

0 1 2 3 4 5 6 7

1 1 0 1 1 1 1 1 1 1

4 3 0 1 1 4 5 5 5 5

5 4 0 1 1 4 5 6 6 9

7 5 0 1 1 4 5 7 8 9

i

j

14

GA Solution

15

What do we need to design set-based solution?

• Facts
• Extension Rules
• Search Control Direction (the choice of extension rules)
• Search Instance

16

What do we need to design set-based solution?

Want Model 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠
• Facts

• Parts that will fill our state set
1. Parts of a single solution (like in resolution)
2. Different possible full solutions (like in genetic/evolutionary algorithms)

• We get for free 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 ⊆ 2𝐹𝐹 (also know as the power set of 𝐹𝐹 -> all subsets of 𝐹𝐹)
• Extension Rules

17

What do we need to design set-based solution?

Want Model 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠
• Facts (Sset)
• Extension Rules

• How we move between subsets of facts
• If we are in some state 𝑠𝑠 and moving to 𝑠𝑠𝑠, both are subsets of F
• We take some subset A of facts from s and replace with another subset of facts 𝐵𝐵
• Extension rules are how the 𝐵𝐵 is determined based on which 𝐴𝐴 is used
• 𝐸𝐸𝐸𝐸𝐸𝐸 ⊆ 𝐴𝐴 → 𝐵𝐵 𝐴𝐴, 𝐵𝐵 ⊆ 𝐹𝐹}
• We get for free 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = { 𝑠𝑠, 𝑠𝑠′ |∃𝐴𝐴 → 𝐵𝐵 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝐴𝐴 ⊆ 𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠′ = 𝑠𝑠 − 𝐴𝐴 ∪ 𝐵𝐵}

18

What do we need to design set-based solution?

Have 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)
• Facts (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠)
• Extension Rules (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)
Want 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 to complete 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = (𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠, 𝐸𝐸𝐸𝐸𝐸𝐸 , 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠)
• Search Control Direction (the choice of extension rules)

• 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠, 𝑒𝑒 = 𝑠𝑠 − 𝐴𝐴 ∪ 𝐵𝐵
• 𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 deal with choosing the A → 𝐵𝐵 ∈ 𝐸𝐸𝐸𝐸𝐸𝐸
• 𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 gives a value to each extension rule in current state
• 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 chooses between ties

• Search Instance

19

What do we need to design set-based solution?

Have 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)
• Facts (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠)
• Extension Rules (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠)
Have 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 to complete 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = (𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠, 𝐸𝐸𝐸𝐸𝐸𝐸 , 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠)
• Search Control Direction (the choice of extension rules) (𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠)
Want where to start
• Search Instance

• Some initial set of facts 𝑠𝑠0 ∈ 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠, and a goal 𝐺𝐺 to decide when done (ex. time passing,
quality of set of facts stops improving, no more extension rules apply [i.e. resolution])

20

Facts

21

What do we need to design evolutionary algorithm
solution to 0/1 knapsack?
• Facts

• We will deal with facts that are possible full solutions to the problem
• That is each fact is some selection of items below the capacity 𝐶𝐶
• (this is our choice, we could allow invalid solutions (too high capacity) as an alternative

• 𝐹𝐹 = (𝑥𝑥1, . . , 𝑥𝑥𝑚𝑚) 𝑥𝑥𝑖𝑖 ∈ {0,1} 𝑎𝑎𝑎𝑎𝑎𝑎 ∑𝑖𝑖=1..𝑚𝑚𝑤𝑤𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖 ≤ 𝐶𝐶}
• We have chosen to presume some consistent ordering of the available items in set 𝐼𝐼

22

What do we need to design evolutionary algorithm
solution to 0/1 knapsack?
• Facts

• If 𝐼𝐼 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚2, 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚3 = {(3,4), (4,5),(5,7)}

• Then a f ∈ 𝐹𝐹 could be f = 1,1,0 which would mean choosing 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚1 = (3,4) and
𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚2 = (4,5) but not the first item f = 0,1,1 would not be valid fact as it is over
capacity

23

Extension Rules

24

What do we need to design evolutionary algorithm
solution to 0/1 knapsack?
• Extension Rules

• Extension rules create new solutions from some subset of solutions
• We use two biologically inspired rules (mutation, crossover)
• 𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴 → 𝐵𝐵

𝐴𝐴, 𝐵𝐵 ⊆ 𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴, 𝐵𝐵 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴, 𝐵𝐵 }

25

Mutation

26

Mutation

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴, 𝐵𝐵
• 𝐴𝐴 = { 𝑥𝑥1, . . , 𝑥𝑥𝑚𝑚 }
• 𝐵𝐵 = { 𝑥𝑥1, . . , 𝑥𝑥𝑚𝑚 , 𝑦𝑦1, . . , 𝑦𝑦𝑚𝑚 }
• where

• 𝑥𝑥1 = 𝑦𝑦1 except for some 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 we will make 𝑦𝑦𝑖𝑖 = ¬𝑥𝑥𝑖𝑖
• We will flip one 0 to 1, or vice versa to add or remove an item from new knapsack solution

• Also known as single-point mutation

27

Mutation Example

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴, 𝐵𝐵

• If 𝐼𝐼 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚2, 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚3 = {((3,4), (4,5),(5,7)}
𝐶𝐶 = 7

𝐴𝐴 = (0,1,0)
𝐵𝐵 = 0,1,0 , (1,1,0)

Or even
𝐵𝐵 = 0,1,0 , (0,0,0)

28

Crossover

29

Crossover

• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴, 𝐵𝐵
• 𝐴𝐴 = { 𝑥𝑥1, . . , 𝑥𝑥𝑚𝑚 , 𝑦𝑦1, . . , 𝑦𝑦𝑚𝑚 }
• 𝐵𝐵 = { 𝑥𝑥1, . . , 𝑥𝑥𝑚𝑚 , 𝑦𝑦1, . . , 𝑦𝑦𝑚𝑚 , 𝑧𝑧1, . . , 𝑧𝑧𝑚𝑚 }
• where

• Each 𝑧𝑧𝑖𝑖 is selected by flipping a coin and selecting either 𝑥𝑥𝑖𝑖 or 𝑦𝑦𝑖𝑖

30

Crossover Example

• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴, 𝐵𝐵

• If 𝐼𝐼 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚2, 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚3 = {((3,4), (4,5),(5,7)}
𝐶𝐶 = 7

𝐴𝐴 = 0,1,0 , (1,0,0)
𝐵𝐵 = 0,1,0 , 1,0,0 , (1,1,0)

Or even one of the following

𝐵𝐵 = 0,1,0 , 1,0,0 , (0,0,0)
𝐵𝐵 = 0,1,0 , 1,0,0 , (1,0,0)
𝐵𝐵 = 0,1,0 , 1,0,0 , (0,1,0)

31

Search Control

32

What do we need to design evolutionary algorithm
solution to 0/1 knapsack?
• Search Control Direction (the choice of extension rules)

• RNG function to produce values
• 𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 set to constant
• 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 technically has all rules possible

• We will choose to define it procedurally
• 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 will pick mutation x% of time, mutation y% of time
• x+y = 100%
• 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 also picks which individuals A are used by Mut/Cross to produce 𝐵𝐵

• Fitness-based (value individuals by quality of solution (i.e. total value of items) and bias selection
of A towards more fit individuals)

33

Search Instance

34

What do we need to design evolutionary algorithm
solution to 0/1 knapsack?
• Search Instance

• A generated set of random individuals (valid knapsack solutions) of some chosen
population size (size of 𝑠𝑠0)

• For each random individual
• select random knapsack items to add until capacity is reached

• Goal function
• Time-based?

• Run for x minutes of real-world time
• Counter-based?

• Make x new solutions
• Improvement-based?

• Run until we aren’t finding better solutions often enough
• Often involves predicting a log curve of improvement and stopping when it flattens too much

35

Remarks

36

Considerations

• Do you always select the single top fittest individual?
• Rank-based selection (odds based on fitness order)
• Roulette wheel selection (odds based on fitness portion of total)

• How do you manage the growing population?
• Do you delete one/multiple each time
• Who do you delete

• What about diversity?
• What if population stagnates, can you enforce valuable diversity?

• What about invalid solutions?
• Do you define F to allow invalid facts (can move through invalid fact to better valid ones),

or do you disallow valid facts but possibly make it harder to move around search space

Onward to …
and-tree-based search

Jonathan Hudson, Ph.D.
jwhudson@ucalgary.ca
https://cspages.ucalgary.ca/~jwhudson/

	Set-based Search Example: Genetic Algorithms
	Genetic Algorithms
	Genetic Algorithms
	Encoding
	Knapsack Problem
	Knapsack Problem
	Knapsack Solutions
	Knapsack Solutions
	Examples
	Example problem with hill climb
	Example problem with hill climb
	Example problem with hill climb
	Example problem with dynamic programming
	GA Solution
	What do we need to design set-based solution?
	What do we need to design set-based solution?
	What do we need to design set-based solution?
	What do we need to design set-based solution?
	What do we need to design set-based solution?
	Facts
	What do we need to design evolutionary algorithm solution to 0/1 knapsack?
	What do we need to design evolutionary algorithm solution to 0/1 knapsack?
	Extension Rules
	What do we need to design evolutionary algorithm solution to 0/1 knapsack?
	Slide Number 25
	Mutation
	Mutation Example
	Slide Number 28
	Crossover
	Crossover Example
	Search Control
	What do we need to design evolutionary algorithm solution to 0/1 knapsack?
	Search Instance
	What do we need to design evolutionary algorithm solution to 0/1 knapsack?
	Remarks
	Considerations
	Onward to … �and-tree-based search

