Set-based Search Example: Resolution

CPSC 433: Artificial Intelligence Fall 2024

Jonathan Hudson, Ph.D. Assistant Professor (Teaching) Department of Computer Science University of Calgary

<u> Tanzania da T</u>

August 8, 2024

Copyright © 2024

Logic Review

• **Propositional logic (***zeroth order logic***)**

- does not have predicates, just formulas of singular propositional symbols,
- often p,q,r,... combined with (or V, and \wedge , not \neg , implication \rightarrow , biconditional \leftrightarrow)
- Ex. $\neg p \lor q \rightarrow r$
- **First-order logic**
	- formulas use variables, constants, predicates, functions
	- quantifier ∃ (there is)
	- quantifier ∀ (for all)
	- equality also possible (EQ)

• **Variable**

• generally w,x,y,z

• **Constant**

- generally a,b,c,d,….
- Or sometimes alice, bob, carol, etc. or similar.
- Can replace a variable

• **Predicate**

- a property or relation
- generally P, Q, R, etc.
- P(a) would mean a constant a has property P
- while P(x) would mean the same for indeterminate variable
- **returns truth value**

• **Function**

- constants are a subset of these with no parameters
- generally f, g, h, etc.
- maps within domain of variables
- $f(x) \rightarrow y$ where both x, y are in domain of problem

• Clause

the control of the control of the control of

- a single logical formula
- Disjunction
	- or
	- ∨
- Conjunction
	- And
	- ∧
- Negation
	- Not
	- ¬

- Conjunctive Normal Form (CNF)
	- a set of clauses changed to a form where it becomes a conjunction of clauses where each clause is a disjunction of literals
	- Have clauses A, B, C
		- then conjunction of them becomes A and B and C
	- Every formula can be written in this form.
	- Note negations and brackets are transformed by logical rules such that negations apply to predicates and brackets are around clauses
	- $\neg(B \vee C)$ becomes $(\neg B) \wedge (\neg C)$
	- $(A \wedge B) \vee C$ becomes $(A \vee C) \wedge (B \vee C)$

- Unification
	- in our case used to attempt to find the most general unifier (**mgu**)
	- **mgu** is a valid mapping of variable/constant/function mapping to make two terms the same
	- Ex. if I have $f(a)$ and $f(x)$
		- mgu mapping **x->a** makes f(a)=f(a)
- Resolution
	- theorem proving technique, general process is to
	- 1. Take known clauses and **negate the conclusion trying to be proven(!)**
	- 2. Then turn this into CNF
	- 3. Attempt to derive empty clause
	- 4. If found this indicates the set of clauses was not satisfiable
	- 5. This then means that the original conclusion was supported by the clauses

Resolution Example

 $\forall x 433*Inst*(x) \rightarrow Cool(x)$ 433*Inst*(*Jon*)

is

 $Cool(Jon)$?

 $433*Inst*(x) \rightarrow Cool(x)$ 433*Inst*(*Jon*)

is (we can drop the for all x)

 $Cool(Jon)$?

 $433*Inst(x) \rightarrow Cool(x)*$ $433*Inst*(*lon*)$ is $Cool([on]$?

Negate $Cool([on]$ to $\neg Cool([on])$

Make conjuctive clause combination

 $433*Inst(x) \rightarrow Cool(x) \land 433*Inst(lon)* \land \neg Cool(lon)*$

$433*Inst(x) \rightarrow Cool(x) \land 433*Inst(lon)* \land \neg Cool(lon)*$

We need CNF (Conjuctive Normal Form)

 $(\neg 433 \text{Inst}(x) \lor \text{Cool}(x)) \land (433 \text{Inst}(\text{Jon})) \land (\neg \text{Cool}(\text{Jon}))$

 $(\neg 433 \text{Inst}(x) \lor \text{Cool}(x)) \land (433 \text{Inst}(lon)) \land (\neg \text{Cool}(lon))$

If we have $(\neg 433 \text{Inst}(x) \vee \text{Goal}(x))$ And $(433*Inst*(*Jon*))$

Then using $mgu(x \rightarrow Jon)$ we get $(\neg 433 Inst(Jon) \vee Cool(Jon))$

We have truth of $433 Inst(Jon)$ so for $(\neg 433 Inst(Jon) \vee Cool(Jon))$ to be true then we must have $\mathit{Cool}(lon)$ as truth

Now we have knowledge

 $(\neg 433 \text{Inst}(x) \lor \text{Cool}(x)) \land (433 \text{Inst}(lon)) \land (\neg \text{Cool}(lon)) \land (\text{Cool}(Jon))$

 $(\neg 433 \text{Inst}(x) \lor \text{Cool}(x)) \land (433 \text{Inst}(lon)) \land (\neg \text{Cool}(lon)) \land (\text{Cool}(lon))$

We have a contradiction

 $Cool(lon) \wedge (\neg Cool(lon))$ resolve to \blacksquare

Therefore, the CNF form was unsatisfiable which means the original clauses agree with $Cool($ $|$ $|$

Set-Based Search Applied to Resolution

<u> Andrew Maria (1985)</u>

• We describe our world by a collection of special logical formulas, so-called clauses:

$$
L_1(t_{1,1},...,t_{1,n1}) \vee \cdots \vee L_m(t_{m,1},...,t_{m,nm})
$$

where L_i predicate symbol or its negation, $t_{i,j}$ terms out of function symbols and variables (x,y…) variables in different clauses are disjunct

- Examples: $p \vee \neg q$, $P(a, b, x) \vee R(x, y, c)$, $Q(f(a, b), g(x, y))$, $\neg Q(a, b)$
- A consequence we want to prove is negated, transformed into clauses and these clauses are added to the world.
- The consequence is proven, if the empty clause (∎) can be deduced.

Extension Rules?

• We derive new clauses by either Resolution or Factorization

Resolution:

 $\overline{C} \vee P$, $D \vee \neg P'$ $\sigma(C \vee D)$ if $\sigma = \text{mgu}(P, P')$

mgu = most general unifier

Factorization:

 $C \vee P \vee P'$ $\overline{\sigma(C \vee P)}$ if $\sigma = \text{mgu}(P, P')$

Needed: Unification to compute mgu Yet another set-based search problem:

if $\sigma = \text{mgu}(P, P')$ Examples of P, P' $P(x,y)$ and $P(a,b)$ P(a) and P(a) $P(x)$ and $P(b)$

Not examples of P, P' (the predicate letters are different) $P(a)$ and $R(a)$ P(a,b) and S(a,b) $R(x)$ and $S(t)$

Set-Based Search Applied to Unification

<u> Andrew Maria (1985)</u>

Concrete Example: Resolution: Unification (I)

States:

set of term equations $u \approx v$

with ⊥ (symbol for False) indicating failure

Extension Rules?

Concrete Example: Resolution: Unification (I)

Extension rules:

Delete:

$$
\frac{E \cup \{t \approx t\}}{E}
$$

No longer need to maintain a unifier of something to itself

Concrete Example: Resolution: Unification (II)

Extension rules:

Decompose:

$$
\frac{E \cup \{f(t_1, ..., t_n) \approx f(s_1, ..., s_n)\}}{E \cup \{t_1 \approx s_1, ..., t_n \approx s_n\}}
$$

If you have function unified to same name function, can recompose unifier to only be unifying the internals

Concrete Example: Resolution: Unification (III)

Extension rules:

Orient:

$$
\frac{E \cup \{t \approx x\}}{E \cup \{x \approx t\}} \qquad t
$$

is not variable

Order of unifier can be changed

Concrete Example: Resolution: Unification (IV)

Extension rules:

Substitute:

$$
E \cup \{x \approx t, t' \approx s'\}
$$

$$
E \cup \{x \approx t, t'[x \leftarrow t] \approx s'[x \leftarrow t]\}
$$

Can modify one unifier with another as long as x not in t

Concrete Example: Resolution: Unification (V)

Extension rules:

Occurs check:

$$
\frac{E \cup \{x \approx t\}}{\perp}
$$

If x is in t we cannot unify them (think infinite expansion as issue)

Concrete Example: Resolution: Unification (VI)

Extension rules:

Clash:

$$
\frac{E \cup \{f(t_1, ..., t_n) \approx g(s_1, ..., s_n)\}}{\perp}
$$

If $f \neq g$ we cannot unify them

Constants a $\approx b$ are the same as a() $\approx b$ () and would fall under this rule

Concrete Example: Resolution: Unification (VII)

Needed: Unification to compute mgu

Yet another set-based search problem:

States:

set of term equations $u \approx v$, with \perp indicating failure

Extension rules:

Delete, Decompose, Orient, Substitute, Occurs check, Clash

Goal condition:

all equations in the state have form $x \approx t$ and Occurcheck and Substitute are not applicable

Unification/Resolution: Examples

x,y,z are variables, rest are literals, functions, and predicates Examples for Unification:

(1) $f(g(x, y), c) \approx f(g(f(d, x), z), c)$ (2) $h(c, d, g(x, y)) \approx h(z, d, g(g(a, y), z))$ Examples for Resolution:

$$
(1) p \lor q, p \lor \neg q, \neg p \lor q, \neg p \lor \neg q
$$

- (2) $P(x) \vee R(x), \neg R(f(a, b)), \neg P(g(a, b))$
- (3) $P(x) \vee R(y)$, $\neg R(f(a, b))$, $\neg P(g(a, b))$

x,y,z are variables, rest are literals, functions, and predicates

Examples for Unification:

```
{f(g(x, y), c) \approx f(g(f(d, x), z), c)}
```
decompose

$$
\{g(x,y)\approx g(f(d,x),z),\;c\approx c\}
$$

delete

```
{ q(x,y) \approx q(f(d,x),z) }
```
decompose

```
\{x \approx f(d,x), y \approx z\}
```
occurs check ⊥

x,y,z are variables, rest are literals, functions, and predicates

Examples for Unification:

 $\{ h(c, d, g(x, y) \approx h(z, d, g(g(a, y), z)) \}$

decompose

 ${c \approx z, d \approx d, g(x, y) \approx g(g(a, y), z)}$

delete

 $\{c \approx z, g(x, y) \approx g(g(a, y), z)\}\$

orient

 ${ z \approx c, \boldsymbol{g}(x, y) \approx \boldsymbol{g}(q(a, y), z) }$

$$
\{z \approx c, \boldsymbol{g}(x, y) \approx \boldsymbol{g}(g(a, y), z)\}
$$

decompose

$$
\{z\approx c,x\approx g(a,y),\mathbf{y}\approx\mathbf{z}\}
$$

substitute

$$
\{z \approx c, x \approx g(a,y), y \approx c\}
$$

substitute

$$
\{z\approx c,x\approx g(a,c),y\approx c\}
$$

done

x,y,z are variables, rest are literals, functions, and predicates Examples for Unification:

(1) $f(g(x, y), c) \approx f(g(f(d, x), z), c)$ occur check \perp (2) $h(c, d, g(x, y)) \approx h(z, d, g(g(a, y), z))$ mgu = { $z \approx c, x \approx g(a, c), y \approx c$ } Examples for Resolution:

$$
(1) p \lor q, p \lor \neg q, \neg p \lor q, \neg p \lor \neg q
$$

- (2) $P(x) \vee R(x), \neg R(f(a, b)), \neg P(g(a, b))$
- (3) $P(x) \vee R(y)$, $\neg R(f(a, b))$, $\neg P(g(a, b))$

 (1) $p \vee q$ $(2) p \vee \neg q$ (3) $\neg p \vee q$ (4) $\neg p \vee \neg q$ (5) $p \vee p$ resolve (1) and (2) (6) p factorize (5) (7) $\neg p$ ∨ $\neg p$ resolve (3) and (4) $(8) \neg p$ factorize (7) (9) \blacksquare resolving (6) and (8)

Resolution: $C \vee P$, $D \vee \neg P'$ $\overline{\sigma(C \vee D)}$

PFactorization: $C \vee P \vee P'$ $\sigma(C \vee P)$

x,y,z are variables, rest are literals, functions, and predicates

Examples for Resolution:

(1) $P(x) \vee R(x)$

$$
(2) \neg R\big(f(a,b)\big)
$$

 (3) $\neg P(g(a, b))$

(4) $P(f(a, b))$ resolving (1) and (2) with $mgu = \{x \approx f(a, b)\}\$ (5) $R(g(a, b))$ resolving (1) and (3) with $mgu = \{x \approx g(a, b)\}\$ Can't reach empty clause

Resolution: $C \vee P$, $D \vee \neg P'$ $\sigma(C \vee D)$

 \rightarrow Factorization: $C \vee P \vee P'$ $\sigma(C \vee P)$

x,y,z are variables, rest are literals, functions, and predicates

Examples for Resolution:

(1) $P(x) \vee R(y)$ $(2) \neg R(f(a,b))$ (3) $\neg P(g(a, b))$ (4) $P(x)$ resolving (1) and (2) with $mgu = \{ y \approx f(a, b) \}$ (5) ■ resolving (3) and (4) with $mgu = \{x \approx g(a, b)\}\;$

Resolution: $C \vee P$, $D \vee \neg P'$ $\overline{\sigma(C \vee D)}$

 \rightarrow Factorization: $C \vee P \vee P'$ $\sigma(C \vee P)$

x,y,z are variables, rest are literals, functions, and predicates Examples for Unification:

(1) $f(g(x, y), c) \approx f(g(f(d, x), z), c)$ occur check \perp (2) $h(c, d, g(x, y)) \approx h(z, d, g(g(a, y), z))$ mgu = { $z \approx c, x \approx g(a, c), y \approx c$ } Examples for Resolution:

(1) $p \vee q, p \vee \neg q, \neg p \vee q, \neg p \vee \neg q$ produced empty clause

(2) $P(x) \vee R(x)$, $\neg R(f(a, b))$, $\neg P(g(a, b))$ couldn't reach empty clause

(3) $P(x) \vee R(y)$, $\neg R(f(a, b))$, $\neg P(g(a, b))$ produced empty clause

Unification/Resolution: Set-Based

<u> Andrew Maria (1985)</u>

Tasks:

- Describe Resolution as set-based search model
	- F , Ext
- Given the following control idea, describe formally a search control for your model, so that we have a search process:

• f_{wert}, f_{select}

Perform factorization whenever possible; choose the smallest possible clauses for resolution; if several clause pairs are smallest, use an ordering \leq_{lit} on the predicates and terms

 $\mathbf{F} = \{f_1, ..., f_t\}$

$$
\mathbf{F} = \{f_1, \dots, f_t \mid f_i = L_1(t_{1,1}, \dots, t_{1,n1}) \vee \dots \vee L_m(t_{m,1}, \dots, t_{m,nm})\}
$$

set of t facts

where each fact is formed where L_i predicate symbol or its negation $t_{i,j}$ terms out of function symbols and variables (x,y...) variables in different clauses are disjunct}

 $\boldsymbol{Ext} = \{A \rightarrow B | A, B \subseteq \boldsymbol{F} \text{ and } \}$

 $\boldsymbol{Ext} = \{A \rightarrow B | A, B \subseteq \boldsymbol{F} \text{ and Resolution}(A, B), Factorization(A, B)\}$

 $\boldsymbol{Ext} = \{A \rightarrow B | A, B \subseteq \boldsymbol{F} \text{ and Resolution}(A, B), Factorization(A, B)\}$

Resolution:

\n
$$
Resolution(A, B) = \frac{C}{D} \text{ where } A = C \text{ and } B = C \cup D
$$

\n
$$
\frac{C \vee P, D \vee \neg P'}{\sigma(C \vee D)}
$$

\n
$$
Factorization(A, B) = \frac{C}{D} \text{ where } A = C \text{ and } B = C \cup D
$$

\n
$$
\text{Factorization:}
$$

\n
$$
\frac{C \vee P \vee P'}{\sigma(C \vee P)}
$$

 $\boldsymbol{Ext} = \{A \rightarrow B | A, B \subseteq \boldsymbol{F} \text{ and Resolution}(A, B), Factorization(A, B)\}$

Resolution: E_{\parallel} $\frac{C \vee P, D \vee \neg P'}{\sigma(C \vee D)}$ $Resolution(A, B) =$ \overline{F} where $A = E$ and $B = E \cup F$ **Produce a new clause F from clauses in E**

² Factorization: $\frac{C \vee P \vee P'}{\sigma(C \vee P)}$

$$
Factorization(A, B) = \frac{E}{F} \qquad \text{where } A = E \text{ and } B = E \cup F
$$
\nProduce a new clause E from clauses in E

• $f_{wert}(A, B, e) = N$

- If $A \to B$ exists that fulfils $Factorization(A, B) = \frac{E}{F}$ F['] with $E \notin s$ then $f_{\text{wert}}(A, B, e) = 0$ (always choose factorization)
- if $A \to B$ exists that fulfills $Resolution(A, B) = \frac{E}{F}$ F with $E \notin S$ then $f_{wert}(A, B, e) = size(A)$ where size(A) is a summation of size of clauses in A (next do Resolution based on size)

- $f_{wert}(A, B, e) = N$
	- always choose Factorization first
	- next do Resolution based on size

- $f_{select}(\lbrace A' \rightarrow B' \rbrace, e) = A \rightarrow B$
	- where $A \rightarrow B$ is at index 0 after creating a sorted order of $\{A' \rightarrow B'\}$ according to ordering \leq_{lit}
	- there should exists no two clauses which cannot be ordered by \leq_{lit} as there are no duplicates

- $f_{select}(\lbrace A' \rightarrow B' \rbrace, e) = A \rightarrow B$
	- use ordering for tie break

Unification/Resolution: Set-Based: Applied

Tasks (cont.):

• Apply your process to the search instance to the following set of clauses:

$$
\begin{cases}\n\neg P(x, y) \lor P(y, x), \\
P(f(x), g(y)) \lor \neg R(y), \\
\neg P(g(x), f(x)), \\
R(x) \lor Q(x, b), \\
\neg Q(a, x)\n\end{cases}
$$

Tasks (cont.):

• Remember its best to think of variables in each clause as independent variables

$$
\begin{cases}\n\neg P(x_1, y_1) \lor P(y_1, x_1), \\
P(f(x_2), g(y_2)) \lor \neg R(y_2), \\
\neg P(g(x_3), f(x_3)), \\
R(x_4) \lor Q(x_4, b), \\
\neg Q(a, x_5)\n\end{cases}
$$

Tasks (cont.):

• Last two resolved

$$
\begin{bmatrix}\n\neg P(x_1, y_1) \lor P(y_1, x_1), \\
P(f(x_2), g(y_2)) \lor \neg R(y_2), \\
\neg P(g(x_3), f(x_3)), \\
R(x_4) \lor Q(x_4, b), \\
\neg Q(a, x_5), \\
R(a)\n\end{bmatrix}
$$

$$
mgu = \{x_4 \approx a, x_5 \approx b\}
$$

Tasks (cont.):

• Resolve newest with 2nd

$$
\begin{bmatrix}\n\neg P(x_1, y_1) \lor P(y_1, x_1), \\
P(f(x_2), g(y_2)) \lor \neg R(y_2), \\
\neg P(g(x_3), f(x_3)), \\
R(x_4) \lor Q(x_4, b), \\
\neg Q(a, x_5), \\
R(a), \\
P(f(x_2), g(a))\n\end{bmatrix}
$$

mgu = { $y_2 \approx a$ }

Tasks (cont.):

• Resolve newest with first

$$
\neg P(x_1, y_1) \lor P(y_1, x_1),
$$

\n
$$
P(f(x_2), g(y_2)) \lor \neg R(y_2),
$$

\n
$$
\neg P(g(x_3), f(x_3)),
$$

\n
$$
R(x_4) \lor Q(x_4, b),
$$

\n
$$
\neg Q(a, x_5),
$$

\n
$$
R(a),
$$

\n
$$
P(f(x_2), g(a))
$$

\n
$$
P(g(a), f(x_2))
$$

mgu = { $x_1 \approx f(x_2)$, $y_1 \approx g(a)$ }

Tasks (cont.):

• Resolve newest with third

$$
\neg P(x_1, y_1) \lor P(y_1, x_1),
$$

\n
$$
P(f(x_2), g(y_2)) \lor \neg R(y_2),
$$

\n
$$
\neg P(g(x_3), f(x_3)),
$$

\n
$$
R(x_4) \lor Q(x_4, b),
$$

\n
$$
\neg Q(a, x_5),
$$

\n
$$
R(a),
$$

\n
$$
P(f(x_2), g(a))
$$

\n
$$
P(g(a), f(x_2))
$$

mgu = { $x_3 \approx a, x_2 \approx a$ }

Onward to … genetic algorithm set-based search

Jonathan Hudson, Ph.D. jwhudson@ucalgary.ca https://cspages.ucalgary.ca/~jwhudson/

