Set-based Search Example: Genetic Algorithms

CPSC 433: Artificial Intelligence Fall 2024

Jonathan Hudson, Ph.D. Assistant Professor (Teaching) Department of Computer Science University of Calgary

<u> Tanzania da T</u>

August 8, 2024

Copyright © 2024

Genetic Algorithms

<u> Bernard Germany (Bernard Germany III) ere</u>

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
	- Keep best N hypotheses at each step (selection) based on a fitness function
	- Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

• (could be used for knapsack as alternatives to our Extension rules)**GA Operators Brief Introduction**

Knapsack Problem

Knapsack Problem

- Problem: Filling a knapsack with fixed capacity with items. Each item has a given weight and value to you. (0/1 Knapsack Problem)
- We have items I we will index from 1 to n
	- We have associated weights W and values V
	- $W = (w_1, ..., w_n), w_i > 0$
	- $V = (v_1, ..., v_n), v_i > 0$
	- To simplify each *item*_i \in *I* can be considered as a pair *item*_i = (w_i, v_i)
	- We have a max capacity of C
- What ways can we do this?
	- Hill climbing? Dynamic programming? Set-based search?

Knapsack Solutions

- Hill climbing
	- Estimation (just add best ratio of value to weight of things until you run out of space), quick, low memory, simple
	- Greedy algorithm (*413*)
	- Could be done via a set-based search
- Dynamic Programming (DP):
	- ***413*,** Exact algorithm (optimal solution for sure), Long running time as problem grows, lots of memory to store sub-problem expansions, very simple to design, $O(n^2)$ time and O(n) space if we treat every item as unique

Knapsack Solutions

- Genetic Algorithm (GA):
	- Estimation, never know if you found the best solution
	- Runs quickly as the problem explodes in complexity
	- memory usage rather small with basic implementation
	- quality can be highly variable with no guarantees
	- harder to design unless you know GAs

Examples

Example problem with hill climb

- We have a 1-0 knapsack with maximum capacity of 7. We have the set of items $I = \{(3,4), (4,5), (5,7)\}\$ where every item is a pair such that $i =$ (weight, value).
- Hill climb get a ratio of each item, sort by descending ratio, add each item that you can.

- This is best solution….for this instance of problem.
- Hill-climbing uses flawed heursistic.

Example problem with hill climb

- Estimation can cause problems.
- Add item (1,1).
- We have a 1-0 knapsack with maximum capacity of 7. We have the set of items $I = \{(1,1), (3,4), (4,5), (5,7)\}\$

• $\{(1,1), (4,5)\}$ has value 6 but there is a solution value 9 with $\{(3,4), (4,5)\}!$

Example problem with hill climb

- We have a 1-0 knapsack with maximum capacity of 7. We have the set of items $I = \{(3,4), (4,5), (5,7)\}\$ where every item is a pair such that $i =$ (weight, value).
- Is the problem the ratio direction?

- No.
- An inverted ratio would also lead to sub-optimal solution {(5,7)} which has value 5 but there is a solution value 9 with $\{(3,4),(4,5)\}!$

Example problem with dynamic programming

We have a 1-0 knapsack with maximum capacity of 7 and a set of items $I = \{(1,1), (3,4), (4,5), (5,7)\}\$, s.t. item = (weight, value) i

- Start from 0 and fill in the table, for each row in order add column first. Knapsack limit (top row) will be called i, current item will be j.
	- If weight(j) is bigger then i, write value at $T[j-1][i]$,
	- Else select the maximum(value(j) + value at $T[j-1][1 weight(j)], T[j-1][i]$)
- **13** Maximum value will be at the lowest row, on the last index. (9 in this case)

GA Solution

- Facts
- Extension Rules
- Search Control Direction (the choice of extension rules)
- Search Instance

Want Model A_{set}

- Facts
	- Parts that will fill our state set
		- 1. Parts of a single solution (like in resolution)
		- 2. Different possible full solutions (like in genetic/evolutionary algorithms)
	- We get for free $S_{set} \subseteq 2^F$ (also know as the power set of F -> all subsets of F)
- **Extension Rules**

Want Model A_{set}

- Facts (S_{set})
- Extension Rules
	- How we move between subsets of facts
	- If we are in some state s and moving to s' , both are subsets of F
	- We take some subset A of facts from s and replace with another subset of facts B
	- Extension rules are how the B is determined based on which A is used
	- $Ext \subseteq \{A \rightarrow B | A, B \subseteq F\}$
	- We get for free $T_{set} = \{(s, s') | \exists A \rightarrow B \text{ with } A \subseteq s \text{ and } s' = (s A) \cup B\}$

Have $A_{set} = (S_{set}, T_{set})$

- Facts (S_{set})
- Extension Rules (T_{set})

Want K_{set} to complete $P_{set} = (A_{set}, Env, K_{set})$

- Search Control Direction (the choice of extension rules)
	- $K_{set}(s, e) = (s A) \cup B$
	- f_{wert} , f_{select} deal with choosing the $A \rightarrow B \in Ext$
	- f_{wert} gives a value to each extension rule in current state
	- f_{select} chooses between ties
- Search Instance

Have $A_{set} = (S_{set}, T_{set})$

- Facts (S_{set})
- Extension Rules (T_{set})

Have K_{set} to complete $P_{set} = (A_{set}, Env, K_{set})$

• Search Control Direction (the choice of extension rules) (K_{set})

Want where to start

- Search Instance
	- Some initial set of facts $s_0 \in S_{set}$, and a goal G to decide when done (ex. time passing, quality of set of facts stops improving, no more extension rules apply [i.e. resolution])

Facts

<u> Biling and the Company of the Company of</u>

What do we need to design evolutionary algorithm solution to 0/1 knapsack?

- Facts
	- We will deal with facts that are possible full solutions to the problem
		- That is each fact is some selection of items below the capacity C
		- (this is our choice, we could allow invalid solutions (too high capacity) as an alternative
	- $F = \{(x_1, \ldots, x_m) | x_i \in \{0,1\} \text{ and } \sum_{i=1,m} w_i * x_i \leq C\}$
		- We have chosen to presume some consistent ordering of the available items in set I

What do we need to design evolutionary algorithm solution to 0/1 knapsack?

• Facts

- If $I = \{item_1, item_2, item_3\} = \{(3,4), (4,5), (5,7)\}$
- Then a $f \in F$ could be $f = (1,1,0)$ which would mean choosing *item*₁ = (3,4) and $item_2 = (4,5)$ but not the first item $f = (0,1,1)$ would not be valid fact as it is over capacity

Extension Rules

What do we need to design evolutionary algorithm solution to 0/1 knapsack?

- Extension Rules
	- Extension rules create new solutions from some subset of solutions
	- We use two biologically inspired rules (mutation, crossover)
	- $Ext = \{A \rightarrow B \mid$ $A, B \subseteq F$ and $\bigl(Mutation(A, B) \text{ or Crossover } (A, B)\bigr)\bigr\}$

Mutation

- $Mutation(A, B)$
	- $A = \{(x_1, ..., x_m)\}\$
	- $B = \{(x_1, \ldots, x_m), (y_1, \ldots, y_m)\}\$
	- where
		- $x_1 = y_1$ except for some $1 \le i \le m$ we will make $y_i = -x_i$
		- We will flip one 0 to 1, or vice versa to add or remove an item from new knapsack solution
	- Also known as single-point mutation

Mutation Example

• $Mutation(A, B)$

• If
$$
I = \{item_1, item_2, item_3\} = \{((3,4), (4,5), (5,7)\}
$$

 $C = 7$

$$
A = \{(0,1,0)\}\
$$

$$
B = \{(0,1,0), (1,1,0)\}\
$$

Or even

 $B = \{(0,1,0), (0,0,0)\}\$

Crossover

- $Crossover(A, B)$
	- $A = \{(x_1, \ldots, x_m), (y_1, \ldots, y_m)\}\$
	- $B = \{(x_1, \ldots, x_m), (y_1, \ldots, y_m), (z_1, \ldots, z_m)\}\$
	- where
		- Each z_i is selected by flipping a coin and selecting either x_i or y_i

Crossover Example

- $Crossover(A, B)$
- If $I = \{item_1, item_2, item_3\} = \{((3,4), (4,5), (5,7)\}$ $C = 7$

$$
A = \{(0,1,0), (1,0,0)\}
$$

$$
B = \{(0,1,0), (1,0,0), (1,1,0)\}
$$

Or even one of the following

$$
B = \{(0,1,0), (1,0,0), (0,0,0)\}
$$

$$
B = \{(0,1,0), (1,0,0), (1,0,0)\}
$$

$$
B = \{(0,1,0), (1,0,0), (0,1,0)\}
$$

Search Control

What do we need to design evolutionary algorithm solution to 0/1 knapsack?

- Search Control Direction (the choice of extension rules)
	- RNG function to produce values
	- f_{wert} set to constant
	- f_{select} technically has all rules possible
		- We will choose to define it procedurally
		- f_{select} will pick mutation $x\%$ of time, mutation $y\%$ of time
		- $x+y = 100\%$
		- f_{select} also picks which individuals A are used by Mut/Cross to produce B
			- Fitness-based (value individuals by quality of solution (i.e. total value of items) and bias selection of A towards more fit individuals)

Search Instance

What do we need to design evolutionary algorithm solution to 0/1 knapsack?

- Search Instance
	- A generated set of random individuals (valid knapsack solutions) of some chosen population size (size of s_0)
		- For each random individual
			- select random knapsack items to add until capacity is reached
	- Goal function
		- Time-based?
			- Run for x minutes of real-world time
		- Counter-based?
			- Make x new solutions
		- Improvement-based?
			- Run until we aren't finding better solutions often enough
			- Often involves predicting a log curve of improvement and stopping when it flattens too much

Remarks

Considerations

- Do you always select the single top fittest individual?
	- Rank-based selection (odds based on fitness order)
	- Roulette wheel selection (odds based on fitness portion of total)
- How do you manage the growing population?
	- Do you delete one/multiple each time
	- Who do you delete
- What about diversity?
	- What if population stagnates, can you enforce valuable diversity?
- What about invalid solutions?
	- Do you define F to allow invalid facts (can move through invalid fact to better valid ones), or do you disallow valid facts but possibly make it harder to move around search space

Onward to … and-tree-based search

Jonathan Hudson, Ph.D. jwhudson@ucalgary.ca https://cspages.ucalgary.ca/~jwhudson/

<u> Tanzania da Maria d</u>

